1
|
Lukasak BJ, Korb E. Histone variants: expanding the epigenetic potential of neurons one amino acid at a time. Trends Biochem Sci 2025; 50:532-543. [PMID: 40268580 PMCID: PMC12145244 DOI: 10.1016/j.tibs.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Replication-independent histone variants play an essential role in postmitotic neurons. Here, we review how the subtle sequence differences of histone variants compared to their canonical counterparts underly neuronal function. We focus on variants H3.3, H2A.Z, H2A.X, macroH2A, and H2BE; all of which contain divergent sequences that coordinate a diverse set of outcomes. In particular, we highlight their role in neuronal development, plasticity, and memory, with an emphasis on how single amino acid changes can mediate these complex functions. Lastly, we comment on an emerging field of study evaluating the link between histone variants and neurological disorders. Future studies of histone variants will be important to furthering our understanding of neuronal function.
Collapse
Affiliation(s)
- Bradley J Lukasak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Sugo N, Atsumi Y, Yamamoto N. Transcription and epigenetic factor dynamics in neuronal activity-dependent gene regulation. Trends Genet 2025; 41:425-436. [PMID: 39875312 DOI: 10.1016/j.tig.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs. Recent evidence from epigenome analyses and imaging studies have revealed intriguing mechanisms: the default chromatin structure at activity-dependent genes is formed independently of neuronal activity, while neuronal activity modulates spatiotemporal dynamics of TFs and their interactions with epigenetic factors (EFs). In this article we review new insights into activity-dependent gene regulation that affects brain development and plasticity.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
3
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Choi J, Kim T, Cho EJ. HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Exp Mol Med 2024; 56:251-263. [PMID: 38297159 PMCID: PMC10907377 DOI: 10.1038/s12276-023-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024] Open
Abstract
H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.
Collapse
Affiliation(s)
- Jinmi Choi
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taewan Kim
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Eun-Jung Cho
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Silveira PP, Pokhvisneva I, Howard DM, Meaney MJ. A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol Psychiatry 2023; 28:2469-2479. [PMID: 36750733 PMCID: PMC10611579 DOI: 10.1038/s41380-023-01960-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023]
Abstract
There are marked sex differences in the prevalence, phenotypic presentation and treatment response for major depression. While genome-wide association studies (GWAS) adjust for sex differences, to date, no studies seek to identify sex-specific markers and pathways. In this study, we performed a sex-stratified genome-wide association analysis for broad depression with the UK Biobank total participants (N = 274,141), including only non-related participants, as well as with males (N = 127,867) and females (N = 146,274) separately. Bioinformatics analyses were performed to characterize common and sex-specific markers and associated processes/pathways. We identified 11 loci passing genome-level significance (P < 5 × 10-8) in females and one in males. In both males and females, genetic correlations were significant between the broad depression GWA and other psychopathologies; however, correlations with educational attainment and metabolic features including body fat, waist circumference, waist-to-hip ratio and triglycerides were significant only in females. Gene-based analysis showed 147 genes significantly associated with broad depression in the total sample, 64 in the females and 53 in the males. Gene-based analysis revealed "Regulation of Gene Expression" as a common biological process, but suggested sex-specific molecular mechanisms. Finally, sex-specific polygenic risk scores (PRSs) for broad depression outperformed total and the opposite sex PRSs in the prediction of broad major depressive disorder. These findings provide evidence for sex-dependent genetic pathways for clinical depression as well as for health conditions comorbid with depression.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
7
|
Porter RS, Iwase S. Modulation of chromatin architecture influences the neuronal nucleus through activity-regulated gene expression. Biochem Soc Trans 2023; 51:703-713. [PMID: 36929379 PMCID: PMC10959270 DOI: 10.1042/bst20220889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
The disruption of chromatin-regulating genes is associated with many neurocognitive syndromes. While most of these genes are ubiquitously expressed across various cell-types, many chromatin regulators act upon activity regulated genes (ARGs) that play central roles in synaptic development and plasticity. Recent literature suggests a link between ARG expression disruption in neurons with the human phenotypes observed in various neurocognitive syndromes. Advances in chromatin biology have demonstrated how chromatin structure, from nucleosome occupancy to higher-order structures such as topologically associated domains, impacts the kinetics of transcription. This review discusses the dynamics of these various levels of chromatin structure and their influence on the expression of ARGs.
Collapse
Affiliation(s)
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Mahmud I, Tian G, Wang J, Hutchinson TE, Kim BJ, Awasthee N, Hale S, Meng C, Moore A, Zhao L, Lewis JE, Waddell A, Wu S, Steger JM, Lydon ML, Chait A, Zhao LY, Ding H, Li JL, Purayil HT, Huo Z, Daaka Y, Garrett TJ, Liao D. DAXX drives de novo lipogenesis and contributes to tumorigenesis. Nat Commun 2023; 14:1927. [PMID: 37045819 PMCID: PMC10097704 DOI: 10.1038/s41467-023-37501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer cells exhibit elevated lipid synthesis. In breast and other cancer types, genes involved in lipid production are highly upregulated, but the mechanisms that control their expression remain poorly understood. Using integrated transcriptomic, lipidomic, and molecular studies, here we report that DAXX is a regulator of oncogenic lipogenesis. DAXX depletion attenuates, while its overexpression enhances, lipogenic gene expression, lipogenesis, and tumor growth. Mechanistically, DAXX interacts with SREBP1 and SREBP2 and activates SREBP-mediated transcription. DAXX associates with lipogenic gene promoters through SREBPs. Underscoring the critical roles for the DAXX-SREBP interaction for lipogenesis, SREBP2 knockdown attenuates tumor growth in cells with DAXX overexpression, and DAXX mutants unable to bind SREBP1/2 have weakened activity in promoting lipogenesis and tumor growth. Remarkably, a DAXX mutant deficient of SUMO-binding fails to activate SREBP1/2 and lipogenesis due to impaired SREBP binding and chromatin recruitment and is defective of stimulating tumorigenesis. Hence, DAXX's SUMO-binding activity is critical to oncogenic lipogenesis. Notably, a peptide corresponding to DAXX's C-terminal SUMO-interacting motif (SIM2) is cell-membrane permeable, disrupts the DAXX-SREBP1/2 interactions, and inhibits lipogenesis and tumor growth. These results establish DAXX as a regulator of lipogenesis and a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, Henan, China
| | - Tarun E Hutchinson
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Brandon J Kim
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Nikee Awasthee
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Seth Hale
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chengcheng Meng
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Allison Moore
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Liming Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica E Lewis
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aaron Waddell
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shangtao Wu
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julia M Steger
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - McKenzie L Lydon
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aaron Chait
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lisa Y Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Haocheng Ding
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
9
|
Fu J, Liu G, Zhang X, Lei X, Liu Q, Qian K, Tong Q, Qin W, Li Z, Cao Z, Zhang J, Liu C, Wang Z, Liu Z, Liang XM, Yamamoto H, Xu X. TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication. Cancer Gene Ther 2023; 30:738-751. [PMID: 36609627 DOI: 10.1038/s41417-022-00583-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) play crucial roles in solid tumors such as prostate and breast cancers. But the role of TRPM8 in hepatocellular carcinoma (HCC) and its underlying molecular mechanisms remain largely unknown. In this study, the functional roles of TRPM8 in HCC were systematically investigated for the first time. It was found that the expression level of TRPM8 was significantly upregulated in HCC, which was positively correlated with the worse clinicopathological characteristics. Functional studies revealed that pharmacological inhibition or genetic downregulation of TRPM8 ameliorated hepatocarcinogenesis in vitro and in vivo. Mechanistically, the oncogenic role of TRPM8 in HCC was at least partially achieved by affecting mitochondrial function. TRPM8 could modulate the expression of nucleolar relative molecule-small nucleolar RNA, H/ACA box 55 (SNORA55) by inducing transformation of chromatin structure and histone modification type. These data suggest that as a bridge molecule in TRPM8-triggered HCC, SNORA55 can migrate from nucleus to mitochondria and exert oncogenic role by affecting mitochondria function through targeting ATP5A1 and ATP5B. Herein, we uncovered the potent oncogenic role of TRPM8 in HCC by inducing nuclear and mitochondrial dysfunction in a SNORA55 dependent manner, and provided a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guoxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiao Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Lei
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiang Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ke Qian
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qing Tong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Qin
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenghao Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhengyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ju Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chun Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin M Liang
- Wellman Center for Photomedicine, Division of Hematology and Oncology, Division of Endocrinology, Massachusetts General Hospital, VA Boston Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China. .,Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
10
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
11
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
12
|
Wen T, Chen QY. Dynamic Activity of Histone H3-Specific Chaperone Complexes in Oncogenesis. Front Oncol 2022; 11:806974. [PMID: 35087762 PMCID: PMC8786718 DOI: 10.3389/fonc.2021.806974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. Int J Mol Sci 2022; 23:ijms23031122. [PMID: 35163061 PMCID: PMC8835043 DOI: 10.3390/ijms23031122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. In this review, we focus on the cell proliferative functions and regulatory mechanisms of calcineurin and summarize the various substrates of calcineurin. We also describe recent advances regarding dysregulation of the calcineurin activity in cancer cells. We hope that this review will provide new insights into the potential role of calcineurin in cancer development.
Collapse
|
14
|
Esteves de Lima J, Relaix F. Epigenetic Regulation of Myogenesis: Focus on the Histone Variants. Int J Mol Sci 2021; 22:ijms222312727. [PMID: 34884532 PMCID: PMC8657657 DOI: 10.3390/ijms222312727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscle development and regeneration rely on the successive activation of specific transcription factors that engage cellular fate, promote commitment, and drive differentiation. Emerging evidence demonstrates that epigenetic regulation of gene expression is crucial for the maintenance of the cell differentiation status upon division and, therefore, to preserve a specific cellular identity. This depends in part on the regulation of chromatin structure and its level of condensation. Chromatin architecture undergoes remodeling through changes in nucleosome composition, such as alterations in histone post-translational modifications or exchange in the type of histone variants. The mechanisms that link histone post-translational modifications and transcriptional regulation have been extensively evaluated in the context of cell fate and differentiation, whereas histone variants have attracted less attention in the field. In this review, we discuss the studies that have provided insights into the role of histone variants in the regulation of myogenic gene expression, myoblast differentiation, and maintenance of muscle cell identity.
Collapse
|
15
|
Bano D, Salomoni P, Ehninger D, Nicotera P. The histone code in dementia: Transcriptional and chromatin plasticity fades away. Curr Opin Pharmacol 2021; 60:117-122. [PMID: 34411982 PMCID: PMC8519393 DOI: 10.1016/j.coph.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023]
Abstract
With the aging of the population, Alzheimer's disease and other forms of dementia represent major challenges for health care systems globally. To date, the molecular mechanisms underlying the pathophysiology of dementia remain elusive, with a consequent negative impact in developing efficient disease modifiers. New exciting findings suggest that modulation of the histone code may influence transcriptional networks at the root of neuronal plasticity and cognitive performance. Although most of the current conclusions require further mechanistic evidence, it appears that chromatin perturbations actually correlate with Alzheimer's disease onset and progression. Thus, a better understanding of the epigenetic contribution to normal brain function and dementia pathogenesis may help to identify new epigenetic targets for the inhibition of disease trajectories associated with cognitive decline.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
16
|
Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton-Libotte B, Dilworth FJ, Relaix F. HIRA stabilizes skeletal muscle lineage identity. Nat Commun 2021; 12:3450. [PMID: 34103504 PMCID: PMC8187366 DOI: 10.1038/s41467-021-23775-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes. The epigenetic mechanisms coordinating the maintenance of adult cellular lineages remain poorly understood. Here the authors demonstrate that HIRA, a H3.3 histone chaperone, establishes the chromatin landscape required for skeletal muscle cell identity.
Collapse
Affiliation(s)
| | - Reem Bou Akar
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France
| | - Léo Machado
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France
| | - Yuefeng Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - F Jeffrey Dilworth
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France.
| |
Collapse
|
17
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Ray-Gallet D, Almouzni G. The Histone H3 Family and Its Deposition Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:17-42. [PMID: 33155135 DOI: 10.1007/978-981-15-8104-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries. The histone variants have important roles during early development, cell differentiation, and chromosome segregation. Recent progress has also shed light on how mutations and transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we introduce the organization of the genome in chromatin with a focus on the basic unit, the nucleosome, which contains histones as the major protein component. Then we review our current knowledge on the histone H3 family and its variants-in particular H3.3 and CenH3CENP-A-focusing on their deposition pathways and their dedicated histone chaperones that are key players in histone dynamics.
Collapse
Affiliation(s)
- Dominique Ray-Gallet
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.
| |
Collapse
|
20
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Rienecker KDA, Poston RG, Saha RN. Merits and Limitations of Studying Neuronal Depolarization-Dependent Processes Using Elevated External Potassium. ASN Neuro 2020; 12:1759091420974807. [PMID: 33256465 PMCID: PMC7711227 DOI: 10.1177/1759091420974807] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Elevated extracellular potassium chloride is widely used to achieve membrane depolarization of cultured neurons. This technique has illuminated mechanisms of calcium influx through L-type voltage sensitive calcium channels, activity-regulated signaling, downstream transcriptional events, and many other intracellular responses to depolarization. However, there is enormous variability in these treatments, including durations from seconds to days and concentrations from 3mM to 150 mM KCl. Differential effects of these variable protocols on neuronal activity and transcriptional programs are underexplored. Furthermore, potassium chloride treatments in vitro are criticized for being poor representatives of in vivo phenomena and are questioned for their effects on cell viability. In this review, we discuss the intracellular consequences of elevated extracellular potassium chloride treatment in vitro, the variability of such treatments in the literature, the strengths and limitations of this tool, and relevance of these studies to brain functions and dysfunctions.
Collapse
Affiliation(s)
- Kira D. A. Rienecker
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Robert G. Poston
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| | - Ramendra N. Saha
- Department of Molecular and Cell Biology,
School of Natural Sciences, University of California, Merced, United
States
| |
Collapse
|
23
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
24
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
25
|
Farrelly LA, Maze I. An emerging perspective on 'histone code' mediated regulation of neural plasticity and disease. Curr Opin Neurobiol 2019; 59:157-163. [PMID: 31382083 PMCID: PMC6889037 DOI: 10.1016/j.conb.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022]
Abstract
The last two decades have witnessed explosive advances in our understanding as to how the organization of chromatin, the association of DNA with histones and vast numbers of non-histone regulatory proteins, controls the expression of specific genes in brain. Prominent among such regulatory mechanisms are modifications of histones, along with the 'writers,' 'erasers,' and 'readers' of these modifications. Much of the work delineating these mechanisms has contributed to the idea that a 'histone code' may be a central determinant of a gene's activity and its potential to be activated or repressed in response to environmental perturbations (both beneficial and aberrant). Indeed, increasing evidence has demonstrated the significance of histone regulation in neurological plasticity and disease, although we are still at the earliest stages of examining all of the many potential chromatin changes involved. In this short review, we provide an emerging perspective on putative roles for histones, and their combinatorial readouts, in the context of neural plasticity, and we provide a conceptual framework for future mechanistic studies aimed at uncovering causal links between the neural 'histone code' and brain function/disease.
Collapse
Affiliation(s)
- Lorna A Farrelly
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
26
|
Cavalcante SG, Silva CPN, Sola PR, Tanaka LY, Oba-Shinjo SM, Marie SKN. ATRX-DAXX Complex Expression Levels and Telomere Length in Normal Young and Elder Autopsy Human Brains. DNA Cell Biol 2019; 38:955-961. [PMID: 31361513 DOI: 10.1089/dna.2019.4752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chromatin-remodeling complex ATRX/DAXX is one of the major epigenetic factors that controls heterochromatin maintenance due to its role in histone deposition. ATRX is involved in nucleosome configuration and maintenance of higher order chromatin structure, and DAXX is a specific histone chaperone for H3.3 deposition. Dysfunctions in this complex have been associated with telomere shortening, which influences cell senescence. However, data about this complex in brain tissue related to aging are still scarce. Therefore, in the present study, we analyzed ATRX and DAXX expressions in autopsied human brain specimens and the telomere length. A significant decrease in gene and protein expressions was observed in the brain tissues from the elderly compared with those from the young, which were related to short telomeres. These findings may motivate further functional analysis to confirm the ATRX-DAXX complex involvement in telomere maintenance and brain aging.
Collapse
Affiliation(s)
- Stella G Cavalcante
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse P N Silva
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Faculdade de Medicina FMUSP, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Wasylishen AR, Estrella JS, Pant V, Chau GP, Lozano G. Daxx Functions Are p53-Independent In Vivo. Mol Cancer Res 2018; 16:1523-1529. [PMID: 29903771 PMCID: PMC6233723 DOI: 10.1158/1541-7786.mcr-18-0281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023]
Abstract
Mutations in the death domain-associated protein (DAXX) have been recently identified in a substantial proportion of human pancreatic neuroendocrine tumors (PanNETs). Remarkably, however, little is known about the physiologic role(s) of DAXX despite in vitro studies suggesting potential functions. Most prominently, and supported by tumor sequencing data, DAXX functions in concert with alpha thalassemia/mental retardation X-linked (ATRX) as a histone chaperone complex for the H3.3 variant. Studies have also identified potential roles in apoptosis, transcription, and negative regulation of the p53 tumor suppressor pathway. Herein, a mouse modeling approach was used to specifically address the latter and no significant genetic interaction between Daxx and the p53 pathway was determined. The embryonic lethal phenotype of Daxx loss is not p53-dependent. In addition, Daxx heterozygosity does not sensitize mice to a sublethal dose of ionizing radiation or alter the survival or tumor phenotype of Mdm2 transgenic mice. However, the data support a tumor suppressor role for DAXX as low-dose ionizing radiation produced a higher proportion of carcinomas in Daxx heterozygous mice than wild-type controls.Implications: While DAXX has important in vivo functions, they are independent of an inhibitory role on the p53 tumor suppressor pathway. Mol Cancer Res; 16(10); 1523-9. ©2018 AACR.
Collapse
Affiliation(s)
- Amanda R. Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jeannelyn S. Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Gilda P. Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America,Corresponding author: Guillermina Lozano, The University of Texas MD Anderson Cancer Center, Department of Genetics, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, , Phone: 713-834-6386, Fax: 713-834-6380
| |
Collapse
|
28
|
Abstract
Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Urann Chan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Stefanelli G, Azam AB, Walters BJ, Brimble MA, Gettens CP, Bouchard-Cannon P, Cheng HYM, Davidoff AM, Narkaj K, Day JJ, Kennedy AJ, Zovkic IB. Learning and Age-Related Changes in Genome-wide H2A.Z Binding in the Mouse Hippocampus. Cell Rep 2018; 22:1124-1131. [PMID: 29386101 PMCID: PMC5820781 DOI: 10.1016/j.celrep.2018.01.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/08/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023] Open
Abstract
Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young versus aged mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.
Collapse
Affiliation(s)
- Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Amber B Azam
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Brandon J Walters
- Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada
| | - Mark A Brimble
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Hematology, University College London Cancer Institute, London, WC1E 6BT, UK
| | - Caroline P Gettens
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME 04240, USA
| | | | - Hai-Ying M Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Klotilda Narkaj
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andrew J Kennedy
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME 04240, USA.
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
30
|
Qureshi IA, Mehler MF. Epigenetic mechanisms underlying nervous system diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:43-58. [PMID: 29325627 DOI: 10.1016/b978-0-444-63233-3.00005-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences and Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities; Einstein Cancer Center; Ruth L. and David S. Gottesman Stem Cell Institute; and Center for Epigenomics and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
31
|
Azad GK, Ito K, Sailaja BS, Biran A, Nissim-Rafinia M, Yamada Y, Brown DT, Takizawa T, Meshorer E. PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation. J Cell Biol 2017; 217:473-481. [PMID: 29284668 PMCID: PMC5800798 DOI: 10.1083/jcb.201703141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/12/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Neuronal stimulation leads to the expression of immediate early genes (IEGs). Azad et al. show that neuronal depolarization induces replacement of the linker histone H1 by PARP1 at IEG promoters in a manner that requires H1 phosphorylation and H1 poly-ADP ribosylation. Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression. H1 release is repressed by PARP inhibition, PARP1 deletion, a non-PARylatable H1, as well as phosphorylation inhibitions and a nonphosphorylatable H1, leading to hindered IEG expression. Further, H1 is replaced by PARP1 on IEG promoters after neuronal stimulation, and PARP inhibition blocks this reciprocal binding response. Our results demonstrate the relationship between neuronal excitation and chromatin plasticity by identifying the roles of polyadenosine diphosphate ribosylation and phosphorylation of H1 in regulating H1 chromatin eviction and IEG expression in stimulated neurons.
Collapse
Affiliation(s)
- Gajendra Kumar Azad
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kenji Ito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Badi Sri Sailaja
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alva Biran
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yasuhiro Yamada
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
32
|
Piazzesi A, Papić D, Bertan F, Salomoni P, Nicotera P, Bano D. Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs. Cell Rep 2017; 17:987-996. [PMID: 27760329 PMCID: PMC5081402 DOI: 10.1016/j.celrep.2016.09.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/11/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023] Open
Abstract
Chromatin structure orchestrates the accessibility to the genetic material. Replication-independent histone variants control transcriptional plasticity in postmitotic cells. The life-long accumulation of these histones has been described, yet the implications on organismal aging remain elusive. Here, we study the importance of the histone variant H3.3 in Caenorhabditis elegans longevity pathways. We show that H3.3-deficient nematodes have negligible lifespan differences compared to wild-type animals. However, H3.3 is essential for the lifespan extension of C. elegans mutants in which pronounced transcriptional changes control longevity programs. Notably, H3.3 loss critically affects the expression of a very large number of genes in long-lived nematodes, resulting in transcriptional profiles similar to wild-type animals. We conclude that H3.3 positively contributes to diverse lifespan-extending signaling pathways, with potential implications on age-related processes in multicellular organisms. H3.3 expression increases over time in C. elegans H3.3 positively regulates the lifespan extension of long-lived nematodes H3.3 deficiency affects gene expression patterns in long-lived C. elegans mutants
Collapse
Affiliation(s)
- Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Dražen Papić
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute (UCL), 72 Huntley Street, London WC1E 6DD, UK
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
33
|
Bano D, Piazzesi A, Salomoni P, Nicotera P. The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging (Albany NY) 2017; 9:602-614. [PMID: 28284043 PMCID: PMC5391221 DOI: 10.18632/aging.101194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
34
|
Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, Costa JR, Hébert S, Khazaei S, Ibrahim NS, Herrero J, Riccio A, Albrecht S, Ketteler R, Brandner S, Kleinman CL, Jabado N, Salomoni P. H3.3 K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 2017; 32:684-700.e9. [PMID: 29107533 PMCID: PMC5687892 DOI: 10.1016/j.ccell.2017.09.014] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies.
Collapse
Affiliation(s)
- Manav Pathania
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Nicola Maestro
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Pirasteh Pahlavan
- Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, Bonn 53127, Germany
| | - Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Leonie G Mikael
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Ying Zhang
- UCL Institute of Neurology, London WC1N 3BG, UK
| | - Joana R Costa
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Steven Hébert
- The Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Steffen Albrecht
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | | | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; The Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK; Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, Bonn 53127, Germany.
| |
Collapse
|
35
|
Histone Hypervariants H2A.Z.1 and H2A.Z.2 Play Independent and Context-Specific Roles in Neuronal Activity-Induced Transcription of Arc/Arg3.1 and Other Immediate Early Genes. eNeuro 2017; 4:eN-NWR-0040-17. [PMID: 28856239 PMCID: PMC5569379 DOI: 10.1523/eneuro.0040-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The histone variant H2A.Z is an essential and conserved regulator of eukaryotic gene transcription. However, the exact role of this histone in the transcriptional process remains perplexing. In vertebrates, H2A.Z has two hypervariants, H2A.Z.1 and H2A.Z.2, that have almost identical sequences except for three amino acid residues. Due to such similarity, functional specificity of these hypervariants in neurobiological processes, if any, remain largely unknown. In this study with dissociated rat cortical neurons, we asked if H2A.Z hypervariants have distinct functions in regulating basal and activity-induced gene transcription. Hypervariant-specific RNAi and microarray analyses revealed that H2A.Z.1 and H2A.Z.2 regulate basal expression of largely nonoverlapping gene sets, including genes that code for several synaptic proteins. In response to neuronal activity, rapid transcription of our model gene Arc is impaired by depletion of H2A.Z.2, but not H2A.Z.1. This impairment is partially rescued by codepletion of the H2A.Z chaperone, ANP32E. In contrast, under a different context (after 48 h of tetrodotoxin, TTX), rapid transcription of Arc is impaired by depletion of either hypervariant. Such context-dependent roles of H2A.Z hypervariants, as revealed by our multiplexed gene expression assays, are also evident with several other immediate early genes, where regulatory roles of these hypervariants vary from gene to gene under different conditions. Together, our data suggest that H2A.Z hypervariants have context-specific roles that complement each other to mediate activity-induced neuronal gene transcription.
Collapse
|
36
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|
37
|
PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat Commun 2017; 8:15223. [PMID: 28497778 PMCID: PMC5437297 DOI: 10.1038/ncomms15223] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal type of human brain cancer, where deletions and mutations in the tumour suppressor gene PTEN (phosphatase and tensin homolog) are frequent events and are associated with therapeutic resistance. Herein, we report a novel chromatin-associated function of PTEN in complex with the histone chaperone DAXX and the histone variant H3.3. We show that PTEN interacts with DAXX and, in turn PTEN directly regulates oncogene expression by modulating DAXX-H3.3 association on the chromatin, independently of PTEN enzymatic activity. Furthermore, DAXX inhibition specifically suppresses tumour growth and improves the survival of orthotopically engrafted mice implanted with human PTEN-deficient glioma samples, associated with global H3.3 genomic distribution changes leading to upregulation of tumour suppressor genes and downregulation of oncogenes. Moreover, DAXX expression anti-correlates with PTEN expression in GBM patient samples. Since loss of chromosome 10 and PTEN are common events in cancer, this synthetic growth defect mediated by DAXX suppression represents a therapeutic opportunity to inhibit tumorigenesis specifically in the context of PTEN deletion. PTEN mutations are frequent in glioblastoma and often are associated with therapeutic resistance. Here, the authors demonstrate that PTEN regulates gene expression at the chromatin level by interacting with the histone chaperone DAXX and H3.3, and that DAXX inhibition inhibits PTEN-deficient GBM growth in vivo.
Collapse
|
38
|
Tamming RJ, Siu JR, Jiang Y, Prado MAM, Beier F, Bérubé NG. Mosaic expression of Atrx in the mouse central nervous system causes memory deficits. Dis Model Mech 2017; 10:119-126. [PMID: 28093507 PMCID: PMC5312007 DOI: 10.1242/dmm.027482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
The rapid modulation of chromatin organization is thought to play a crucial role in cognitive processes such as memory consolidation. This is supported in part by the dysregulation of many chromatin-remodelling proteins in neurodevelopmental and psychiatric disorders. A key example is ATRX, an X-linked gene commonly mutated in individuals with syndromic and nonsyndromic intellectual disability. The consequences of Atrx inactivation for learning and memory have been difficult to evaluate because of the early lethality of hemizygous-null animals. In this study, we evaluated the outcome of brain-specific Atrx deletion in heterozygous female mice. These mice exhibit a mosaic pattern of ATRX protein expression in the central nervous system attributable to the location of the gene on the X chromosome. Although the hemizygous male mice die soon after birth, heterozygous females survive to adulthood. Body growth is stunted in these animals, and they have low circulating concentrations of insulin growth factor 1. In addition, they are impaired in spatial, contextual fear and novel object recognition memory. Our findings demonstrate that mosaic loss of ATRX expression in the central nervous system leads to endocrine defects and decreased body size and has a negative impact on learning and memory.
Collapse
Affiliation(s)
- Renee J Tamming
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario N6C 2V5, Canada.,Departments of Paediatrics, Biochemistry and Oncology, Schulich School of Medicine and Dentistry, the University of Western Ontario, Victoria Research Laboratories, London, Ontario N6A 3K7, Canada
| | - Jennifer R Siu
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario N6C 2V5, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Yan Jiang
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario N6C 2V5, Canada.,Departments of Paediatrics, Biochemistry and Oncology, Schulich School of Medicine and Dentistry, the University of Western Ontario, Victoria Research Laboratories, London, Ontario N6A 3K7, Canada
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario N6A 3K7, Canada.,Department of Anatomy and Cell Biology and Robarts Research Institute, the University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Frank Beier
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario N6C 2V5, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Nathalie G Bérubé
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario N6C 2V5, Canada .,Departments of Paediatrics, Biochemistry and Oncology, Schulich School of Medicine and Dentistry, the University of Western Ontario, Victoria Research Laboratories, London, Ontario N6A 3K7, Canada
| |
Collapse
|
39
|
Lin CW, Wang LK, Wang SP, Chang YL, Wu YY, Chen HY, Hsiao TH, Lai WY, Lu HH, Chang YH, Yang SC, Lin MW, Chen CY, Hong TM, Yang PC. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis. Nat Commun 2016; 7:13867. [PMID: 28004751 PMCID: PMC5192219 DOI: 10.1038/ncomms13867] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in turn, stimulates E-cadherin and occludin expression and suppresses Slug-mediated epithelial–mesenchymal transition (EMT) and cell invasiveness. Under hypoxic conditions, stabilized hypoxia-inducible factor (HIF)-1α downregulates Daxx expression and promotes cancer invasion, whereas re-expression of Daxx represses hypoxia-induced cancer invasion. Daxx also suppresses Slug-mediated lung cancer metastasis in an orthotopic lung metastasis mouse model. Using clinical tumour samples, we confirmed that the HIF-1α/Daxx/Slug pathway is an outcome predictor. Our results support that Daxx can act as a repressor in controlling HIF-1α/HDAC1/Slug-mediated cancer cell invasion and is a potential therapeutic target for inhibition of cancer metastasis. Hypoxia and epithelial-to-mesenchymal transition promotes cancer metastasis. Here the authors show that Daxx inhibits hypoxia-induced lung cancer metastasis by attenuating Slug-mediated transcriptional repression of epithelial-like markers that in turn cause cells to exhibit low invasiveness.
Collapse
Affiliation(s)
- Ching-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory of Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Yi-Liang Chang
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Yi-Ying Wu
- Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Wei-Yun Lai
- Aptamer Core, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Wei Lin
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Tse-Ming Hong
- Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| |
Collapse
|
40
|
Marken JP, Halleran AD, Rahman A, Odorizzi L, LeFew MC, Golino CA, Kemper P, Saha MS. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series. PLoS One 2016; 11:e0168342. [PMID: 27977764 PMCID: PMC5158058 DOI: 10.1371/journal.pone.0168342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Collapse
Affiliation(s)
- John P. Marken
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Andrew D. Halleran
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Atiqur Rahman
- Department of Computer Science, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Laura Odorizzi
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Michael C. LeFew
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Caroline A. Golino
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Peter Kemper
- Department of Computer Science, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Bano D, Jewell SA, Nicotera P. Calcium signaling then and now, via Stockholm. Biochem Biophys Res Commun 2016; 482:384-387. [PMID: 27908727 DOI: 10.1016/j.bbrc.2016.11.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sarah A Jewell
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
42
|
Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med 2016; 48:e252. [PMID: 27515126 PMCID: PMC5007640 DOI: 10.1038/emm.2016.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.
Collapse
|
43
|
Boelaert F, Bresson J, Hardy A, Kass GEN, Nicotera P, Salonen A, Sharpe RM, Trosko JE. Science, innovation and society. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.s0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | | | - Anthony Hardy
- European Food Safety Authority, Scientific Committee Italy
| | | | | | | | | | | |
Collapse
|
44
|
Wenderski W, Maze I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 2016; 38:410-9. [PMID: 26990528 DOI: 10.1002/bies.201500171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Ian Maze
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
McNally AG, Poplawski SG, Mayweather BA, White KM, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci 2016; 9:11. [PMID: 26903803 PMCID: PMC4746260 DOI: 10.3389/fnmol.2016.00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 01/02/2023] Open
Abstract
The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably “barcoding” active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed regions of the excitatory neuron genome. To evaluate the validity of using H3.3 “barcoding” to sort chromatin, we performed a molecular and behavioral characterization of the H3.3-HA transgenic mouse line. Expectedly, we find that H3.3-HA is incorporated preferentially at promoter regions of actively-transcribed neuronal genes and that expression can be effectively regulated by doxycycline. Additionally, H3.3-HA overexpression does not adversely affect exploratory or anxiety-related behaviors, nor does it affect spatial memory. Transgenic animals do, however, exhibit deficits in contextual memory and motor learning, revealing the importance of this histone isoform in the brain. Future studies in the H3.3-HA transgenic mouse line will define the combinatorial histone PTM landscape during spatial memory consolidation and will investigate the important contributions of histone H3.3 to the normal functioning of the brain.
Collapse
Affiliation(s)
- Anna G McNally
- Pharmacology Graduate Group, University of Pennsylvania Philadelphia, PA, USA
| | - Shane G Poplawski
- Pharmacology Graduate Group, University of Pennsylvania Philadelphia, PA, USA
| | | | - Kyle M White
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
46
|
Svadlenka J, Brazina J, Hanzlikova H, Cermak L, Andera L. Multifunctional adaptor protein Daxx interacts with chromatin-remodelling ATPase Brg1. Biochem Biophys Rep 2015; 5:246-252. [PMID: 28955830 PMCID: PMC5600331 DOI: 10.1016/j.bbrep.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 01/22/2023] Open
Abstract
Multifunctional adapter and chaperone protein Daxx participates in the regulation of a number of mainly transcription-related processes. Most notably in a complex with chromatin-remodelling ATPase ATRX, Daxx serves as a histone H3.3 chaperone at telomeric regions and certain genes. In this report we document that Daxx interacts with another chromatin-remodelling, ATPase Brg1. We confirm the Daxx-Brg1 association both in vitro and in cells and show that Daxx interacts with Brg1 in high-molecular-weight complexes. Ectopic co-expression of Daxx with Brg1 and PML could shift disperse nuclear localisation of Brg1 into PML bodies. Mapping the Daxx-Brg1 interaction revealed that Daxx preferentially binds the region between Brg1 N-terminal QLQ and HSA domains, but also weakly interacts with its C-terminal part. Brg1 interacted with both the central and N-terminal parts of Daxx. SiRNA-mediated down-regulation of Daxx in SW13 adrenal carcinoma cells markedly enhanced expression of Brg1-activated genes CD44 or SCEL, suggesting that Daxx either directly through Brg1 and/or indirectly via other factors is a negative regulator of their transcription. Our findings point to Brg1 as another chromatin-remodelling protein that might similarly, as ATRX, target Daxx to specific chromatin regions where it can carry out its chromatin- and transcription-regulating functions.
Collapse
Affiliation(s)
- Jan Svadlenka
- Institute of Molecular Genetics AS CR, Czech Republic
| | - Jan Brazina
- Institute of Molecular Genetics AS CR, Czech Republic
| | | | - Lukas Cermak
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ladislav Andera
- Institute of Molecular Genetics AS CR, Czech Republic.,Institute of Biotechnology AS CR, Prague, Czech Republic
| |
Collapse
|
47
|
Brazina J, Svadlenka J, Macurek L, Andera L, Hodny Z, Bartek J, Hanzlikova H. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle 2015; 14:375-87. [PMID: 25659035 PMCID: PMC4353233 DOI: 10.4161/15384101.2014.988019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Death domain-associated protein 6 (DAXX) is a histone chaperone, putative regulator of apoptosis and transcription, and candidate modulator of p53-mediated gene expression following DNA damage. DAXX becomes phosphorylated upon DNA damage, however regulation of this modification, and its relationship to p53 remain unclear. Here we show that in human cells exposed to ionizing radiation or genotoxic drugs etoposide and neocarzinostatin, DAXX became rapidly phosphorylated in an ATM kinase-dependent manner. Our deletion and site-directed mutagenesis experiments identified Serine 564 (S564) as the dominant ATM-targeted site of DAXX, and immunofluorescence experiments revealed localization of S564-phosphorylated DAXX to PML nuclear bodies. Furthermore, using a panel of human cell types, we identified the p53-regulated Wip1 protein phosphatase as a key negative regulator of DAXX phosphorylation at S564, both in vitro and in cells. Consistent with the emerging oncogenic role of Wip1, its DAXX-dephosphorylating impact was most apparent in cancer cell lines harboring gain-of-function mutant and/or overexpressed Wip1. Unexpectedly, while Wip1 depletion increased DAXX phosphorylation both before and after DNA damage and increased p53 stability and transcriptional activity, knock-down of DAXX impacted neither p53 stabilization nor p53-mediated expression of Gadd45a, Noxa, Mdm2, p21, Puma, Sesn2, Tigar or Wip1. Consistently, analyses of cells with genetic, TALEN-mediated DAXX deletion corroborated the notion that neither phosphorylated nor non-phosphorylated DAXX is required for p53-mediated gene expression upon DNA damage. Overall, we identify ATM kinase and Wip1 phosphatase as opposing regulators of DAXX-S564 phosphorylation, and propose that the role of DAXX phosphorylation and DAXX itself are independent of p53-mediated gene expression.
Collapse
Affiliation(s)
- Jan Brazina
- a Department of Cell Signaling and Apoptosis
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Chromatin is a critical regulator of neural plasticity, but basic principles of chromatin function in neurons are unclear. In this issue of Neuron, Maze et al. (2015) establish histone H3.3 turnover as a novel mechanism contributing to CNS gene regulation, synaptic plasticity, and cognition.
Collapse
|
49
|
Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron 2015; 87:77-94. [PMID: 26139371 DOI: 10.1016/j.neuron.2015.06.014] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/23/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022]
Abstract
Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain.
Collapse
|
50
|
Santoro SW, Dulac C. Histone variants and cellular plasticity. Trends Genet 2015; 31:516-27. [PMID: 26299477 PMCID: PMC5111554 DOI: 10.1016/j.tig.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/15/2015] [Accepted: 07/15/2015] [Indexed: 11/27/2022]
Abstract
The broad diversity of cell types within vertebrates arises from a unique genetic blueprint by combining intrinsic cellular information with developmental and other extrinsic signals. Lying at the interface between cellular signals and the DNA is the chromatin, a dynamic nucleoprotein complex that helps to mediate gene regulation. The most basic subunit of chromatin, the nucleosome, consists of DNA wrapped around histones, a set of proteins that play crucial roles as scaffolding molecules and regulators of gene expression. Growing evidence indicates that canonical histones are commonly replaced by protein variants before and during cellular transitions. We highlight exciting new results suggesting that histone variants are essential players in the control of cellular plasticity during development and in the adult nervous system.
Collapse
Affiliation(s)
- Stephen W Santoro
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
| | - Catherine Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|