1
|
Ducrot C, Drouet A, Tessier B, Desquines C, Cloâtre T, Mazouzi RC, Levet F, Favereaux A, Letellier M, Thoumine O. High-affinity detection of biotinylated endogenous neuroligin-1 at excitatory and inhibitory synapses using a tagged knock-in mouse. Proc Natl Acad Sci U S A 2025; 122:e2411669122. [PMID: 40424132 DOI: 10.1073/pnas.2411669122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
Neuroligins (NLGNs) are important cell adhesion molecules mediating trans-synaptic contacts between neurons. However, the high-yield biochemical isolation and visualization of endogenous NLGNs is hampered by the lack of efficient antibodies. Thus, to reveal their subcellular distribution, binding partners, and synaptic function, NLGNs were extensively manipulated using knock-down, knock-out, or overexpression approaches, leading to controversial results. As an alternative to the manipulation of NLGN expression level, we describe here the generation of a knock-in (KI) mouse strain in which native NLGN1 was N-terminally tagged with a small biotin acceptor peptide (bAP) that can be enzymatically biotinylated by the exogenous delivery of biotin ligase. After showing that KI mice exhibit normal behavior as well as similar synaptic number, ultrastructure, transmission properties, and protein expression levels when compared to wild type counterparts, we exploited the fact that biotinylated bAP-NLGN1 can be selectively isolated or visualized using high-affinity streptavidin conjugates. Using immunoblotting and immunofluorescence, we show that bAP-NLGN1 binds PSD-95 and gephyrin and populates both excitatory and inhibitory synapses, challenging the historical view that NLGN1 is exclusively localized at excitatory synapses. Using superresolution optical and electron microscopy, we further highlight that bAP-NLGN1 forms in the synaptic cleft a subset of nanodomains, which contain each a few NLGN1 dimers and whose number positively scales with the postsynapse size. Overall, our study not only provides an extensively characterized KI mouse model which will be available to the scientific community but also an unprecedented view of the nanoscale organization of endogenous NLGN1.
Collapse
Affiliation(s)
- Charles Ducrot
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Adèle Drouet
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Chloé Desquines
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Tiffany Cloâtre
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Rania-Cérine Mazouzi
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Mathieu Letellier
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| |
Collapse
|
2
|
Kim K, Abramishvili D, Du S, Papadopoulos Z, Cao J, Herz J, Smirnov I, Thomas JL, Colonna M, Kipnis J. Meningeal lymphatics-microglia axis regulates synaptic physiology. Cell 2025; 188:2705-2719.e23. [PMID: 40120575 DOI: 10.1016/j.cell.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
Meningeal lymphatics serve as an outlet for cerebrospinal fluid, and their dysfunction is associated with various neurodegenerative conditions. Previous studies have demonstrated that dysfunctional meningeal lymphatics evoke behavioral changes, but the neural mechanisms underlying these changes have remained elusive. Here, we show that prolonged impairment of meningeal lymphatics alters the balance of cortical excitatory and inhibitory synaptic inputs, accompanied by deficits in memory tasks. These synaptic and behavioral alterations induced by lymphatic dysfunction are mediated by microglia, leading to increased expression of the interleukin 6 gene (Il6). IL-6 drives inhibitory synapse phenotypes via a combination of trans- and classical IL-6 signaling. Restoring meningeal lymphatic function in aged mice reverses age-associated synaptic and behavioral alterations. Our findings suggest that dysfunctional meningeal lymphatics adversely impact cortical circuitry through an IL-6-dependent mechanism and identify a potential target for treating aging-associated cognitive decline.
Collapse
Affiliation(s)
- Kyungdeok Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| | - Daviti Abramishvili
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Siling Du
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jay Cao
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06, UMRS1127, Sorbonne Université, Paris, France
| | - Marco Colonna
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
3
|
Dietz LT, Põld K, Györffy BA, Zharkovsky A, Sørensen JB, Pankratova S, Dmytriyeva O. A Peptide Motif Covering Splice Site B in Neuroligin-1 Binds to Aβ and Acts as a Neprilysin Inhibitor. Mol Neurobiol 2025; 62:3244-3257. [PMID: 39261388 PMCID: PMC11790763 DOI: 10.1007/s12035-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The most common cause of dementia among elderly people is Alzheimer's disease (AD). The typical symptom of AD is the decline of cognitive abilities, which is caused by loss of synaptic function. Amyloid-β (Aβ) oligomers play a significant role in the development of this synaptic dysfunction. Neuroligin-(NL)1 is a postsynaptic cell-adhesion molecule located in excitatory synapses and involved in the maintenance and modulation of synaptic contacts. A recent study has found that Aβ interacts with the soluble N-terminal fragment of NL1. The present study aimed to elucidate the role of NL1 in Aβ-induced neuropathology. Employing surface plasmon resonance and competitive ELISA, we confirmed the high-affinity binding of NL1 to the Aβ peptide. We also identified a sequence motif representing the NL1-binding site for the Aβ peptide and showed that a synthetic peptide modeled after this motif, termed neurolide, binds to the Aβ peptide with high affinity, comparable to the NL1-Aβ interaction. To assess the effect of neurolide in vivo, wild-type and 5XFAD mice were subcutaneously treated with this peptide for 10 weeks. We observed an increase in Aβ plaque formation in the cortex of neurolide-treated 5XFAD mice. Furthermore, we showed that neurolide reduces the activity of neprilysin, the predominant Aβ-degrading enzyme in the brain. Accordingly, we suggest that neurolide is the NL1-binding site for Aβ peptide, and acts as an inhibitor of neprilysin activity. Based on these data, we confirm the involvement of NL1 in the development of AD and suggest a mechanism for NL1-induced Aβ plaque formation.
Collapse
Affiliation(s)
- Lene T Dietz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Põld
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Balázs A Györffy
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Deguchi E, Matsuda M, Terai K. Live imaging of paracrine signaling: Advances in visualization and tracking techniques. Cell Struct Funct 2025; 50:1-14. [PMID: 39842816 DOI: 10.1247/csf.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors. Diffusion of paracrine factors has been studied using techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence decay after photoactivation (FDAP), and single-molecule tracking. Binding of paracrine factors to target cells has been visualized through various biosensors, including GPCR-activation-based (GRAB) sensors and Förster resonance energy transfer (FRET) probes for receptor tyrosine kinases. Finally, activation of intracellular signaling is monitored within the target cells by biosensors for second messengers, transcription factors, and so on. In addition to the imaging tools, the review also highlights emerging optogenetic and chemogenetic tools for triggering the release of paracrine factors, which is essential for associating the paracrine factor secretion to biological outcomes during the bioimaging of paracrine factor signaling.Key words: paracrine signaling, live imaging, biosensors, optogenetics, chemogenetics.
Collapse
Affiliation(s)
- Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Department of Histology, Graduate School of Medicine, Tokushima University
| |
Collapse
|
5
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
6
|
Sell GL, Barrow SL, McAllister AK. Glutamate Signaling and Neuroligin/Neurexin Adhesion Play Opposing Roles That Are Mediated by Major Histocompatibility Complex I Molecules in Cortical Synapse Formation. J Neurosci 2024; 44:e0797242024. [PMID: 39424368 PMCID: PMC11622183 DOI: 10.1523/jneurosci.0797-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation (Verhage et al., 2000; Sando et al., 2017; Sigler et al., 2017; Held et al., 2020), yet glutamate clearly regulates glutamate receptor trafficking (Roche et al., 2001; Nong et al., 2004) and induces spine formation (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999; Kwon and Sabatini, 2011; Oh et al., 2016). Using rat and murine culture systems to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing N-methyl-d-aspartate receptor (NMDAR) transport and surface expression as well as cotransport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels in both sexes. Thus, like acetylcholine at the neuromuscular junction, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI, and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
Affiliation(s)
- Gabrielle L Sell
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - Stephanie L Barrow
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101
| |
Collapse
|
7
|
Stokes C, Whitmore LS, Moreno D, Malhotra K, Tisoncik-Go J, Tran E, Wren N, Glass I, Young JE, Gale M. The Human Neural Cell Atlas of Zika Infection in developing human brain tissue: viral pathogenesis, innate immunity, and lineage reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615512. [PMID: 39386476 PMCID: PMC11463344 DOI: 10.1101/2024.09.27.615512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Zika virus (ZIKV) infection during pregnancy can lead to fetal brain infection and developmental anomalies collectively known as congenital Zika syndrome (CZS). To define the molecular features underlying CZS in a relevant human cell model, we evaluated ZIKV infection and neurodevelopment in primary fetal brain explants and induced pluripotent stem cell-derived mixed neural cultures at single cell resolution. We identified astrocytes as key innate immune sentinel cells detecting ZIKV and producing IFN-β. In contrast, neural progenitor cells displayed impaired innate immunity and supported high levels of viral replication. ZIKV infection of neurons suppressed differentiation and synaptic signaling networks and programmed a molecular switch from neurogenesis to astrogliogenesis. We identified a universal ZIKV-driven cellular stress response linked to intrinsic apoptosis and regulated by IFN-β. These findings reveal how innate immune signaling intersects with ZIKV-driven perturbations in cellular function to influence CZS outcomes including neuron developmental dysfunction and apoptotic cell death.
Collapse
Affiliation(s)
- Caleb Stokes
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Dante Moreno
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | | | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
| | - Emily Tran
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
| | - Nick Wren
- School of Medicine, University of Washington, Seattle WA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle WA
- Seattle Children's Hospital, Seattle WA
| | - Jessica E Young
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle WA
- Washington National Primate Research Center, University of Washington, Seattle Washington, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN
- Institute on Infectious Diseases, University of Minnesota, Minneapolis MN
| |
Collapse
|
8
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
9
|
Wogram E, Sümpelmann F, Dong W, Rawat E, Fernández Maestre I, Fu D, Braswell B, Khalil A, Buescher JM, Mittler G, Borner GHH, Vlachos A, Tholen S, Schilling O, Bell GW, Rambold AS, Akhtar A, Schnell O, Beck J, Abu-Remaileh M, Prinz M, Jaenisch R. Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes. Immunity 2024; 57:2216-2231.e11. [PMID: 39151426 DOI: 10.1016/j.immuni.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.
Collapse
Affiliation(s)
- Emile Wogram
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Sümpelmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Eshaan Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | | | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brandyn Braswell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andrew Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; The Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Lobete M, Salinas T, Izquierdo-Bermejo S, Socas S, Oset-Gasque MJ, Martín-de-Saavedra MD. A methodology to globally assess ectodomain shedding using soluble fractions from the mouse brain. Front Psychiatry 2024; 15:1367526. [PMID: 38962061 PMCID: PMC11219901 DOI: 10.3389/fpsyt.2024.1367526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Ectodomain shedding (ES) is a fundamental process involving the proteolytic cleavage of membrane-bound proteins, leading to the release of soluble extracellular fragments (shed ectodomains) with potential paracrine and autocrine signaling functions. In the central nervous system (CNS), ES plays pivotal roles in brain development, axonal regulation, synapse formation, and disease pathogenesis, spanning from cancer to Alzheimer's disease. Recent evidence also suggests its potential involvement in neurodevelopmental conditions like autism and schizophrenia. Past investigations of ES in the CNS have primarily relied on cell culture supernatants or cerebrospinal fluid (CSF) samples, but these methods have limitations, offering limited insights into how ES is modulated in the intact brain parenchyma. In this study, we introduce a methodology for analyzing shed ectodomains globally within rodent brain samples. Through biochemical tissue subcellular separation, mass spectrometry, and bioinformatic analysis, we show that the brain's soluble fraction sheddome shares significant molecular and functional similarities with in vitro neuronal and CSF sheddomes. This approach provides a promising means of exploring ES dynamics in the CNS, allowing for the evaluation of ES at different developmental stages and pathophysiological states. This methodology has the potential to help us deepen our understanding of ES and its role in CNS function and pathology, offering new insights and opportunities for research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Xu N, Cao R, Chen SY, Gou XZ, Wang B, Luo HM, Gao F, Tang AH. Structural and functional reorganization of inhibitory synapses by activity-dependent cleavage of neuroligin-2. Proc Natl Acad Sci U S A 2024; 121:e2314541121. [PMID: 38657049 PMCID: PMC11067042 DOI: 10.1073/pnas.2314541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Ran Cao
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Si-Yu Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Xu-Zhuo Gou
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Bin Wang
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Hong-Mei Luo
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
| | - Ai-Hui Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| |
Collapse
|
12
|
Sell GL, Barrow SL, McAllister AK. Glutamate signaling and neuroligin/neurexin adhesion play opposing roles that are mediated by major histocompatibility complex I molecules in cortical synapse formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583626. [PMID: 38496590 PMCID: PMC10942384 DOI: 10.1101/2024.03.05.583626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation 1-4 , yet glutamate clearly regulates glutamate receptor trafficking 5,6 and induces spine formation 7-11 . Using a culture system to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing NMDAR transport and surface expression as well as co-transport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels. Thus, like acetylcholine at the NMJ, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
|
13
|
Lobb-Rabe M, Nawrocka WI, Zhang R, Ashley J, Carrillo RA, Özkan E. Neuronal Wiring Receptors Dprs and DIPs Are GPI Anchored and This Modification Contributes to Their Cell Surface Organization. eNeuro 2024; 11:ENEURO.0184-23.2023. [PMID: 38233143 PMCID: PMC10863630 DOI: 10.1523/eneuro.0184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Wioletta I Nawrocka
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Ruiling Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James Ashley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Engin Özkan
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
14
|
Legutko D, Kuźniewska B, Kalita K, Yasuda R, Kaczmarek L, Michaluk P. BDNF signaling requires Matrix Metalloproteinase-9 during structural synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.569797. [PMID: 38106209 PMCID: PMC10723398 DOI: 10.1101/2023.12.08.569797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity underlies learning and memory processes as well as contributes, in its aberrant form, to neuropsychiatric disorders. One of its major forms is structural long-term potentiation (sLTP), an activity-dependent growth of dendritic spines that harbor excitatory synapses. The process depends on the release of brain-derived neurotrophic factor (BDNF), and activation of its receptor, TrkB. Matrix metalloproteinase-9 (MMP-9), an extracellular protease is essential for many forms of neuronal plasticity engaged in physiological as well as pathological processes. Here, we utilized two-photon microscopy and two-photon glutamate uncaging to demonstrate that MMP-9 activity is essential for sLTP and is rapidly (~seconds) released from dendritic spines in response to synaptic stimulation. Moreover, we show that either chemical or genetic inhibition of MMP-9 impairs TrkB activation, as measured by fluorescence lifetime imaging microscopy of FRET sensor. Furthermore, we provide evidence for a cell-free cleavage of proBDNF into mature BDNF by MMP-9. Our findings point to the autocrine mechanism of action of MMP-9 through BDNF maturation and TrkB activation during sLTP.
Collapse
Affiliation(s)
- Diana Legutko
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Bożena Kuźniewska
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Current address: Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Kalita
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Leszek Kaczmarek
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| |
Collapse
|
15
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
16
|
Shih YC, Nelson L, Janeček M, Peixoto RT. Late onset and regional heterogeneity of synaptic deficits in cortical PV interneurons of Shank3B -/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568500. [PMID: 38045377 PMCID: PMC10690261 DOI: 10.1101/2023.11.23.568500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Epilepsy and epileptiform patterns of cortical activity are highly prevalent in autism spectrum disorders (ASDs), but the neural substrates and pathophysiological mechanisms underlying the onset of cortical dysfunction in ASD remains elusive. Reduced cortical expression of Parvalbumin (PV) has been widely observed in ASD mouse models and human postmortem studies, suggesting a crucial role of PV interneurons (PVINs) in ASD pathogenesis. Shank3B -/- mice carrying a Δ13-16 deletion in SHANK3 exhibit cortical hyperactivity during postnatal development and reduced sensory responses in cortical GABAergic interneurons in adulthood. However, whether these phenotypes are associated with PVIN dysfunction is unknown. Using whole-cell electrophysiology and a viral-based strategy to label PVINs during postnatal development, we performed a developmental characterization of AMPAR miniature excitatory postsynaptic currents (mEPSCs) in PVINs and pyramidal (PYR) neurons of layer (L) 2/3 mPFC in Shank3B -/- mice. Surprisingly, reduced mEPSC frequency was observed in both PYR and PVIN populations, but only in adulthood. At P15, when cortical hyperactivity is already observed, both neuron types exhibited normal mEPSC amplitude and frequency, suggesting that glutamatergic connectivity deficits in these neurons emerge as compensatory mechanisms. Additionally, we found normal mEPSCs in adult PVINs of L2/3 somatosensory cortex, revealing region-specific phenotypic differences of cortical PVINs in Shank3B -/- mice. Together, these results demonstrate that loss of Shank3 alters PVIN function but suggest that PVIN glutamatergic synapses are a suboptimal therapeutic target for normalizing early cortical imbalances in SHANK3-associated disorders. More broadly, these findings underscore the complexity of interneuron dysfunction in ASDs, prompting further exploration of region and developmental stage specific phenotypes for understanding and developing effective interventions.
Collapse
|
17
|
Dziembowska M. How dendritic spines shape is determined by MMP-9 activity in FXS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:171-185. [PMID: 37993177 DOI: 10.1016/bs.irn.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the family of endopeptidases expressed in neurons and secreted at the synapse in response to neuronal activity. It regulates the pericellular environment by cleaving its protein components. MMP9 is involved in activity-dependent reorganization of spine architecture. In the mouse model of fragile X syndrome (FXS), the most common inherited intellectual disability and the most common single-gene cause of autism, increased synaptic expression of MMP-9 is responsible for the observed dendritic spine abnormalities. In this chapter, I summarize the current data on the molecular regulatory pathways responsible for synaptic MMP-9 expression and discuss the fact that MMP-9 is extracellularly localized, making it a particularly attractive potential target for therapeutic pharmacological intervention in FXS.
Collapse
|
18
|
Xiao X, Wang X, Zhu K, Li L, He Y, Zhang J, Li L, Hu H, Cui Y, Zhang J, Zheng Y. BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction. Mol Psychiatry 2023; 28:4151-4162. [PMID: 37452089 DOI: 10.1038/s41380-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACE1 is the rate-limiting enzyme for β-amyloid (Aβ) production and therefore is considered a prime drug target for treating Alzheimer's disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.
Collapse
Affiliation(s)
- Xuansheng Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Xiaotong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Lijuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ying He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hanning Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Thomas CI, Anderson JR, Bolton M, Kamasawa N. Screening Morphological Characteristics of Large Populations of Synaptic Vesicle Clouds and Active Zones from 3D EM Data. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1084-1085. [PMID: 37613280 DOI: 10.1093/micmic/ozad067.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FLUnited States
| | - Jordan R Anderson
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FLUnited States
| | - McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FLUnited States
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FLUnited States
| |
Collapse
|
20
|
Xie H, Liu S, Fu Y, Cheng Q, Wang P, Bi CL, Wang R, Chen MM, Fang M. Nuclear access of DNlg3 c-terminal fragment and its function in regulating innate immune response genes. Biochem Biophys Res Commun 2023; 641:93-101. [PMID: 36525929 DOI: 10.1016/j.bbrc.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Neuroligins (NLGNs) are one of the autism susceptibility genes, however, the mechanism that how dysfunction of NLGNs leads to Autism remains unclear. More and more studies have shown that the transcriptome alteration may be one of the important factors to generate Autism. Therefore, we are very concerned about whether Neuroligins would affect transcriptional regulation, which may at last lead to Autism. As a single-transmembrane receptor, proteolytic cleavage is one of the most important posttranslational modifications of NLGN proteins. In this study, we demonstrated the existence of DNlg3 C-terminal fragment. Studies in the S2 cells and HEK293T cells showed the evidence for nuclear access of the DNlg3 C-terminal fragment. Then we identified the possible targets of DNlg3 C-terminal fragment after its nuclear access by RNA-seq. The bioinformatics analysis indicated the transcriptome alteration between dnlg3 null flies and wild type flies focused on genes for the innate immune responses. These results were consistent with the infection hypotheses for autism. Our study revealed the nuclear access ability of DNlg3 c-terminal fragment and its possible function in transcriptional regulation of the innate immune response genes. This work provides the new links between synaptic adhesion molecule NLGNs and immune activation, which may help us to get a deeper understanding on the relationship between NLGNs and Autism.
Collapse
Affiliation(s)
- Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| | - Si Liu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Yiqiu Fu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Meng-Meng Chen
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
21
|
Breviario S, Senserrich J, Florensa-Zanuy E, Garro-Martínez E, Díaz Á, Castro E, Pazos Á, Pilar-Cuéllar F. Brain matrix metalloproteinase-9 activity is altered in the corticosterone mouse model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110624. [PMID: 36038021 DOI: 10.1016/j.pnpbp.2022.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Major depressive disorder is a highly prevalent psychiatric condition. Metalloproteinase 9 (MMP-9), a gelatinase involved in synaptic plasticity, learning and memory processes, is elevated in both chronic stress animal models and human peripheral blood samples of depressed patients. In this study we have evaluated the MMP-9 activity and protein expression in brain areas relevant to depression using the chronic corticosterone mouse model of depression. These mice show a depressive- and anxious-like behaviour. The MMP-9 activity and protein levels are significantly elevated in both the hippocampus and the cortex, and nectin-3 levels are lower in these brain areas in this model. In particular, these mice display an increased gelatinase activity in the CA1 and CA3 subfields of the hippocampus and in the internal layer of the prefrontal cortex. Moreover, the immobility time in the tail suspension test presents a positive correlation with the cortical MMP-9 activity, and a negative correlation with nectin-3 levels. In conclusion, the chronic corticosterone model of depression leads to an increase in the protein expression and activity of MMP-9 and a reduction of its substrate nectin-3 in relevant areas implicated in this disease. The MMP-9 activity correlates with behavioural despair in this model of depression. All these findings support the role of MMP-9 in the pathophysiology of depression, and as a putative target to develop novel antidepressant drugs.
Collapse
Affiliation(s)
- Silvia Breviario
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Júlia Senserrich
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Eva Florensa-Zanuy
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Emilio Garro-Martínez
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Álvaro Díaz
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Elena Castro
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ángel Pazos
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
22
|
Neurexin-β Mediates the Synaptogenic Activity of Amyloid Precursor Protein. J Neurosci 2022; 42:8936-8947. [PMID: 36261284 PMCID: PMC9732828 DOI: 10.1523/jneurosci.0511-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/05/2023] Open
Abstract
In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds β not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-β to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-β and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-β and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-β and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.
Collapse
|
23
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
24
|
Nozawa K, Sogabe T, Hayashi A, Motohashi J, Miura E, Arai I, Yuzaki M. In vivo nanoscopic landscape of neurexin ligands underlying anterograde synapse specification. Neuron 2022; 110:3168-3185.e8. [PMID: 36007521 DOI: 10.1016/j.neuron.2022.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Excitatory synapses are formed and matured by the cooperative actions of synaptic organizers, such as neurexins (Nrxns), neuroligins (Nlgns), LRRTMs, and Cbln1. Recent super-resolution nanoscopy developments have revealed that many synaptic organizers, as well as glutamate receptors and glutamate release machinery, exist as nanoclusters within synapses. However, it is unclear how such nanodomains interact with each other to organize excitatory synapses in vivo. By applying X10 expansion microscopy to epitope tag knockin mice, we found that Cbln1, Nlgn1, and LRRTM1, which share Nrxn as a common presynaptic receptor, form overlapping or separate nanodomains depending on Nrxn with or without a sequence encoded by splice site 4. The size and position of glutamate receptor nanodomains of GluD1, NMDA, and AMPA receptors were regulated by Cbln1, Nlgn1, and LRRTM1 nanodomains, respectively. These findings indicate that Nrxns anterogradely regulate the postsynaptic nanoscopic architecture of glutamate receptors through competition and coordination of Nrxn ligands.
Collapse
Affiliation(s)
- Kazuya Nozawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taku Sogabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayumi Hayashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Itaru Arai
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
25
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
26
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Li H, Guo R, Guan Y, Li J, Wang Y. Modulation of Trans-Synaptic Neurexin-Neuroligin Interaction in Pathological Pain. Cells 2022; 11:1940. [PMID: 35741069 PMCID: PMC9222181 DOI: 10.3390/cells11121940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Synapses serve as the interface for the transmission of information between neurons in the central nervous system. The structural and functional characteristics of synapses are highly dynamic, exhibiting extensive plasticity that is shaped by neural activity and regulated primarily by trans-synaptic cell-adhesion molecules (CAMs). Prototypical trans-synaptic CAMs, such as neurexins (Nrxs) and neuroligins (Nlgs), directly regulate the assembly of presynaptic and postsynaptic molecules, including synaptic vesicles, active zone proteins, and receptors. Therefore, the trans-synaptic adhesion mechanisms mediated by Nrx-Nlg interaction can contribute to a range of synaptopathies in the context of pathological pain and other neurological disorders. The present review provides an overview of the current understanding of the roles of Nrx-Nlg interaction in the regulation of trans-synaptic connections, with a specific focus on Nrx and Nlg structures, the dynamic shaping of synaptic function, and the dysregulation of Nrx-Nlg in pathological pain. Additionally, we discuss a range of proteins capable of modulating Nrx-Nlg interactions at the synaptic cleft, with the objective of providing a foundation to guide the future development of novel therapeutic agents for managing pathological pain.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100030, China;
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China;
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| |
Collapse
|
28
|
Xu Y, Wang ML, Tao H, Geng C, Guo F, Hu B, Wang R, Hou XY. ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology 2022; 47:1292-1303. [PMID: 34707248 PMCID: PMC9117204 DOI: 10.1038/s41386-021-01205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/04/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022]
Abstract
Consolidated memories influence later learning and cognitive processes when new information is overlapped with previous events. To reveal which cellular and molecular factors are associated with this proactive interference, we challenged mice with odor-reward associative learning followed by a reversal-learning task. The results showed that genetical ablation of ErbB4 in parvalbumin (PV)-positive interneurons improved performance in reversal-learning phase, with no alteration in learning phase, supporting that PV interneuron ErbB4 is required for proactive interference. Mechanistically, olfactory learning promoted PV interneuron excitatory synaptic plasticity and direct binding of ErbB4 with presynaptic Neurexin1β (NRXN1β) and postsynaptic scaffold PSD-95 in the prefrontal cortex. Interrupting ErbB4-NRXN1β interaction impaired network activity-driven excitatory inputs and excitatory synaptic transmission onto PV interneurons. Neuronal activity-induced ErbB4-PSD-95 association facilitated transsynaptic binding of ErbB4-NRXN1β and excitatory synapse formation in ErbB4-positive interneurons. Furthermore, ErbB4-NRXN1β binding was responsible for the activity-regulated activation of ErbB4 and extracellular signal-regulated kinase (ERK) 1/2 in PV interneurons, as well as synaptic plasticity-related expression of brain-derived neurotrophic factor (BDNF). Correlatedly, blocking ErbB4-NRXN1β coupling in the medial prefrontal cortex of adult mice facilitated reversal learning of an olfactory associative task. These findings provide novel insight into the physiological role of PV interneuron ErbB4 signaling in cognitive processes and reveal an associative learning-related transsynaptic NRXN1β-ErbB4-PSD-95 complex that affects the ERK1/2-BDNF pathway and underlies local inhibitory circuit plasticity and proactive interference.
Collapse
Affiliation(s)
- Yan Xu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Meng-Lin Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Hui Tao
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China ,grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198 China
| | - Chi Geng
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Feng Guo
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Bin Hu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Ran Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China. .,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
29
|
Re-examination of the determinants of synaptic strength from the perspective of superresolution imaging. Curr Opin Neurobiol 2022; 74:102540. [DOI: 10.1016/j.conb.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
30
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
31
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
32
|
Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, Chamma I, Vennekens K, Vanderlinden J, Sainlos M, de Wit J, Choquet D, Thoumine O. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. eLife 2022; 11:75233. [PMID: 35532105 PMCID: PMC9084894 DOI: 10.7554/elife.75233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
Collapse
Affiliation(s)
- Andrea Toledo
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Mathieu Letellier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Giorgia Bimbi
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Sophie Daburon
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Alexandre Favereaux
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Ingrid Chamma
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Kristel Vennekens
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Matthieu Sainlos
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Joris de Wit
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Daniel Choquet
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
- University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| |
Collapse
|
33
|
Martín-de-Saavedra MD, Santos MD, Penzes P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci 2022; 45:483-498. [DOI: 10.1016/j.tins.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
|
34
|
Dankovich TM, Rizzoli SO. Extracellular Matrix Recycling as a Novel Plasticity Mechanism With a Potential Role in Disease. Front Cell Neurosci 2022; 16:854897. [PMID: 35431813 PMCID: PMC9008140 DOI: 10.3389/fncel.2022.854897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) stabilizes neural circuits and synapses in the healthy brain, while also retaining the ability to be remodeled, to allow synapses to be plastic. A well-described mechanism for ECM remodeling is through the regulated secretion of proteolytic enzymes at the synapse, together with the synthesis of new ECM molecules. The importance of this process is evidenced by the large number of brain disorders that are associated with a dysregulation of ECM-cleaving protease activity. While most of the brain ECM molecules are indeed stable for remarkable time periods, evidence in other cell types, as cancer cells, suggests that at least a proportion of the ECM molecules may be endocytosed regularly, and could even be recycled back to the ECM. In this review, we discuss the involvement of such a mechanism in the brain, under physiological activity conditions and in relation to synapse and brain disease.
Collapse
Affiliation(s)
- Tal M. Dankovich
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- *Correspondence: Tal M. Dankovich,
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- Silvio O. Rizzoli,
| |
Collapse
|
35
|
Chronic Monocular Deprivation Reveals MMP9-Dependent and -Independent Aspects of Murine Visual System Plasticity. Int J Mol Sci 2022; 23:ijms23052438. [PMID: 35269580 PMCID: PMC8909986 DOI: 10.3390/ijms23052438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9-/- mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9-/- mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD.
Collapse
|
36
|
Martín-de-Saavedra MD, Dos Santos M, Culotta L, Varea O, Spielman BP, Parnell E, Forrest MP, Gao R, Yoon S, McCoig E, Jalloul HA, Myczek K, Khalatyan N, Hall EA, Turk LS, Sanz-Clemente A, Comoletti D, Lichtenthaler SF, Burgdorf JS, Barbolina MV, Savas JN, Penzes P. Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca 2+ homeostasis and network synchrony via PMCA2/ATP2B2. Neuron 2022; 110:627-643.e9. [PMID: 34921780 PMCID: PMC8857041 DOI: 10.1016/j.neuron.2021.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Although many neuronal membrane proteins undergo proteolytic cleavage, little is known about the biological significance of neuronal ectodomain shedding (ES). Here, we show that the neuronal sheddome is detectable in human cerebrospinal fluid (hCSF) and is enriched in neurodevelopmental disorder (NDD) risk factors. Among shed synaptic proteins is the ectodomain of CNTNAP2 (CNTNAP2-ecto), a prominent NDD risk factor. CNTNAP2 undergoes activity-dependent ES via MMP9 (matrix metalloprotease 9), and CNTNAP2-ecto levels are reduced in the hCSF of individuals with autism spectrum disorder. Using mass spectrometry, we identified the plasma membrane Ca2+ ATPase (PMCA) extrusion pumps as novel CNTNAP2-ecto binding partners. CNTNAP2-ecto enhances the activity of PMCA2 and regulates neuronal network dynamics in a PMCA2-dependent manner. Our data underscore the promise of sheddome analysis in discovering neurobiological mechanisms, provide insight into the biology of ES and its relationship with the CSF, and reveal a mechanism of regulation of Ca2+ homeostasis and neuronal network synchrony by a shed ectodomain.
Collapse
Affiliation(s)
| | - Marc Dos Santos
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lorenza Culotta
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olga Varea
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin P Spielman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emmarose McCoig
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth A Hall
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Antonio Sanz-Clemente
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Department of Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jeffrey S Burgdorf
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Eksi SE, Chitsazan A, Sayar Z, Thomas GV, Fields AJ, Kopp RP, Spellman PT, Adey AC. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat Commun 2021; 12:7292. [PMID: 34911933 PMCID: PMC8674326 DOI: 10.1038/s41467-021-27615-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA.
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew J Fields
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Ryan P Kopp
- Department of Urology, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
39
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
40
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
41
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
42
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
44
|
Klatt O, Repetto D, Brockhaus J, Reissner C, El Khallouqi A, Rohlmann A, Heine M, Missler M. Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior. Cell Rep 2021; 35:109266. [PMID: 34133920 DOI: 10.1016/j.celrep.2021.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Neurexins are key organizer molecules that regulate synaptic function and are implicated in autism and schizophrenia. β-neurexins interact with numerous cell adhesion and receptor molecules, but their neuronal localization remains elusive. Using single-molecule tracking and high-resolution microscopy to detect neurexin1β and neurexin3β in primary hippocampal neurons from knockin mice, we demonstrate that endogenous β-neurexins are present in fewer than half of excitatory and inhibitory synapses. Moreover, we observe a large extrasynaptic pool of β-neurexins on axons and show that axonal β-neurexins diffuse with higher surface mobility than those transiently confined within synapses. Stimulation of neuronal activity further increases the mobility of synaptic and axonal β-neurexins, whereas inhibition causes the opposite. Blocking ectodomain cleavage by metalloproteases also reduces β-neurexin mobility and enhances glutamate release. These findings suggest that the surface mobility of endogenous β-neurexins inside and outside of synapses is dynamically regulated and linked to neuronal activity.
Collapse
Affiliation(s)
- Oliver Klatt
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany; Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Martin Heine
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany.
| |
Collapse
|
45
|
Camporesi E, Lashley T, Gobom J, Lantero-Rodriguez J, Hansson O, Zetterberg H, Blennow K, Becker B. Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers. Acta Neuropathol Commun 2021; 9:19. [PMID: 33522967 PMCID: PMC7852195 DOI: 10.1186/s40478-021-01119-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 02/02/2023] Open
Abstract
Synaptic pathology is a central event in Alzheimer’s disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-β (Aβ) oligomers and Aβ fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick’s disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (~ 50–60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (~ 77%), CBD (~ 66%) and to a lesser extent for PSP (~ 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases.
Collapse
|
46
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
48
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
49
|
The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci Rep 2020; 10:18041. [PMID: 33093500 PMCID: PMC7582164 DOI: 10.1038/s41598-020-75047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1β ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1β:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1β ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.
Collapse
|
50
|
Yumoto T, Kimura M, Nagatomo R, Sato T, Utsunomiya S, Aoki N, Kitaura M, Takahashi K, Takemoto H, Watanabe H, Okano H, Yoshida F, Nao Y, Tomita T. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol Autism 2020; 11:68. [PMID: 32873342 PMCID: PMC7465329 DOI: 10.1186/s13229-020-00373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.
Collapse
Affiliation(s)
- Takafumi Yumoto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misaki Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Nagatomo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shun Utsunomiya
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Natsue Aoki
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Motoji Kitaura
- Research Administration SPRC, R&D General Administration Unit, General Administration Division, Shionogi Administration Service, Osaka, Japan
| | - Koji Takahashi
- Drug Discovery Technology 3, Laboratory for Innovative Therapy Research, Shionogi, Osaka, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yosuke Nao
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|