1
|
Tanaka R, Portugues R. On analogies in vertebrate and insect visual systems. Nat Rev Neurosci 2025:10.1038/s41583-025-00932-3. [PMID: 40410391 DOI: 10.1038/s41583-025-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
Despite the large evolutionary distance between vertebrates and insects, the visual systems of these two taxa bear remarkable similarities that have been noted repeatedly, including by pioneering neuroanatomists such as Ramón y Cajal. Fuelled by the advent of transgenic approaches in neuroscience, studies of visual system anatomy and function in both vertebrates and insects have made dramatic progress during the past two decades, revealing even deeper analogies between their visual systems than were noted by earlier observers. Such across-taxa comparisons have tended to focus on either elementary motion detection or relatively peripheral layers of the visual systems. By contrast, the aims of this Review are to expand the scope of this comparison to pathways outside visual motion detection, as well as to deeper visual structures. To achieve these aims, we primarily discuss examples from recent work in larval zebrafish (Danio rerio) and the fruitfly (Drosophila melanogaster), a pair of genetically tractable model organisms with comparatively sized, small brains. In particular, we argue that the brains of both vertebrates and insects are equipped with third-order visual structures that specialize in shared behavioural tasks, including postural and course stabilization, approach and avoidance, and some other behaviours. These wider analogies between the two distant taxa highlight shared behavioural goals and associated evolutionary constraints and suggest that studies on vertebrate and insect vision have a lot to inspire each other.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Max Planck Fellow Group - Mechanisms of Cognition, MPI Psychiatry, Munich, Germany.
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
2
|
Kümmerlen K, Blatt J, Hoffmann L, Harzsch S. Brain morphology in the peracarid crustacean Neomysis integer (Leach, 1814) with an emphasis on sexual dimorphism of the olfactory pathway. Cell Tissue Res 2025:10.1007/s00441-025-03978-y. [PMID: 40366435 DOI: 10.1007/s00441-025-03978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Our current understanding of brain organization in malacostracan crustaceans is strongly biased towards representatives of the Decapoda ("ten legged" crustaceans) such as crayfish, crabs, clawed lobsters and spiny lobsters. However, to understand aspects of brain evolution in crustaceans, a broader taxonomic sampling is essential. The peracarid crustaceans are a species-rich group that embraces representatives of, e.g. the Isopoda, Amphipoda and Mysida ("opossum shrimps"), taxa whose neuroanatomy has not been carefully examined. The current study sets out to analyze brain morphology of the mysid Neomysis integer (Leach, 1814; Peracarida, Mysida) using immunohistochemistry against the presynaptic protein synapsin and the neuropeptides RFamide, SIFamide and allatostatin combined with three-dimensional reconstruction of elements of the central olfactory pathway. Furthermore, we studied the inventory of sensilla on the first pair of antennae using cuticular autofluorescence. Anterograde filling with neuronal tracers allowed visualisation the central projections of the sensilla on the first pair of antennae. This species is known to display a sexual dimorphism in both the peripheral and central olfactory pathway. We focussed our analysis on this aspect because in contrast to Hexapoda, reports on a sexual dimorphism of the olfactory system are extremely rare in malacostracan crustaceans. We provide a detailed description of the sensilla associated with a male-specific structure on the pair of first antenna the "lobus masculinus". Furthermore, we analyzed the projection patterns of theses sensilla into the "male-specific neuropil" in the deutocerebrum and critically discuss our results in comparison to examples of sexual dimorphism in the chemosensory pathways in other malacostracan crustaceans and hexapods.
Collapse
Affiliation(s)
- Katja Kümmerlen
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Johanna Blatt
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Lena Hoffmann
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany.
| |
Collapse
|
3
|
Lin T, He L. Tyrosine hydroxylase- and serotonin-immunoreactive neurons in the thoracic ganglia of the Oriental fruit fly, Bactrocera dorsalis. ARTHROPOD STRUCTURE & DEVELOPMENT 2025; 86:101444. [PMID: 40174558 DOI: 10.1016/j.asd.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
The thoracic ganglia (TG) of insects are essential neural centers responsible for regulating behaviors such as flight and courtship. These ganglia control thoracic muscle movements through the release of biogenic amines, such as dopamine and serotonin, which modulate motor functions and behavioral outputs. The Oriental fruit fly, Bactrocera dorsalis (Hendel), is a major agricultural pest characterized by strong flight and reproductive capabilities. These traits enable rapid dispersal and population establishment, posing significant threats to crop production. Elucidating the neural mechanisms of flight and mating behaviors in B. dorsalis is crucial for developing effective pest management strategies. However, the functional roles of biogenic aminergic neurons in the TG of this species remain poorly understood. This study aimed to elucidate the role of biogenic amines in regulating flight and courtship behavior by employing immunohistochemical techniques using tyrosine hydroxylase (TH, a rate-limiting enzyme in dopamine biosynthesis) and serotonin (5-hydroxytryptamine, 5-HT) antibodies. Using confocal laser scanning microscopy, we analyzed and identified TH immunoreactive (TH-ir) and 5-HT immunoreactive (5-HT-ir) neurons in the TG. Their axonal projections were reconstructed in three dimensions. We identified 10 5-HT-ir and 10 TH-ir neurons. These neurons were primarily distributed in the ventral regions of the TG, located between adjacent neuromeres. The 5-HT-ir neurons exhibited extensive projections throughout the TG with a bilateral projection pattern. In contrast, TH-ir neurons displayed more restricted projection areas. Notably, the cell bodies and axonal projections of these two neuron types were entirely independent, with no co-localization observed. This study provides a comprehensive map of putative dopaminergic and serotonergic neurons in the TG of B. dorsalis, laying a foundation for future research on their roles in behavioral regulation.
Collapse
Affiliation(s)
- Tao Lin
- College of Life Science, Shangrao Normal University, Shangrao, 334001, Jiangxi Province, China.
| | - Liyun He
- College of Life Science, Shangrao Normal University, Shangrao, 334001, Jiangxi Province, China
| |
Collapse
|
4
|
Nern A, Loesche F, Takemura SY, Burnett LE, Dreher M, Gruntman E, Hoeller J, Huang GB, Januszewski M, Klapoetke NC, Koskela S, Longden KD, Lu Z, Preibisch S, Qiu W, Rogers EM, Seenivasan P, Zhao A, Bogovic J, Canino BS, Clements J, Cook M, Finley-May S, Flynn MA, Hameed I, Fragniere AMC, Hayworth KJ, Hopkins GP, Hubbard PM, Katz WT, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Maldonado CA, Mooney C, Okeoma N, Olbris DJ, Ordish C, Paterson T, Phillips EM, Pietzsch T, Salinas JR, Rivlin PK, Schlegel P, Scott AL, Scuderi LA, Takemura S, Talebi I, Thomson A, Trautman ET, Umayam L, Walsh C, Walsh JJ, Xu CS, Yakal EA, Yang T, Zhao T, Funke J, George R, Hess HF, Jefferis GSXE, Knecht C, Korff W, Plaza SM, Romani S, Saalfeld S, Scheffer LK, Berg S, Rubin GM, Reiser MB. Connectome-driven neural inventory of a complete visual system. Nature 2025; 641:1225-1237. [PMID: 40140576 PMCID: PMC12119369 DOI: 10.1038/s41586-025-08746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Vision provides animals with detailed information about their surroundings and conveys diverse features such as colour, form and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons. Consequently, from flies to humans, visual regions in the brain constitute half its volume. These visual regions often have marked structure-function relationships, with neurons organized along spatial maps and with shapes that directly relate to their roles in visual processing. More than a century of anatomical studies have catalogued in detail cell types in fly visual systems1-3, and parallel behavioural and physiological experiments have examined the visual capabilities of flies. To unravel the diversity of a complex visual system, careful mapping of the neural architecture matched to tools for targeted exploration of this circuitry is essential. Here we present a connectome of the right optic lobe from a male Drosophila melanogaster acquired using focused ion beam milling and scanning electron microscopy. We established a comprehensive inventory of the visual neurons and developed a computational framework to quantify their anatomy. Together, these data establish a basis for interpreting how the shapes of visual neurons relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity and expert curation, we classified the approximately 53,000 neurons into 732 types. These types are systematically described and about half are newly named. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron-type catalogue. Overall, this comprehensive set of tools and data unlocks new possibilities for systematic investigations of vision in Drosophila and provides a foundation for a deeper understanding of sensory processing.
Collapse
Affiliation(s)
- Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Frank Loesche
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Laura E Burnett
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Judith Hoeller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Nathan C Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sanna Koskela
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kit D Longden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wei Qiu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Miriam A Flynn
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Imran Hameed
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alexandra M C Fragniere
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meghan Leonard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Charli A Maldonado
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tobias Pietzsch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp Schlegel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Louis A Scuderi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alexander Thomson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Claire Walsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily A Yakal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Christopher Knecht
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
5
|
Warecki B, Vega G, Fowler S, Hartzog G, Karr TL, Sullivan W. Wolbachia-mediated reduction in the glutamate receptor mGluR promotes female promiscuity and bacterial spread. Cell Rep 2025:115629. [PMID: 40347951 DOI: 10.1016/j.celrep.2025.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The molecular mechanisms by which parasites mediate host behavioral changes remain largely unexplored. Here, we examine Drosophila melanogaster infected with Wolbachia, a symbiont transmitted through the maternal germline, and find Wolbachia infection increases female receptivity to male courtship and hybrid mating. Wolbachia colonize regions of the brain that control sense perception and behavior. Quantitative global proteomics identify 177 differentially abundant proteins in infected female larval brains. Genetic alteration of the levels of three of these proteins in adults, the metabotropic glutamate receptor mGluR, the transcription factor TfAP-2, and the odorant binding protein Obp99b, each mimic the effect of Wolbachia on female receptivity. Furthermore, >700 Wolbachia proteins are detected in infected brains. Through abundance and molecular modeling analyses, we distinguish several Wolbachia-produced proteins as potential effectors. These results identify potential networks of host and Wolbachia proteins that modify behavior to promote mating success and aid the spread of Wolbachia.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Giovanni Vega
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sommer Fowler
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Grant Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Stürner T, Brooks P, Serratosa Capdevila L, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Marin EC, Schlegel P, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HSJ, Kovalyak J, Tenshaw E, Parekh R, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung HS, Murthy M, Tuthill JC, Lee WCA, Card GM, Costa M, Jefferis GSXE, Eichler K. Comparative connectomics of Drosophila descending and ascending neurons. Nature 2025:10.1038/s41586-025-08925-z. [PMID: 40307549 DOI: 10.1038/s41586-025-08925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and an information bottleneck connecting the brain and the ventral nerve cord (an analogue of the spinal cord) and comprises diverse populations of descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Here, by integrating three separate electron microscopy (EM) datasets1-4, we provide a complete connectomic description of the ANs and DNs of the Drosophila female nervous system and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions are matched across hemispheres, datasets and sexes. Crucially, we also match 51% of DN cell types to light-level data5 defining specific driver lines, as well as classifying all ascending populations. We use these results to reveal the anatomical and circuit logic of neck connective neurons. We observe connected chains of DNs and ANs spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analyses of selected circuits for reproductive behaviours, including male courtship6 (DNa12; also known as aSP22) and song production7 (AN neurons from hemilineage 08B) and female ovipositor extrusion8 (DNp13). Our work provides EM-level circuit analyses that span the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isabella R Beckett
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Elizabeth C Marin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrew S Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S J Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - John C Tuthill
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- Genetics Department, Leipzig University, Leipzig, Germany.
| |
Collapse
|
7
|
Nässel DR. What Drosophila can tell us about state-dependent peptidergic signaling in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104275. [PMID: 39956367 DOI: 10.1016/j.ibmb.2025.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Plasticity in animal behavior and physiology is largely due to modulatory and regulatory signaling with neuropeptides and peptide hormones (collectively abbreviated NPHs). The NPHs constitute a very large and versatile group of signaling substances that partake at different regulatory levels in most daily activities of an organism. This review summarizes key principles in NPH actions in the brain and in interorgan signaling, with focus on Drosophila. NPHs are produced by neurons, neurosecretory cells (NSCs) and other endocrine cells in NPH-specific and stereotypic patterns. Most of the NPHs have multiple (pleiotropic) functions and target several different neuronal circuits and/or peripheral tissues. Such divergent NPH signaling ensures orchestration of behavior and physiology in state-dependent manners. Conversely, many neurons, circuits, NSCs, or other cells, are targeted by multiple NPHs. This convergent signaling commonly conveys various signals reporting changes in the external and internal environment to central neurons/circuits. As an example of wider functional convergence, 26 different Drosophila NPHs act at many different levels to regulate food search and feeding. Convergence is also seen in hormonal regulation of peripheral functions. For instance, multiple NPHs target renal tubules to ensure osmotic homeostasis. Interestingly, several of the same osmoregulatory NPHs also regulate feeding, metabolism and stress. However, for some NPHs the cellular distribution and functions suggests multiple unrelated functions that are restricted to specific circuits. Thus, NPH signaling follows distinct patterns for each specific NPH, but taken together they form overlapping networks that modulate behavior and physiology.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
8
|
C S, Joseph J. Gross anatomy of the visual processing centers of Hieroglyphus banian. Cell Tissue Res 2025; 400:35-49. [PMID: 39934293 DOI: 10.1007/s00441-025-03956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Hieroglyphus banian (H. banian) is a grasshopper species, endemic to South Asia. The optic lobe in Acrididae has been characterized to a great extent in orthoptera, predominantly using Locust species like Schistocerca gregaria, Schistocerca americana, and Locusta migratoria, which are closely related to each other. In this work, we characterize the anatomical features of the optic lobe and associated pathway in the grasshopper species H. banian using tract tracing, immunohistochemistry, and intracellular fills. All the areas of the visual pathways that have been reported in the other orthoptera species could be identified in H. banian. Visual pathways exhibited similar structure and connectivity as shown in immunohistochemistry and tract-tracing results supporting the conservation of these features across species within Acrididae. Two new structures in the posterior protocerebrum, PS1 and PS2 with prominent innervations from the optic lobe were identified. Novel structure PS1 is innervated from medulla via PS1T and, PS2 from aMe via PS2T, both new tracts we have identified.
Collapse
Affiliation(s)
- Sivaraju C
- University of Hyderabad, Hyderabad, Telangana, India, 500046
| | - Joby Joseph
- University of Hyderabad, Hyderabad, Telangana, India, 500046.
| |
Collapse
|
9
|
Banerjee TD, Zhang L, Monteiro A. Mapping Gene Expression in Whole Larval Brains of Bicyclus anynana Butterflies. Methods Protoc 2025; 8:31. [PMID: 40126249 PMCID: PMC11932290 DOI: 10.3390/mps8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Butterfly larvae display intricate cognitive capacities and behaviors, but relatively little is known about how those behaviors alter their brains at the molecular level. Here, we optimized a hybridization chain reaction 3.0 (HCR v3.0) protocol to visualize the expression of multiple RNA molecules in fixed larval brains of the African butterfly Bicyclus anynana. We optimized the polyacrylamide gel mounting, fixation, and sample permeabilization steps, and mapped the expression domains of ten genes in whole larval brain tissue at single-cell resolution. The genes included optomotor blind (omb), yellow-like, zinc finger protein SNAI2-like (SNAI2), weary (wry), extradenticle (exd), Synapsin, Distal-less (Dll), bric-à-brac 1 (bab1), dachshund (dac), and acetyl coenzyme A acetyltransferase B (AcatB). This method can be used alongside single-cell sequencing to visualize the spatial location of brain cells that change in gene expression or splicing patterns in response to specific behaviors or cognitive experiences.
Collapse
Affiliation(s)
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| |
Collapse
|
10
|
Clark DG, Beiran M. Structure of activity in multiregion recurrent neural networks. Proc Natl Acad Sci U S A 2025; 122:e2404039122. [PMID: 40053363 PMCID: PMC11912375 DOI: 10.1073/pnas.2404039122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/07/2025] [Indexed: 03/12/2025] Open
Abstract
Neural circuits comprise multiple interconnected regions, each with complex dynamics. The interplay between local and global activity is thought to underlie computational flexibility, yet the structure of multiregion neural activity and its origins in synaptic connectivity remain poorly understood. We investigate recurrent neural networks with multiple regions, each containing neurons with random and structured connections. Inspired by experimental evidence of communication subspaces, we use low-rank connectivity between regions to enable selective activity routing. These networks exhibit high-dimensional fluctuations within regions and low-dimensional signal transmission between them. Using dynamical mean-field theory, with cross-region currents as order parameters, we show that regions act as both generators and transmitters of activity-roles that are often in tension. Taming within-region activity can be crucial for effective signal routing. Unlike previous models that suppressed neural activity to control signal flow, our model achieves routing by exciting different high-dimensional activity patterns through connectivity structure and nonlinear dynamics. Our analysis of this disordered system offers insights into multiregion neural data and trained neural networks.
Collapse
Affiliation(s)
- David G. Clark
- Zuckerman Institute, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Manuel Beiran
- Zuckerman Institute, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| |
Collapse
|
11
|
Qu X, Lai X, He M, Zhang J, Xiang B, Liu C, Huang R, Shi Y, Qiao J. Investigation of epilepsy-related genes in a Drosophila model. Neural Regen Res 2024; 21:01300535-990000000-00636. [PMID: 39688550 PMCID: PMC12094548 DOI: 10.4103/nrr.nrr-d-24-00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Complex genetic architecture is the major cause of heterogeneity in epilepsy, which poses challenges for accurate diagnosis and precise treatment. A large number of epilepsy candidate genes have been identified from clinical studies, particularly with the widespread use of next-generation sequencing. Validating these candidate genes is emerging as a valuable yet challenging task. Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy, due to its rapid reproduction rate, powerful genetic tools, and efficient use of ethological and electrophysiological assays. Here, we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes, including genetic tools for manipulating target gene expression, ethological assays for seizure-like behaviors, electrophysiological techniques, and functional imaging for recording neural activity. We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene-gene interactions in epilepsy with polygenic causes. We summarize well- established precision medicine strategies for epilepsy and discuss prospective treatment options, including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model. Finally, we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaochong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaodan Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingfeng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinyuan Zhang
- School of Health Management, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Binbin Xiang
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuqiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ruina Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jingda Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Jahn S, Althaus V, Seip A, Rotella S, Heckmann J, Janning M, Kolano J, Kaufmann A, Homberg U. Neuroarchitecture of the Central Complex in the Madeira Cockroach Rhyparobia maderae: Tangential Neurons. J Comp Neurol 2024; 532:e70009. [PMID: 39658819 PMCID: PMC11632141 DOI: 10.1002/cne.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Navigating in diverse environments to find food, shelter, or mating partners is an important ability for nearly all animals. Insects have evolved diverse navigational strategies to survive in challenging and unknown environments. In the insect brain, the central complex (CX) plays an important role in spatial orientation and directed locomotion. It consists of the protocerebral bridge (PB), the central body with upper (CBU) and lower division (CBL), and the paired noduli (NO). As shown in various insect species, the CX integrates multisensory cues, including sky compass signals, wind direction, and ego-motion to provide goal-directed vector output used for steering locomotion and flight. While most of these data originate from studies on day-active insects, less is known about night-active species such as cockroaches. Following our analysis of columnar and pontine neurons, the present study complements our investigation of the cellular architecture of the CX of the Madeira cockroach by analyzing tangential neurons. Based on single-cell tracer injections, we provide further details on the internal organization of the CX and distinguished 27 types of tangential neuron, including three types of neuron innervating the PB, six types of the CBL, and 18 types of the CBU. The anterior lip, a brain area unknown in flies and highly reduced in bees, and the crepine are strongly connected to the cockroach CBU in contrast to other insect species. One tangential neuron of the CBU revealed a direct connection between the mushroom bodies and the CBU.
Collapse
Affiliation(s)
- Stefanie Jahn
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Vanessa Althaus
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Ann‐Katrin Seip
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Saron Rotella
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Jannik Heckmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Mona Janning
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Juliana Kolano
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Aurelia Kaufmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Uwe Homberg
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
- Center for Mind Brain and Behavior (CMBB)University of Marburg and Justus Liebig University of GiessenMarburgGermany
| |
Collapse
|
13
|
Jaske B, Tschirner K, Strube-Bloss MF, Pfeiffer K. Velocity coding in the central brain of bumblebees. J Neurophysiol 2024; 132:1986-2001. [PMID: 39535402 DOI: 10.1152/jn.00272.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Moving animals experience wide-field optic flow due to the displacement of the retinal image during motion. These cues provide information about self-motion and are important for flight control and stabilization, and for more complex tasks like path integration. Although in honeybees and bumblebees the use of wide-field optic flow in behavioral tasks is well investigated, little is known about the underlying neuronal processing of these cues. Furthermore, there is a discrepancy between the temporal frequency tuning observed in most motion-sensitive neurons described so far from the optic lobe of insects and the velocity tuning that has been shown for many behaviors. Here, we investigated response properties of motion-sensitive neurons in the central brain of bumblebees. Extracellular recordings allowed us to present a large number of stimuli to probe the spatiotemporal tuning of these neurons. We presented moving gratings that simulated either front-to-back or back-to-front optic flow and found three response types. Direction-selective responses of one of the groups matched those of TN-neurons, which provide optic flow information to the central complex, whereas the other groups contained neurons with purely excitatory responses that were either selective or nonselective for stimulus direction. Most recorded units showed velocity-coding properties at lower angular velocities, but showed spatial frequency-dependent responses at higher velocities. Based on behavioral data, neuronal modeling work has previously predicted the existence of nondirection-selective neurons with such properties. Our data now provide physiological evidence for these neurons and show that neurons with TN-like properties exhibit a similar velocity-dependent coding.NEW & NOTEWORTHY Using extracellular recordings, we show that neurons in the central brain and central complex of bumblebees show velocity coding properties.
Collapse
Affiliation(s)
- Bianca Jaske
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Katja Tschirner
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Brezovec BE, Berger AB, Hao YA, Lin A, Ahmed OM, Pacheco DA, Thiberge SY, Murthy M, Clandinin TR. BIFROST: A method for registering diverse imaging datasets of the Drosophila brain. Proc Natl Acad Sci U S A 2024; 121:e2322687121. [PMID: 39541350 PMCID: PMC11588091 DOI: 10.1073/pnas.2322687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Imaging methods that span both functional measures in living tissue and anatomical measures in fixed tissue have played critical roles in advancing our understanding of the brain. However, making direct comparisons between different imaging modalities, particularly spanning living and fixed tissue, has remained challenging. For example, comparing brain-wide neural dynamics across experiments and aligning such data to anatomical resources, such as gene expression patterns or connectomes, requires precise alignment to a common set of anatomical coordinates. However, reaching this goal is difficult because registering in vivo functional imaging data to ex vivo reference atlases requires accommodating differences in imaging modality, microscope specification, and sample preparation. We overcome these challenges in Drosophila by building an in vivo reference atlas from multiphoton-imaged brains, called the Functional Drosophila Atlas. We then develop a registration pipeline, BrIdge For Registering Over Statistical Templates (BIFROST), for transforming neural imaging data into this common space and for importing ex vivo resources such as connectomes. Using genetically labeled cell types as ground truth, we demonstrate registration with a precision of less than 10 microns. Overall, BIFROST provides a pipeline for registering functional imaging datasets in the fly, both within and across experiments.
Collapse
Affiliation(s)
- Bella E. Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA94305
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
| | - Andrew B. Berger
- Department of Neurobiology, Stanford University, Stanford, CA94305
- Department of Physics, University of Colorado Boulder, Boulder, CO80302
| | - Yukun A. Hao
- Department of Neurobiology, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ08544
| | - Osama M. Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Psychology, University of Washington, Seattle, WA
| | - Diego A. Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
| | | |
Collapse
|
15
|
Farnworth MS, Loupasaki T, Couto A, Montgomery SH. Mosaic evolution of a learning and memory circuit in Heliconiini butterflies. Curr Biol 2024; 34:5252-5262.e5. [PMID: 39426379 DOI: 10.1016/j.cub.2024.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
How do neural circuits accommodate changes that produce cognitive variation? We explore this question by analyzing the evolutionary dynamics of an insect learning and memory circuit centered within the mushroom body. Mushroom bodies are composed of a conserved wiring logic, mainly consisting of Kenyon cells, dopaminergic neurons, and mushroom body output neurons. Despite this conserved makeup, there is huge diversity in mushroom body size and shape across insects. However, empirical data on how evolution modifies the function and architecture of this circuit are largely lacking. To address this, we leverage the recent radiation of a Neotropical tribe of butterflies, the Heliconiini (Nymphalidae), which show extensive variation in mushroom body size over comparatively short phylogenetic timescales, linked to specific changes in foraging ecology, life history, and cognition. To understand how such an extensive increase in size is accommodated through changes in lobe circuit architecture, we combined immunostainings of structural markers, neurotransmitters, and neural injections to generate new, quantitative anatomies of the Nymphalid mushroom body lobe. Our comparative analyses across Heliconiini demonstrate that some Kenyon cell sub-populations expanded at higher rates than others in Heliconius and identify an additional increase in GABA-ergic feedback neurons, which are essential for non-elemental learning and sparse coding. Taken together, our results demonstrate mosaic evolution of functionally related neural systems and cell types and identify that evolutionary malleability in an architecturally conserved parallel circuit guides adaptation in cognitive ability.
Collapse
Affiliation(s)
- Max S Farnworth
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Theodora Loupasaki
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Antoine Couto
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
16
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
Affiliation(s)
- Ilana Levy
- Undergraduate Program in Biochemistry, Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Arvidson
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Yang HH, Brezovec BE, Serratosa Capdevila L, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. Cell 2024; 187:6290-6308.e27. [PMID: 39293446 DOI: 10.1016/j.cell.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bella E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Quinn X Vanderbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Lin A, Yang R, Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M. Network statistics of the whole-brain connectome of Drosophila. Nature 2024; 634:153-165. [PMID: 39358527 PMCID: PMC11446825 DOI: 10.1038/s41586-024-07968-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections1-3, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations4,5, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
Collapse
Affiliation(s)
- Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro MA, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GSXE, Seung HS, Murthy M. Neuronal wiring diagram of an adult brain. Nature 2024; 634:124-138. [PMID: 39358518 PMCID: PMC11446842 DOI: 10.1038/s41586-024-07558-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Will Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Morey
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
20
|
Schwarz MB, O'Carroll DC, Evans BJE, Fabian JM, Wiederman SD. Localized and Long-Lasting Adaptation in Dragonfly Target-Detecting Neurons. eNeuro 2024; 11:ENEURO.0036-24.2024. [PMID: 39256041 PMCID: PMC11419696 DOI: 10.1523/eneuro.0036-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Some visual neurons in the dragonfly (Hemicordulia tau) optic lobe respond to small, moving targets, likely underlying their fast pursuit of prey and conspecifics. In response to repetitive targets presented at short intervals, the spiking activity of these "small target motion detector" (STMD) neurons diminishes over time. Previous experiments limited this adaptation by including intertrial rest periods of varying durations. However, the characteristics of this effect have never been quantified. Here, using extracellular recording techniques lasting for several hours, we quantified both the spatial and temporal properties of STMD adaptation. We found that the time course of adaptation was variable across STMD units. In any one STMD, a repeated series led to more rapid adaptation, a minor accumulative effect more akin to habituation. Following an adapting stimulus, responses recovered quickly, though the rate of recovery decreased nonlinearly over time. We found that the region of adaptation is highly localized, with targets displaced by ∼2.5° eliciting a naive response. Higher frequencies of target stimulation converged to lower levels of sustained response activity. We determined that adaptation itself is a target-tuned property, not elicited by moving bars or luminance flicker. As STMD adaptation is a localized phenomenon, dependent on recent history, it is likely to play an important role in closed-loop behavior where a target is foveated in a localized region for extended periods of the pursuit duration.
Collapse
Affiliation(s)
- Matthew B Schwarz
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5001, Australia
| | | | - Bernard J E Evans
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Joseph M Fabian
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Steven D Wiederman
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5001, Australia
| |
Collapse
|
21
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
22
|
Guerina FV, Patkar AP, Younger MA. Introduction to Techniques Used to Study Mosquito Neuroanatomy and Neural Circuitry. Cold Spring Harb Protoc 2024; 2024:pdb.top108305. [PMID: 37816602 DOI: 10.1101/pdb.top108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Mosquitoes transmit deadly pathogens from person to person as they obtain the blood meal that is essential for their life cycle. Female mosquitoes of many species are unable to reproduce without consuming protein that they obtain from blood. This developmental stage makes them highly efficient disease vectors of deadly pathogens. They can transmit pathogens between members of the same species and different species that can provide a route for evolving zoonotic viruses to jump from animals to humans. One possible way to develop novel strategies to combat pathogen transmission by mosquitoes is to study the sensory systems that drive mosquito reproductive behaviors, in particular the neural architecture and circuits of mosquito sensory afferent neurons, the central circuits that process sensory information, and the downstream circuits that drive reproductive behaviors. The study of mosquito neuroanatomy and circuitry also benefits basic neuroscience, allowing for comparative neuroanatomy in insect species, which has great value in the current model species-heavy landscape of neuroscience. Here, we introduce two important techniques that are used to study neuroanatomy and neural circuitry-namely, immunofluorescent labeling and neural tracing. We describe how to apply these approaches to study mosquito neuroanatomy and describe considerations for researchers using the techniques.
Collapse
Affiliation(s)
- Florence V Guerina
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Ameya P Patkar
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
23
|
Younger MA. Whole-Mount Immunofluorescent Labeling of the Mosquito Central Nervous System. Cold Spring Harb Protoc 2024; 2024:pdb.prot108336. [PMID: 37816606 DOI: 10.1101/pdb.prot108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Mosquito-borne disease is a major global public health issue. One path toward the development of evidence-based strategies to limit mosquito biting is the study of the mosquito nervous system-in particular, the sensory systems that drive biting behavior. The central nervous system of insects consists of the brain and the ventral nerve cord. Here, we describe a protocol for dissecting, immunofluorescent labeling, and imaging both of these structures in the mosquito. This protocol was optimized for Aedes aegypti and works well on Anopheles gambiae tissue. It has not been tested in other mosquito species, but we anticipate that it would work on a range of mosquitoes, and, if not, our protocol will provide a starting point from which to optimize. Notably, a limited number of antibodies cross-react with Ae. aegypti proteins. This protocol is intended for use with validated antibodies and can also be used to test new antibodies as they are generated. It has been successfully used to visualize protein tags, such as green fluorescent protein, that have been introduced into the mosquito to amplify or detect their presence.
Collapse
Affiliation(s)
- Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
24
|
Younger MA. Dextran Amine-Conjugated Neural Tracing in Mosquitoes. Cold Spring Harb Protoc 2024; 2024:pdb.prot108337. [PMID: 37816605 DOI: 10.1101/pdb.prot108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
To understand the circuitry of the brain, it is often advantageous to visualize the processes of a single neuron or population of neurons. Identifying sites where a neuron, or neurons, originates and where it projects can allow a researcher to begin to map the circuitry underlying various processes, including sensory-guided behaviors. Furthermore, neural tracing allows one to map locations where processes terminate onto regions of the brain that may have known functions and sometimes to identify candidate upstream or downstream connections, based on proximity. Many methods of neural tracing are available; here, we focus on loading fluorescent dyes into a neuron (fluorescent dye filling). Different options for dyes exist to label neurites. Among the most versatile and easy to use are dextran amine-conjugated dyes. They fill neurons bidirectionally, not discriminating between anterograde or retrograde loading direction. Dye filling must be done in unfixed tissue, as the dye needs to move through the neurons; however, dextran amine conjugates are aldehyde-fixable and once cells have been fully loaded with dye the tissue can be fixed and subjected to immunostaining. Coupling neural tracing with immunofluorescence is a useful way to determine specific brain or ventral nerve cord (VNC) regions where a neuron projects. This protocol describes methods for loading dextran amine conjugated dyes into a sensory tissue in the mosquito to visualize sites of sensory neuron innervation in the central nervous system, as well as efferent projections to these structures. This protocol is described for Aedes aegypti, for which it was optimized, but it also works across a variety of insects.
Collapse
Affiliation(s)
- Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Stürner T, Brooks P, Capdevila LS, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Schlegel P, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung S, Murthy M, Tuthill J, Lee WCA, Card GM, Costa M, Jefferis GS, Eichler K. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596633. [PMID: 38895426 PMCID: PMC11185702 DOI: 10.1101/2024.06.04.596633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J. Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew S. Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S.J. Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Alexander S. Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Mala Murthy
- Computer Science Department, Princeton University, USA
| | - John Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung A. Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Genetics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
27
|
Merchant A, Zhou X. Caste-biased patterns of brain investment in the subterranean termite Reticulitermes flavipes. iScience 2024; 27:110052. [PMID: 38883809 PMCID: PMC11176635 DOI: 10.1016/j.isci.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investment into neural tissue is expected to reflect the specific sensory and behavioral capabilities of a particular organism. Termites are eusocial insects that exhibit a caste system in which individuals can develop into one of several morphologically and behaviorally distinct castes. However, it is unclear to what extent these differences between castes are reflected in the anatomy of the brain. To address this question, we used deformation-based morphometry to conduct pairwise comparisons between the brains of different castes in the eastern subterranean termite, Reticulitermes flavipes. Workers exhibited enlargement in the antennal lobes and mushroom bodies, while reproductives showed increased investment into the optic lobes and central body. In addition, caste-specific enlargement was observed in regions that could not be mapped to distinct neuropils, most notably in soldiers. These findings demonstrate a significant influence of caste development on brain anatomy in termites alongside convergence with eusocial hymenopteran systems.
Collapse
Affiliation(s)
- Austin Merchant
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:171-183. [PMID: 38857586 DOI: 10.1159/000539546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS We reared newly eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2-53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C Goolsby
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - E Jordan Smith
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Isabella B Muratore
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Chemistry Department, United States Naval Academy, Annapolis, Maryland, USA
| | - Zach N Coto
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Mario L Muscedere
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Braun J, Hurtak F, Wang-Chen S, Ramdya P. Descending networks transform command signals into population motor control. Nature 2024; 630:686-694. [PMID: 38839968 PMCID: PMC11186778 DOI: 10.1038/s41586-024-07523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.
Collapse
Affiliation(s)
- Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Femke Hurtak
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Sibo Wang-Chen
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
30
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
31
|
Fiala A, Kaun KR. What do the mushroom bodies do for the insect brain? Twenty-five years of progress. Learn Mem 2024; 31:a053827. [PMID: 38862175 PMCID: PMC11199942 DOI: 10.1101/lm.053827.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
In 1998, a special edition of Learning & Memory was published with a discrete focus of synthesizing the state of the field to provide an overview of the function of the insect mushroom body. While molecular neuroscience and optical imaging of larger brain areas were advancing, understanding the basic functioning of neuronal circuits, particularly in the context of the mushroom body, was rudimentary. In the past 25 years, technological innovations have allowed researchers to map and understand the in vivo function of the neuronal circuits of the mushroom body system, making it an ideal model for investigating the circuit basis of sensory encoding, memory formation, and behavioral decisions. Collaborative efforts within the community have played a crucial role, leading to an interactive connectome of the mushroom body and accessible genetic tools for studying mushroom body circuit function. Looking ahead, continued technological innovation and collaborative efforts are likely to further advance our understanding of the mushroom body and its role in behavior and cognition, providing insights that generalize to other brain structures and species.
Collapse
Affiliation(s)
- André Fiala
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Göttingen 37077, Germany
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02806, USA
| |
Collapse
|
32
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
33
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Weiss JT, Blundell MZ, Singh P, Donlea JM. Sleep deprivation drives brain-wide changes in cholinergic presynapse abundance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2312664121. [PMID: 38498719 PMCID: PMC10990117 DOI: 10.1073/pnas.2312664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Sleep is an evolutionarily conserved state that supports brain functions, including synaptic plasticity, in species across the animal kingdom. Here, we examine the neuroanatomical and cell-type distribution of presynaptic scaling in the fly brain after sleep loss. We previously found that sleep loss drives accumulation of the active zone scaffolding protein Bruchpilot (BRP) within cholinergic Kenyon cells of the Drosophila melanogaster mushroom body (MB), but not in other classes of MB neurons. To test whether similar cell type-specific trends in plasticity occur broadly across the brain, we used a flp-based genetic reporter to label presynaptic BRP in cholinergic, dopaminergic, GABAergic, or glutamatergic neurons. We then collected whole-brain confocal image stacks of BRP intensity to systematically quantify BRP, a marker of presynapse abundance, across 37 neuropil regions of the central fly brain. Our results indicate that sleep loss, either by overnight (12-h) mechanical stimulation or chronic sleep disruption in insomniac mutants, broadly elevates cholinergic synapse abundance across the brain, while synapse abundance in neurons that produce other neurotransmitters undergoes weaker, if any, changes. Extending sleep deprivation to 24 h drives brain-wide upscaling in glutamatergic, but not other, synapses. Finally, overnight male-male social pairings induce increased BRP in excitatory synapses despite male-female pairings eliciting more waking activity, suggesting experience-specific plasticity. Within neurotransmitter class and waking context, BRP changes are similar across the 37 neuropil domains, indicating that similar synaptic scaling rules may apply across the brain during acute sleep loss and that sleep need may broadly alter excitatory-inhibitory balance in the central brain.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Mei Z. Blundell
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| |
Collapse
|
35
|
Cheong HSJ, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WCA, Card GM, Daly KC, Dacks AM. Organization of an ascending circuit that conveys flight motor state in Drosophila. Curr Biol 2024; 34:1059-1075.e5. [PMID: 38402616 PMCID: PMC10939832 DOI: 10.1016/j.cub.2024.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.
Collapse
Affiliation(s)
- Han S J Cheong
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Kaitlyn N Boone
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marryn M Bennett
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jacob D Ralston
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Kaleb Hatch
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Raven F Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Alec M Phelps
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Andrew P Cook
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Mert Erginkaya
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Wei-Chung A Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Kevin C Daly
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
36
|
Piersanti S, Rebora M, Salerno G, Vitecek S, Anton S. Sensory pathway in aquatic basal polyneoptera: Antennal sensilla and brain morphology in stoneflies. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 79:101345. [PMID: 38493543 DOI: 10.1016/j.asd.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Aquatic insects represent a great portion of Arthropod diversity and the major fauna in inland waters. The sensory biology and neuroanatomy of these insects are, however, poorly investigated. This research aims to describe the antennal sensilla of nymphs of the stonefly Dinocras cephalotes using scanning electron microscopy and comparing them with the adult sensilla. Besides, central antennal pathways in nymphs and adults are investigated by neuron mass-tracing with tetramethylrhodamine, and their brain structures are visualized with an anti-synapsin antibody. No dramatic changes occur in the antennal sensilla during nymphal development, while antennal sensilla profoundly change from nymphs to adults when switching from an aquatic to an aerial lifestyle. However, similar brain structures are used in nymphs and adults to process diverging sensory information, perceived through different sensilla in water and air. These data provide valuable insights into the evolution of aquatic heterometabolous insects, maintaining a functional sensory system throughout development, including a distinct adaptation of the peripheral olfactory systems during the transition from detection of water-soluble chemicals to volatile compounds in the air. From a conservation biology perspective, the present data contribute to a better knowledge of the biology of stoneflies, which are very important bioindicators in rivers.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Simon Vitecek
- QUIVER, WasserCluster Lunz -Biologische Station, Dr.-Carl-Kupelwieserpromenade5, 3293, Lunz am See, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, University of Rennes, 2, rue André Le Nôtre, 49045, Angers Cedex 01, France.
| |
Collapse
|
37
|
Althaus V, Exner G, von Hadeln J, Homberg U, Rosner R. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea. J Comp Neurol 2024; 532:e25607. [PMID: 38501930 DOI: 10.1002/cne.25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Gesa Exner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Department of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Biosciences Institute, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Lin A, Yang R, Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M. Network Statistics of the Whole-Brain Connectome of Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.29.551086. [PMID: 37547019 PMCID: PMC10402125 DOI: 10.1101/2023.07.29.551086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Brains comprise complex networks of neurons and connections. Network analysis applied to the wiring diagrams of brains can offer insights into how brains support computations and regulate information flow. The completion of the first whole-brain connectome of an adult Drosophila, the largest connectome to date, containing 130,000 neurons and millions of connections, offers an unprecedented opportunity to analyze its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We discovered that the network of the fly brain displays rich club organization, with a large population (30% percent of the connectome) of highly connected neurons. We identified subsets of rich club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex and will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
Collapse
Affiliation(s)
- Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
39
|
Brezovec BE, Berger AB, Hao YA, Chen F, Druckmann S, Clandinin TR. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr Biol 2024; 34:710-726.e4. [PMID: 38242122 DOI: 10.1016/j.cub.2023.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Locomotion engages widely distributed networks of neurons. However, our understanding of the spatial architecture and temporal dynamics of the networks that underpin walking remains incomplete. We use volumetric two-photon imaging to map neural activity associated with walking across the entire brain of Drosophila. We define spatially clustered neural signals selectively associated with changes in either forward or angular velocity, demonstrating that neurons with similar behavioral selectivity are clustered. These signals reveal distinct topographic maps in diverse brain regions involved in navigation, memory, sensory processing, and motor control, as well as regions not previously linked to locomotion. We identify temporal trajectories of neural activity that sweep across these maps, including signals that anticipate future movement, representing the sequential engagement of clusters with different behavioral specificities. Finally, we register these maps to a connectome and identify neural networks that we propose underlie the observed signals, setting a foundation for subsequent circuit dissection. Overall, our work suggests a spatiotemporal framework for the emergence and execution of complex walking maneuvers and links this brain-wide neural activity to single neurons and local circuits.
Collapse
Affiliation(s)
- Bella E Brezovec
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The conserved RNA-binding protein Imp is required for the specification and function of olfactory navigation circuitry in Drosophila. Curr Biol 2024; 34:473-488.e6. [PMID: 38181792 PMCID: PMC10872534 DOI: 10.1016/j.cub.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA.
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
41
|
Simpson JH. Descending control of motor sequences in Drosophila. Curr Opin Neurobiol 2024; 84:102822. [PMID: 38096757 PMCID: PMC11215313 DOI: 10.1016/j.conb.2023.102822] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
The descending neurons connecting the fly's brain to its ventral nerve cord respond to sensory stimuli and evoke motor programs of varying complexity. Anatomical characterization of the descending neurons and their synaptic connections suggests how these circuits organize movements, while optogenetic manipulation of their activity reveals what behaviors they can induce. Monitoring their responses to sensory stimuli or during behavior performance indicates what information they may encode. Recent advances in all three approaches make the descending neurons an excellent place to better understand the sensorimotor integration and transformation required for nervous systems to govern the motor sequences that constitute animal behavior.
Collapse
Affiliation(s)
- Julie H Simpson
- Dept. Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, USA.
| |
Collapse
|
42
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546928. [PMID: 37425857 PMCID: PMC10326991 DOI: 10.1101/2023.06.29.546928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C. Goolsby
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - E. Jordan Smith
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Isabella B. Muratore
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biological Sciences, New Jersey Institute of Technology, NJ, 07102, USA
| | - Zach N. Coto
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | |
Collapse
|
43
|
Boyan G, Williams L, Ehrhardt E. Central projections from Johnston's organ in the locust: Axogenesis and brain neuroarchitecture. Dev Genes Evol 2023; 233:147-159. [PMID: 37695323 PMCID: PMC10746777 DOI: 10.1007/s00427-023-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Johnston's organ (Jo) acts as an antennal wind-sensitive and/or auditory organ across a spectrum of insect species and its axons universally project to the brain. In the locust, this pathway is already present at mid-embryogenesis but the process of fasciculation involved in its construction has not been investigated. Terminal projections into the fine neuropilar organization of the brain also remain unresolved, information essential not only for understanding the neural circuitry mediating Jo-mediated behavior but also for providing comparative data offering insights into its evolution. In our study here, we employ neuron-specific, axon-specific, and epithelial domain labels to show that the pathway to the brain of the locust is built in a stepwise manner during early embryogenesis as processes from Jo cell clusters in the pedicel fasciculate first with one another, and then with the two tracts constituting the pioneer axon scaffold of the antenna. A comparison of fasciculation patterns confirms that projections from cell clusters of Jo stereotypically associate with only one axon tract according to their location in the pedicellar epithelium, consistent with a topographic plan. At the molecular level, all neuronal elements of the Jo pathway to the brain express the lipocalin Lazarillo, a cell surface epitope that regulates axogenesis in the primary axon scaffold itself, and putatively during fasciculation of the Jo projections to the brain. Central projections from Jo first contact the primary axon scaffold of the deutocerebral brain at mid-embryogenesis, and in the adult traverse mechanosensory/motor neuropils similar to those in Drosophila. These axons then terminate among protocerebral commissures containing premotor interneurons known to regulate flight behavior.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
- Institute of Zoology, AG Ito, Universität Zu Köln, Zülpicher Str. 47B, 50674, Cologne, Germany
| |
Collapse
|
44
|
Amin H, Nolte SS, Swain B, von Philipsborn AC. GABAergic signaling shapes multiple aspects of Drosophila courtship motor behavior. iScience 2023; 26:108069. [PMID: 37860694 PMCID: PMC10583093 DOI: 10.1016/j.isci.2023.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Inhibitory neurons are essential for orchestrating and structuring behavior. We use one of the best studied behaviors in Drosophila, male courtship, to analyze how inhibitory, GABAergic neurons shape the different steps of this multifaceted motor sequence. RNAi-mediated knockdown of the GABA-producing enzyme GAD1 and the ionotropic receptor Rdl in sex specific, fruitless expressing neurons in the ventral nerve cord causes uncoordinated and futile copulation attempts, defects in wing extension choice and severe alterations of courtship song. Altered song of GABA depleted males fails to stimulate female receptivity, but rescue of song patterning alone is not sufficient to rescue male mating success. Knockdown of GAD1 and Rdl in male brain circuits abolishes courtship conditioning. We characterize the around 220 neurons coexpressing GAD1 and Fruitless in the Drosophila male nervous system and propose inhibitory circuit motifs underlying key features of courtship behavior based on the observed phenotypes.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Stella S. Nolte
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Bijayalaxmi Swain
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Anne C. von Philipsborn
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
45
|
Jahn S, Althaus V, Heckmann J, Janning M, Seip AK, Takahashi N, Grigoriev C, Kolano J, Homberg U. Neuroarchitecture of the central complex in the Madeira cockroach Rhyparobia maderae: Pontine and columnar neuronal cell types. J Comp Neurol 2023; 531:1689-1714. [PMID: 37608556 DOI: 10.1002/cne.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli. While most of its functional organization and involvement in head-direction coding has been obtained from work on flies, bees, and locusts that largely rely on vision for navigation, little contribution has been provided by work on nocturnal species. To close this gap, we have investigated the columnar organization of the CX in the cockroach Rhyparobia maderae. Rhyparobia maderae is a highly agile nocturnal insect that relies largely but not exclusively on antennal information for navigation. A particular feature of the cockroach CX is an organization of the CBU and CBL into interleaved series of eight and nine columns. Single-cell tracer injections combined with imaging and 3D analysis revealed five systems of pontine neurons connecting columns along the vertical and horizontal axis and 18 systems of columnar neurons with topographically organized projection patterns. Among these are six types of neurons with no correspondence in other species. Many neurons send processes into the anterior lip, a brain area highly reduced in bees and unknown in flies. While sharing many features with the CX in other species, the cockroach CX shows some unique attributes that may be related to the ecological niche of this insect.
Collapse
Affiliation(s)
- Stefanie Jahn
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Vanessa Althaus
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Jannik Heckmann
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Mona Janning
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Ann-Katrin Seip
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Naomi Takahashi
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Clara Grigoriev
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Juliana Kolano
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
46
|
Yang HH, Brezovec LE, Capdevila LS, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562426. [PMID: 37904997 PMCID: PMC10614758 DOI: 10.1101/2023.10.15.562426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream from distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Notably, a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from brain cells that drive specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H. Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Luke E. Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305 USA
| | | | | | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Rachel I. Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
47
|
Ros IG, Omoto JJ, Dickinson MH. Descending control and regulation of spontaneous flight turns in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.555791. [PMID: 37732262 PMCID: PMC10508747 DOI: 10.1101/2023.09.06.555791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of life, selecting for a common locomotor search motif in which straight movements through resource-poor regions alternate with zig -zag exploration in resource-rich domains. For example, flies execute rapid changes in flight heading called body saccades during local search, but suppress these turns during long-distance dispersal or when surging upwind after encountering an attractive odor plume. Here, we describe the key cellular components of a neural network in flies that generates spontaneous turns as well as a specialized neuron that inhibits the network to promote straight flight. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional couplets-one for right turns and one for left-with each couplet consisting of an excitatory (DNae014) and inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly brain, we identified a large, unique interneuron (VES041) that forms inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As suggested by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it regulates the transition between local search and long-distance dispersal. These results thus identify the critical elements of a network that not only structures the locomotor behavior of flies, but may also play a crucial role in their natural foraging ecology.
Collapse
|
48
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
49
|
Watanabe H, Tateishi K. Parallel olfactory processing in a hemimetabolous insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101097. [PMID: 37541388 DOI: 10.1016/j.cois.2023.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
To represent specific olfactory cues from the highly complex and dynamic odor world in the brain, insects employ multiple parallel olfactory pathways that process odors with different coding strategies. Here, we summarize the anatomical and physiological features of parallel olfactory pathways in the hemimetabolous insect, the cockroach Periplaneta americana. The cockroach processes different aspects of odor stimuli, such as odor qualities, temporal information, and dynamics, through parallel olfactory pathways. These parallel pathways are anatomically segregated from the peripheral to higher brain centers, forming functional maps within the brain. In addition, the cockroach may possess parallel pathways that correspond to distinct types of olfactory receptors expressed in sensory neurons. Through comparisons with olfactory pathways in holometabolous insects, we aim to provide valuable insights into the organization, functionality, and evolution of insect olfaction.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan.
| | - Kosuke Tateishi
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
| |
Collapse
|
50
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|