1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Ringlet S, Motta Z, Vandries L, Seutin V, Jehasse K, Caldinelli L, Pollegioni L, Engel D. Glycine-gated extrasynaptic NMDARs activated during glutamate spillover drive burst firing in nigral dopamine neurons. Prog Neurobiol 2025; 249:102773. [PMID: 40294743 DOI: 10.1016/j.pneurobio.2025.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Burst firing in substantia nigra pars compacta dopamine neurons is a critical biomarker temporally associated to movement initiation. This phasic change is generated by the tonic activation of NMDARs but the respective role of synaptic versus extrasynaptic NMDARs in the ignition of a burst and what is their level of activation remains unknown. Using ex vivo electrophysiological recordings from adolescent rats, we demonstrate that extrasynaptic NMDARs are the primary driver of burst firing. This pool of receptors is recruited during intense synaptic activity via spillover of glutamate and require the binding of NMDAR co-agonist glycine for full activation. Basal synaptic transmission activating only synaptic NMDARs with the support of D-serine is insufficient to generate a burst. Notably, both synaptic and extrasynaptic NMDARs share the same subunit composition but are regulated by distinct co-agonists. Location of NMDARs and regionalization of co-agonists but not NMDAR subunit composition underly burst generation and may serve as a guideline in understanding the physiological role of dopamine in signaling movement.
Collapse
Affiliation(s)
- Sofian Ringlet
- GIGA-Neurosciences, Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium; GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Zoraide Motta
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Laura Vandries
- GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Vincent Seutin
- GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Kevin Jehasse
- Montefiore Institute of Electrical Engineering and Computer Science, Systems and Modeling research unit at University of Liège, Quartier Polytech 1, allée de la Découverte 10, Liège 4000, Belgium
| | - Laura Caldinelli
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Loredano Pollegioni
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Dominique Engel
- GIGA-Neurosciences, Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium.
| |
Collapse
|
3
|
Huang X, Sun X, Wang Q, Zhang J, Wen H, Chen WJ, Zhu S. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 2025; 113:1006-1018.e4. [PMID: 40010346 DOI: 10.1016/j.neuron.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
Magnesium (Mg2+) is a key regulatory ion of N-methyl-ᴅ-aspartate (NMDA) receptors, including conferring them to function as coincidence detectors for excitatory synaptic transmission. However, the structural basis underlying the Mg2+ action on NMDA receptors remains unclear. Here, we report the cryo-EM structures of GluN1-N2B receptors and identify three distinct Mg2+-binding pockets. Specifically, site Ⅰ is located at the selectivity filter where an asparagine ring forms coordination bonds with Mg2+ and is responsible for the voltage-dependent block. Sites Ⅱ and Ⅲ are located at the N-terminal domain (NTD) of the GluN2B subunit and involved in the allosteric potentiation and inhibition, respectively. Site Ⅱ consists of three acidic residues, and the combination of three mutations abolishes the GluN2B-specific Mg2+ potentiation, while site Ⅲ overlaps with the Zn2+ pocket, and mutations here significantly reduce the inhibition. Our study enhances the understanding of multifaceted roles of Mg2+ in NMDA receptors and synaptic plasticity.
Collapse
Affiliation(s)
- Xuejing Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaole Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jilin Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Wen
- DP Technology, Beijing 100089, China; AI for Science Institute, Beijing 100085, China; State Key Laboratory of Medical Proteomics, Beijing 102206, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Manning A, Mendelson BZ, Bender PTR, Bainer K, Ruby R, Shifflett VR, Dariano DF, Webb BA, Geldenhuys WJ, Anderson CT. The Astrocytic Zinc Transporter ZIP12 Is a Synaptic Protein That Contributes to Synaptic Zinc Levels in the Mouse Auditory Cortex. J Neurosci 2025; 45:e2067242025. [PMID: 39809542 PMCID: PMC11949477 DOI: 10.1523/jneurosci.2067-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein zinc transporter 3 (ZnT3). Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses. We identify small-molecule compounds that antagonize the function of ZIP12 in heterologous expression systems, and we use one of these compounds, ZIP12 modulator 8, to increase the concentration of ZnT3-dependent zinc at synapses in the brain of male and female mice to inhibit the activity of neuronal AMPA and NMDA glutamate receptors. These results identify a cellular mechanism and provide a pharmacological toolbox to target the molecular machinery that supports the actions of synaptic zinc in the brain.
Collapse
Affiliation(s)
- Abbey Manning
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Benjamin Z Mendelson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Philip T R Bender
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Kaitlin Bainer
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Rayli Ruby
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Victoria R Shifflett
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Donald F Dariano
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Bradley A Webb
- Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Werner J Geldenhuys
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia 26506
| | - Charles T Anderson
- Departments of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| |
Collapse
|
5
|
August A, Hartmann S, Schilling S, Müller-Renno C, Begic T, Pierik AJ, Ziegler C, Kins S. Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein. Biol Chem 2024; 405:701-710. [PMID: 39425975 DOI: 10.1515/hsz-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.
Collapse
Affiliation(s)
- Alexander August
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Sabrina Hartmann
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Tarik Begic
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Antonio J Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Christiane Ziegler
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Jin F, Lin YY, Wang RC, Xie TX, Zhao Y, Shen C, Sheng D, Ichikawa M, Yu Y, Wang J, Hattori M. Cryo-EM structure of the zinc-activated channel (ZAC) in the Cys-loop receptor superfamily. Proc Natl Acad Sci U S A 2024; 121:e2405659121. [PMID: 39441630 PMCID: PMC11536092 DOI: 10.1073/pnas.2405659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cys-loop receptors are a large superfamily of pentameric ligand-gated ion channels with various physiological roles, especially in neurotransmission in the central nervous system. Among them, zinc-activated channel (ZAC) is a Zn2+-activated ion channel that is widely expressed in the human body and is conserved among eukaryotes. Due to its gating by extracellular Zn2+, ZAC has been considered a Zn2+ sensor, but it has undergone minimal structural and functional characterization since its molecular cloning. Among the families in the Cys-loop receptor superfamily, only the structure of ZAC has yet to be determined. Here, we determined the cryo-EM structure of ZAC in the apo state and performed structure-based mutation analyses. We identified a few residues in the extracellular domain whose mutations had a mild impact on Zn2+ sensitivity. The constriction site in the ion-conducting pore differs from the one in other Cys-loop receptor structures, and further mutational analysis identified a key residue that is important for ion selectivity. In summary, our work provides a structural framework for understanding the ion-conducting mechanism of ZAC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Yi-Yu Lin
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing200098, China
| | - Ru-Chun Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing200098, China
| | - Tang-Xuan Xie
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing200098, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai200438, China
- Human Phenome Institute, Fudan University, Shanghai201203, China
| | - Cheng Shen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Danqi Sheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Ye Yu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing200098, China
| | - Jin Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing200098, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
7
|
Bizup B, Tzounopoulos T. On the genesis and unique functions of zinc neuromodulation. J Neurophysiol 2024; 132:1241-1254. [PMID: 39196675 PMCID: PMC11495185 DOI: 10.1152/jn.00285.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
In addition to the essential structural and catalytic functions of zinc, evolution has adopted synaptic zinc as a neuromodulator. In the brain, synaptic zinc is released primarily from glutamatergic neurons, notably in the neocortex, hippocampus, amygdala, and auditory brainstem. In these brain areas, synaptic zinc is essential for neuronal and sensory processing fine-tuning. But what niche does zinc fill in neural signaling that other neuromodulators do not? Here, we discuss the evolutionary history of zinc as a signaling agent and its eventual adoption as an essential neuromodulator in the mammalian brain. We then attempt to describe the unique roles that zinc has carved out of the vast and diverse landscape of neuromodulators.
Collapse
Affiliation(s)
- Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
McCollum M, Manning A, Bender PTR, Mendelson BZ, Anderson CT. Cell-type-specific enhancement of deviance detection by synaptic zinc in the mouse auditory cortex. Proc Natl Acad Sci U S A 2024; 121:e2405615121. [PMID: 39312661 PMCID: PMC11459170 DOI: 10.1073/pnas.2405615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons. We find that intratelencephalic (IT) neurons in both layers 2/3 and 5 as well as corticocollicular neurons in layer 5 all demonstrate deviance detection; however, we find a specific enhancement of deviance detection in corticocollicular neurons that arises from ZnT3-dependent synaptic zinc in layer 2/3 IT neurons. Genetic deletion of ZnT3 from layer 2/3 IT neurons removes the enhancing effects of synaptic zinc on corticocollicular neuron deviance detection and results in poorer acuity of detecting deviant sounds by behaving mice.
Collapse
Affiliation(s)
- Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Abbey Manning
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Philip T. R. Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Benjamin Z. Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Charles T. Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| |
Collapse
|
9
|
Lee K, Jung Y, Vyas Y, Mills Z, McNamara L, Montgomery JM. Differential effectiveness of dietary zinc supplementation with autism-related behaviours in Shank2 knockout mice. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230230. [PMID: 38853567 PMCID: PMC11343228 DOI: 10.1098/rstb.2023.0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 06/11/2024] Open
Abstract
The family of SHANK proteins have been shown to be critical in regulating glutamatergic synaptic structure, function and plasticity. SHANK variants are also prevalent in autism spectrum disorders (ASDs), where glutamatergic synaptopathology has been shown to occur in multiple ASD mouse models. Our previous work has shown that dietary zinc in Shank3-/- and Tbr1+/- ASD mouse models can reverse or prevent ASD behavioural and synaptic deficits. Here, we have examined whether dietary zinc can influence behavioural and synaptic function in Shank2-/- mice. Our data show that dietary zinc supplementation can reverse hyperactivity and social preference behaviour in Shank2-/- mice, but it does not alter deficits in working memory. Consistent with this, at the synaptic level, deficits in NMDA/AMPA receptor-mediated transmission are also not rescued by dietary zinc. In contrast to other ASD models examined, we observed that SHANK3 protein was highly expressed at the synapses of Shank2-/- mice and that dietary zinc returned these to wild-type levels. Overall, our data show that dietary zinc has differential effectiveness in altering ASD behaviours and synaptic function across ASD mouse models even within the Shank family. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Yukti Vyas
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Zoe Mills
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura McNamara
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Manning A, Bender PTR, Boyd-Pratt H, Mendelson BZ, Hruska M, Anderson CT. Trans-synaptic Association of Vesicular Zinc Transporter 3 and Shank3 Supports Synapse-Specific Dendritic Spine Structure and Function in the Mouse Auditory Cortex. J Neurosci 2024; 44:e0619242024. [PMID: 38830758 PMCID: PMC11236586 DOI: 10.1523/jneurosci.0619-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.
Collapse
Affiliation(s)
- Abbey Manning
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Philip T R Bender
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Helen Boyd-Pratt
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
- Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Benjamin Z Mendelson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Martin Hruska
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Charles T Anderson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
11
|
Cody P, Kumar M, Tzounopoulos T. Cortical Zinc Signaling Is Necessary for Changes in Mouse Pupil Diameter That Are Evoked by Background Sounds with Different Contrasts. J Neurosci 2024; 44:e0939232024. [PMID: 38242698 PMCID: PMC10941062 DOI: 10.1523/jneurosci.0939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.
Collapse
Affiliation(s)
- Patrick Cody
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
12
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Rychlik M, Starnowska-Sokol J, Mlyniec K. Chronic memantine disrupts spatial memory and up-regulates Htr1a gene expression in the hippocampus of GPR39 (zinc-sensing receptor) KO male mice. Brain Res 2023; 1821:148577. [PMID: 37716463 DOI: 10.1016/j.brainres.2023.148577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
GPR39 is a receptor involved in zincergic neurotransmission, and its role in regulating psychological functions is an active area of research. The purported roles of GPR39 at the cellular level include regulation of inflammatory and oxidative stress response, and modulation of GABAergic and endocannabinoid neurotransmission. GPR39 knock-out (KO) mice exhibit episodic-like and spatial memory (ELM and SM, respectively) deficits throughout their lifetime, and are similar in that respect to senescent wild-type (WT) conspecifics. Since a role for zinc has been postulated in neurodegenerative disorders, in this study we investigated the possibility of a pharmacological rescue of both types of declarative memory with memantine - a noncompetitive NMDAR antagonist used for slowing down dementia; or, a putative GPR39 agonist - TC-G 1008. First, we tested adult WT and GPR39KO male mice under acute 5 mg/kg memantine or vehicle treatment in an object recognition task designed to simultaneously probe the "what?", "where?" and "when?" components of ELM. Next, we investigated the impact of chronic memantine or TC-G 1008 on ELM and SM (Morris water maze, MWM) in both WT and GPR39KO mice. Following chronic experiments, we assessed with qRT-PCR hippocampal gene expression of targets previously associated with GPR39. We report: no effects of acute memantine on ELM; a tendency to improve the "where?" component of ELM in both WT and GPR39 KO mice following 12 days of memantine; and, a disruption of SM in GPR39KO mice after 24 days of memantine treatment. The latter result was associated with upregulation of Htr1a hippocampal expression.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| | - Joanna Starnowska-Sokol
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
14
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
15
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Benarroch E. What Are the Functions of Zinc in the Nervous System? Neurology 2023; 101:714-720. [PMID: 37845046 PMCID: PMC10585682 DOI: 10.1212/wnl.0000000000207912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 10/18/2023] Open
|
17
|
Bender PTR, McCollum M, Boyd-Pratt H, Mendelson BZ, Anderson CT. Synaptic zinc potentiates AMPA receptor function in mouse auditory cortex. Cell Rep 2023; 42:112932. [PMID: 37585291 PMCID: PMC10514716 DOI: 10.1016/j.celrep.2023.112932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.
Collapse
Affiliation(s)
- Philip T R Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Helen Boyd-Pratt
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Benjamin Z Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles T Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Santos-Díaz AI, Solís-López J, Díaz-Torres E, Guadarrama-Olmos JC, Osorio B, Kroll T, Webb SM, Hiriart M, Jiménez-Estrada I, Missirlis F. Metal ion content of internal organs in the calorically restricted Wistar rat. J Trace Elem Med Biol 2023; 78:127182. [PMID: 37130496 DOI: 10.1016/j.jtemb.2023.127182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat. METHODS Inductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age. RESULTS Both sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord. CONCLUSION Severe caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.
Collapse
Affiliation(s)
- Alma I Santos-Díaz
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Elizabeth Díaz-Torres
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Beatriz Osorio
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Marcia Hiriart
- Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico.
| |
Collapse
|
19
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
20
|
Sousa MS, Alves JL, Freitas JCS, Miraldo JN, Sampaio Dos Aidos FDS, Santos RM, Rosário LM, Quinta-Ferreira RM, Quinta-Ferreira ME, Matias CM. A model of zinc dynamics evoked by intense stimulation at the cleft of hippocampal mossy fiber synapses. Brain Res 2023; 1807:148322. [PMID: 36906226 DOI: 10.1016/j.brainres.2023.148322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Zinc is a transition metal that is particularly abundant in the mossy fibers of the hippocampal CA3 area. Despite the large number of studies about the zinc role in mossy fibers, the action of zinc in synaptic mechanisms is only partly known. The use of computational models can be a useful tool for this study. In a previous work, a model was developed to evaluate zinc dynamics at the mossy fiber synaptic cleft, following weak stimulation, insufficient to evoke zinc entry into postsynaptic neurons. For intense stimulation, cleft zinc effluxes must be considered. Therefore, the initial model was extended to include postsynaptic zinc effluxes based on the Goldman-Hodgkin-Katz current equation combined with Hodgkin and Huxley conductance changes. These effluxes occur through different postsynaptic escape routes, namely L- and N-types voltage-dependent calcium channels and NMDA receptors. For that purpose, various stimulations were assumed to induce high concentrations of cleft free zinc, named as intense (10 μM), very intense (100 μM) and extreme (500 μM). It was observed that the main postsynaptic escape routes of cleft zinc are the L-type calcium channels, followed by the NMDA receptor channels and by N-type calcium channels. However, their relative contribution for cleft zinc clearance was relatively small and decreased for higher amounts of zinc, most likely due to the blockade action of zinc in postsynaptic receptors and channels. Therefore, it can be concluded that the larger the zinc release, the more predominant the zinc uptake process will be in the cleft zinc clearance.
Collapse
Affiliation(s)
- Marta S Sousa
- Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal; ESS-IPP - Superior School of Health - Polytechnic Institute of Porto, P-4200-072 Porto, Portugal; CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal
| | - João L Alves
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, P-3004-516 Coimbra, Portugal
| | | | - João N Miraldo
- Department of Civil Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - Fernando D S Sampaio Dos Aidos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal; CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Rosa M Santos
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Luís M Rosário
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - M Emília Quinta-Ferreira
- Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal; CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal
| | - Carlos M Matias
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal; Dept. of Physics, UTAD- University of Trás-os-montes and Alto Douro, P-5000-801 Vila Real, Portugal.
| |
Collapse
|
21
|
Wu T, Kumar M, Zhang J, Zhao S, Drobizhev M, McCollum M, Anderson CT, Wang Y, Pokorny A, Tian X, Zhang Y, Tzounopoulos T, Ai HW. A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn 2. SCIENCE ADVANCES 2023; 9:eadd2058. [PMID: 36857451 PMCID: PMC9977179 DOI: 10.1126/sciadv.add2058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Synaptic zinc ion (Zn2+) has emerged as a key neuromodulator in the brain. However, the lack of research tools for directly tracking synaptic Zn2+ in the brain of awake animals hinders our rigorous understanding of the physiological and pathological roles of synaptic Zn2+. In this study, we developed a genetically encoded far-red fluorescent indicator for monitoring synaptic Zn2+ dynamics in the nervous system. Our engineered far-red fluorescent indicator for synaptic Zn2+ (FRISZ) displayed a substantial Zn2+-specific turn-on response and low-micromolar affinity. We genetically anchored FRISZ to the mammalian extracellular membrane via a transmembrane (TM) ⍺ helix and characterized the resultant FRISZ-TM construct at the mammalian cell surface. We used FRISZ-TM to image synaptic Zn2+ in the auditory cortex in acute brain slices and awake mice in response to electric and sound stimuli, respectively. Thus, this study establishes a technology for studying the roles of synaptic Zn2+ in the nervous system.
Collapse
Affiliation(s)
- Tianchen Wu
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jing Zhang
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Shengyu Zhao
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717-384, USA
| | - Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles T. Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Antje Pokorny
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Jobim PFC, Iochims Dos Santos CE, Dias JF, Kelemen M, Pelicon P, Mikuš KV, Pascolo L, Gianoncelli A, Bedolla DE, Rasia-Filho AA. Human Neocortex Layer Features Evaluated by PIXE, STIM, and STXM Techniques. Biol Trace Elem Res 2023; 201:592-602. [PMID: 35258774 DOI: 10.1007/s12011-022-03182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
The human neocortex has a cytoarchitecture composed of six layers with an intrinsic organization that relates to afferent and efferent pathways for a high functional specialization. Various histological, neurochemical, and connectional techniques have been used to study these cortical layers. Here, we explore the additional possibilities of swift ion beam and synchrotron radiation techniques to distinguish cellular layers based on the elemental distributions and areal density pattern in the human neocortex. Temporal cortex samples were obtained from two neurologically normal adult men (postmortem interval: 6-12 h). A cortical area of 500 × 500 μm2 was scanned by a 3 MeV proton beam for elemental composition and areal density measurements using particle induced x-ray emission (PIXE) and scanning transmission ion microscopy (STIM), respectively. Zinc showed higher values in cortical layers II and V, which needs a critical discussion. Furthermore, the areal density decreased in regions with a higher density of pyramidal neurons in layers III and V. Scanning transmission X-ray microscopy (STXM) revealed the cellular density with higher lateral resolution than STIM, but not enough to distinguish each cortical lamination border. Our data describe the practical results of these approaches employing both X-ray and ion-beam based techniques for the human cerebral cortex and its heterogeneous layers. These results add to the potential approaches and knowledge of the human neocortical gray matter in normal tissue to develop improvements and address further studies on pathological conditions.
Collapse
Affiliation(s)
- Paulo Fernandes Costa Jobim
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | - Katarina Vogel Mikuš
- Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lorella Pascolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Diana Eva Bedolla
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Alberto Antônio Rasia-Filho
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners. J Fluoresc 2023:10.1007/s10895-022-03122-x. [PMID: 36705793 DOI: 10.1007/s10895-022-03122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10-7 M, probe 1/Zn2+; 0.420 × 10-7 M, probe 2/Co2+ and 0.304 × 10-7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.
Collapse
|
24
|
Vogler EC, Mahavongtrakul M, Sarkan K, Bohannan RC, Catuara-Solarz S, Busciglio J. Genetic removal of synaptic Zn 2+ impairs cognition, alters neurotrophic signaling and induces neuronal hyperactivity. Front Neurol 2023; 13:882635. [PMID: 36742045 PMCID: PMC9895830 DOI: 10.3389/fneur.2022.882635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AβO) at synapses correlates with synaptic loss and that AβO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AβO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AβO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.
Collapse
Affiliation(s)
- Emily C. Vogler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew Mahavongtrakul
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Kristianna Sarkan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ryan C. Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Silvina Catuara-Solarz
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
25
|
Alshawaf AJ, Alnassar SA, Al-Mohanna FA. The interplay of intracellular calcium and zinc ions in response to electric field stimulation in primary rat cortical neurons in vitro. Front Cell Neurosci 2023; 17:1118335. [PMID: 37180947 PMCID: PMC10174245 DOI: 10.3389/fncel.2023.1118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Recent pharmacological studies demonstrate a role for zinc (Zn2+) in shaping intracellular calcium (Ca2+) dynamics and vice versa in excitable cells including neurons and cardiomyocytes. Herein, we sought to examine the dynamic of intracellular release of Ca2+ and Zn2+ upon modifying excitability of primary rat cortical neurons using electric field stimulation (EFS) in vitro. We show that exposure to EFS with an intensity of 7.69 V/cm induces transient membrane hyperpolarization together with transient elevations in the cytosolic levels of Ca2+ and Zn2+ ions. The EFS-induced hyperpolarization was inhibited by prior treatment of cells with the K+ channel opener diazoxide. Chemical hyperpolarization had no apparent effect on either Ca2+ or Zn2+. The source of EFS-induced rise in Ca2+ and Zn2+ seemed to be intracellular, and that the dynamic inferred of an interplay between Ca2+ and Zn2+ ions, whereby the removal of extracellular Ca2+ augmented the release of intracellular Ca2+ and Zn2+ and caused a stronger and more sustained hyperpolarization. We demonstrate that Zn2+ is released from intracellular vesicles located in the soma, with major co-localizations in the lysosomes and endoplasmic reticulum. These studies further support the use of EFS as a tool to interrogate the kinetics of intracellular ions in response to changing membrane potential in vitro.
Collapse
Affiliation(s)
- Abdullah J. Alshawaf
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah A. Alnassar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- *Correspondence: Futwan A. Al-Mohanna,
| |
Collapse
|
26
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
27
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
28
|
Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y. Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 2022; 13:1013903. [PMID: 36419532 PMCID: PMC9676364 DOI: 10.3389/fneur.2022.1013903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 09/14/2023] Open
Abstract
The International League Against Epilepsy officially revised its classification in 2017, which amended "epileptic encephalopathy" to "developmental and epileptic encephalopathy". With the development of genetic testing technology, an increasing number of genes that cause developmental and epileptic encephalopathies are being identified. Among these, solute transporter dysfunction is part of the etiology of developmental and epileptic encephalopathies. Solute carrier transporters play an essential physiological function in the human body, and their dysfunction is associated with various human diseases. Therefore, in-depth studies of developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction can help develop new therapeutic modalities to facilitate the treatment of refractory epilepsy and improve patient prognosis. In this article, the concept of transporter protein disorders is first proposed, and nine developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction are described in detail in terms of pathogenesis, clinical manifestations, ancillary tests, and precise treatment to provide ideas for the precise treatment of epilepsy.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, China
| |
Collapse
|
29
|
Sikora J, Di Bisceglie Caballero S, Reiss D, Kieffer BL, Paoletti P, Jacob PY, Ouagazzal AM. Zn2+ inhibits spatial memory and hippocampal place cell representation through high-affinity binding to the NMDA receptor GluN2A subunit. iScience 2022; 25:105355. [DOI: 10.1016/j.isci.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
30
|
Krall R, Gale JR, Ross MM, Tzounopoulos T, Aizenman E. Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A. Neurosci Lett 2022; 790:136896. [PMID: 36202195 PMCID: PMC10153101 DOI: 10.1016/j.neulet.2022.136896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Zinc, loaded into glutamate-containing presynaptic vesicles and released into the synapse in an activity-dependent manner, modulates neurotransmission through its actions on postsynaptic targets, prominently via high-affinity inhibition of GluN2A-containing NMDA receptors. Recently, we identified a postsynaptic transport mechanism that regulates endogenous zinc inhibition of NMDARs. In this new model of zinc regulation, the postsynaptic transporter ZnT1 mediates zinc inhibition of NMDARs by binding to GluN2A. Through this interaction, ZnT1, a transporter that moves zinc from the cytoplasm to the extracellular domain, generates a zinc microdomain that modulates NMDAR-mediated neurotransmission. As ZnT1 expression is transcriptionally driven by the metal-responsive transcription factor 1 (MTF-1), we found that intracellular zinc strongly drives MTF-1 in cortical neurons in vitro and increases the number of GluN2A-ZnT1 interactions, thereby enhancing tonic zinc inhibition of NMDAR-mediated currents. Importantly, this effect is absent when the interaction between GluN2A and ZnT1 is disrupted by a cell-permeable peptide. These results suggest that zinc-regulated gene expression can dynamically regulate NMDAR-mediated synaptic processes.
Collapse
Affiliation(s)
- Rebecca Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline M Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Rychlik M, Starowicz G, Starnowska-Sokol J, Mlyniec K. The Zinc-sensing Receptor (GPR39) Modulates Declarative Memory and Age-related Hippocampal Gene Expression in Male Mice. Neuroscience 2022; 503:1-16. [PMID: 36087899 DOI: 10.1016/j.neuroscience.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
As a neuromodulator, zinc regulates synaptic plasticity, learning and memory. Synaptic zinc is also a crucial factor in the development of toxic forms of amyloid beta protein and, subsequently, of Alzheimer's dementia (AD). Therefore, efforts to pinpoint mechanisms underlying zinc-dependent cognitive functions might aid AD research, by providing potential novel targets for drugs. One of the most understudied proteins in this regard is a zinc-sensing metabotropic receptor: GPR39. In this study we investigated the impact of GPR39 knock-out (KO) on age-related memory decline in mice of both sexes, by comparing them to age-matched wild-type (WT) littermates. We also tested the effects of a GPR39 agonist (TC-G 1008) on declarative memory of old animals, and its disruption in adult mice. We observed episodic-like memory (ELM) and spatial memory (SM) deficits in male GPR39 KO mice, as well as intact procedural memory in GPR39 KO mice regardless of age and sex. ELM was also absent in old WT male mice, and all female mice regardless of their genotype. Acute application of TC-G 1008 (10 mg/kg) reversed a deficit in two of three ELM components in old WT male mice, and had no promnesic effect on consolidation interference of ELM in adult WT mice. We discuss the possible neurobiological mechanisms and the translational value of these results for potential add-on pharmacotherapy of AD aimed at the zinc-sensing receptor.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Joanna Starnowska-Sokol
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
32
|
Zhang C, Dischler A, Glover K, Qin Y. Neuronal signalling of zinc: from detection and modulation to function. Open Biol 2022; 12:220188. [PMID: 36067793 PMCID: PMC9448499 DOI: 10.1098/rsob.220188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that stabilizes protein structures and allosterically modulates a plethora of enzymes, ion channels and neurotransmitter receptors. Labile zinc (Zn2+) acts as an intracellular and intercellular signalling molecule in response to various stimuli, which is especially important in the central nervous system. Zincergic neurons, characterized by Zn2+ deposits in synaptic vesicles and presynaptic Zn2+ release, are found in the cortex, hippocampus, amygdala, olfactory bulb and spinal cord. To provide an overview of synaptic Zn2+ and intracellular Zn2+ signalling in neurons, the present paper summarizes the fluorescent sensors used to detect Zn2+ signals, the cellular mechanisms regulating the generation and buffering of Zn2+ signals, as well as the current perspectives on their pleiotropic effects on phosphorylation signalling, synapse formation, synaptic plasticity, as well as sensory and cognitive function.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Anna Dischler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Kaitlyn Glover
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
33
|
Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, Zhang X, Wang T, Guo C, Zhong M. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson’s Disease Model. Int J Mol Sci 2022; 23:ijms23148035. [PMID: 35887392 PMCID: PMC9318580 DOI: 10.3390/ijms23148035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Hehong Sun
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, China;
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang 110122, China;
| | - Xiaoyu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
- Correspondence:
| |
Collapse
|
34
|
Sauer AK, Hagmeyer S, Grabrucker AM. Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. Int J Mol Sci 2022; 23:ijms23116082. [PMID: 35682762 PMCID: PMC9181257 DOI: 10.3390/ijms23116082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have shown a clear association between early life zinc deficiency and Autism Spectrum Disorders (ASD). In line with this, mouse models have revealed prenatal zinc deficiency as a profound risk factor for neurobiological and behavioral abnormalities in the offspring reminiscent of ASD behavior. From these studies, a complex pathology emerges, with alterations in the gastrointestinal and immune system and synaptic signaling in the brain, as a major consequence of prenatal zinc deficiency. The features represent a critical link in a causal chain that leads to various neuronal dysfunctions and behavioral phenotypes observed in prenatal zinc deficient (PZD) mice and probably other mouse models for ASD. Given that the complete phenotype of PZD mice may be key to understanding how non-genetic factors can modify the clinical features and severity of autistic patients and explain the observed heterogeneity, here, we summarize published data on PZD mice. We critically review the emerging evidence that prenatal zinc deficiency is at the core of several environmental risk factors associated with ASD, being mechanistically linked to ASD-associated genetic factors. In addition, we highlight future directions and outstanding questions, including potential symptomatic, disease-modifying, and preventive treatment strategies.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Simone Hagmeyer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
35
|
Upmanyu N, Jin J, Emde HVD, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 2022; 110:1483-1497.e7. [PMID: 35263617 DOI: 10.1016/j.neuron.2022.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.
Collapse
Affiliation(s)
- Neha Upmanyu
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jialin Jin
- European Neurosciences Institute, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen 37077, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leon Bösche
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Viveka Nand Malviya
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Evi Zhuleku
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Antonio Zaccaria Politi
- Live-Cell Imaging Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dietmar Riedel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37075, Germany
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, Coimbra 3000-370, Portugal
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69028, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sivakumar Sambandan
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| |
Collapse
|
36
|
Morabito A, Zerlaut Y, Serraz B, Sala R, Paoletti P, Rebola N. Activity-dependent modulation of NMDA receptors by endogenous zinc shapes dendritic function in cortical neurons. Cell Rep 2022; 38:110415. [PMID: 35196488 PMCID: PMC8889438 DOI: 10.1016/j.celrep.2022.110415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
NMDA receptors (NMDARs) have been proposed to control single-neuron computations in vivo. However, whether specific mechanisms regulate the function of such receptors and modulate input-output transformations performed by cortical neurons under in vivo-like conditions is understudied. Here, we report that in layer 2/3 pyramidal neurons (L2/3 PNs), repeated synaptic stimulation results in an activity-dependent decrease in NMDAR function by vesicular zinc. Such a mechanism shifts the threshold for dendritic non-linearities and strongly reduces LTP. Modulation of NMDARs is cell and pathway specific, being present selectively in L2/3-L2/3 connections but absent in inputs originating from L4 neurons. Numerical simulations highlight that activity-dependent modulation of NMDARs influences dendritic computations, endowing L2/3 PN dendrites with the ability to sustain non-linear integrations constant across different regimes of synaptic activity like those found in vivo. Our results unveil vesicular zinc as an important endogenous modulator of dendritic function in cortical PNs. Vesicular zinc release downregulates function of synaptic NMDARs in cortical neurons Zinc modulation of NMDARs is activity dependent, pathway and cell specific Endogenous zinc controls dendritic non-linearities and synaptic plasticity in L2/3 PNs Modulation of NMDARs normalizes dendritic function during ongoing synaptic activity
Collapse
Affiliation(s)
- Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Yann Zerlaut
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Benjamin Serraz
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Romain Sala
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
37
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
38
|
A multimodal electrochemical approach to measure the effect of zinc on vesicular content and exocytosis in a single cell model of ischemia. QRB DISCOVERY 2021. [PMID: 37529672 PMCID: PMC10392633 DOI: 10.1017/qrd.2021.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Zinc ion is essential for normal brain function that modulates synaptic activity and neuronal plasticity and it is associated with memory formation. Zinc is considered to be a contributing factor to the pathogenesis of ischemia, but the association between zinc and ischemia on vesicular exocytosis is unclear. In this study, we used a combination of chemical analysis methods and a cell model of ischemia/reperfusion to investigate exocytotic release and vesicular content, as well as the effect of zinc alteration on vesicular exocytosis. Oxygen–glucose deprivation and reperfusion (OGDR) was used as an in vitro model of ischemia in a model cell line. Exocytotic release and vesicular storage of catecholamine content were increased following OGDR, resulting in a higher fraction of release during exocytosis. However, zinc eliminated these increases following OGDR and the fraction of release remained unchanged. Understanding the consequences of zinc accumulation on vesicular exocytosis at the early stage of OGDR should aid in the development of therapeutic strategies to reduce ischemic brain injury. As the fraction released has been suggested to be related to presynaptic plasticity, insights are gained towards deciphering ischemia related memory impairment.
Collapse
|
39
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
40
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
41
|
Zhang Y, Fang X, Ascota L, Li L, Guerra L, Vega A, Salinas A, Gonzalez A, Garza C, Tsin A, Hell JW, Ames JB. Zinc-chelating postsynaptic density-95 N-terminus impairs its palmitoyl modification. Protein Sci 2021; 30:2246-2257. [PMID: 34538002 DOI: 10.1002/pro.4187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
Chemical synaptic transmission represents the most sophisticated dynamic process and is highly regulated with optimized neurotransmitter balance. Imbalanced transmitters can lead to transmission impairments, for example, intracellular zinc accumulation is a hallmark of degenerating neurons. However, the underlying mechanisms remain elusive. Postsynaptic density protein-95 (PSD-95) is a primary postsynaptic membrane-associated protein and the major scaffolding component in the excitatory postsynaptic densities, which performs substantial functions in synaptic development and maturation. Its membrane association induced by palmitoylation contributes largely to its regulatory functions at postsynaptic sites. Unlike other structural domains in PSD-95, the N-terminal region (PSD-95NT) is flexible and interacts with various targets, which modulates its palmitoylation of two cysteines (C3/C5) and glutamate receptor distributions in postsynaptic densities. PSD-95NT contains a putative zinc-binding motif (C2H2) with undiscovered functions. This study is the first effort to investigate the interaction between Zn2+ and PSD-95NT. The NMR titration of 15 N-labeled PSD-95NT by ZnCl2 was performed and demonstrated Zn2+ binds to PSD-95NT with a binding affinity (Kd ) in the micromolar range. The zinc binding was confirmed by fluorescence and mutagenesis assays, indicating two cysteines and two histidines (H24, H28) are critical residues for the binding. These results suggested the concentration-dependent zinc binding is likely to influence PSD-95 palmitoylation since the binding site overlaps the palmitoylation sites, which was verified by the mimic PSD-95 palmitoyl modification and intact cell palmitoylation assays. This study reveals zinc as a novel modulator for PSD-95 postsynaptic membrane association by chelating its N-terminal region, indicative of its importance in postsynaptic signaling.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Xiaoqian Fang
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Luis Ascota
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Libo Li
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, China
| | - Lili Guerra
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Audrey Vega
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Amanda Salinas
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrea Gonzalez
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Claudia Garza
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrew Tsin
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
42
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
43
|
Neumaier F, Alpdogan S, Hescheler J, Schneider T. Zn2+-induced changes in Cav2.3 channel function: An electrophysiological and modeling study. J Gen Physiol 2021; 152:151872. [PMID: 32559275 PMCID: PMC7478874 DOI: 10.1085/jgp.202012585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023] Open
Abstract
Loosely bound Zn2+ ions are increasingly recognized as potential modulators of synaptic plasticity and neuronal excitability under normal and pathophysiological conditions. Cav2.3 voltage-gated Ca2+ channels are among the most sensitive targets of Zn2+ and are therefore likely to be involved in the neuromodulatory actions of endogenous Zn2+. Although histidine residues on the external side of domain I have been implicated in the effects on Cav2.3 channel gating, the exact mechanisms involved in channel modulation remain incompletely understood. Here, we use a combination of electrophysiological recordings, modification of histidine residues, and computational modeling to analyze Zn2+-induced changes in Cav2.3 channel function. Our most important findings are that multiple high- and low-affinity mechanisms contribute to the net Zn2+ action, that Zn2+ can either inhibit or stimulate Ca2+ influx through Cav2.3 channels depending on resting membrane potential, and that Zn2+ effects may persist for some time even after cessation of the Zn2+ signal. Computer simulations show that (1) most salient features of Cav2.3 channel gating in the absence of trace metals can be reproduced by an obligatory model in which activation of two voltage sensors is necessary to open the pore; and (2) most, but not all, of the effects of Zn2+ can be accounted for by assuming that Zn2+ binding to a first site is associated with an electrostatic modification and mechanical slowing of one of the voltage sensors, whereas Zn2+ binding to a second, lower-affinity site blocks the channel and modifies the opening and closing transitions. While still far from complete, our model provides a first quantitative framework for understanding Zn2+ effects on Cav2.3 channel function and a step toward the application of computational approaches for predicting the complex actions of Zn2+ on neuronal excitability.
Collapse
Affiliation(s)
- Felix Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Serdar Alpdogan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Toni Schneider
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| |
Collapse
|
44
|
Berríos-Cartagena N, Rubio-Dávila MM, Rivera-Delgado I, Feliciano-Bonilla MM, De Cardona-Juliá EA, Ortiz JG. Effects of Zinc, Mercury, or Lead on [ 3H]MK-801 and [ 3H]Fluorowillardiine Binding to Rat Synaptic Membranes. Neurochem Res 2021; 46:3159-3165. [PMID: 34370167 DOI: 10.1007/s11064-021-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Glutamate (Glu) is considered the most important excitatory amino acid neurotransmitter in the mammalian Central Nervous System. Zinc (Zn) is co-released with Glu during synaptic transmission and interacts with Glutamate receptors and transporters. We performed binding experiments using [3H]MK-801 (NMDA), and [3H]Fluorowillardine (AMPA) as ligands to study Zn-Glutamate interactions in rat cortical synaptic membranes. We also examined the effects of mercury and lead on NMDA or AMPA receptors. Zinc at 1 nM, significantly potentiates [3H]MK-801 binding. Lead inhibits [3H]MK-801 binding at micromolar concentrations. At millimolar concentrations, Hg also has a significant inhibitory effect. These effects are not reversed by Zn (1 nM). Zinc displaces the [3H]FW binding curve to the right. Lead (nM) and Hg (μM) inhibit [3H]FW binding. At certain concentrations, Zn reverses the effects of these metals on [3H]FW binding. These specific interactions serve to clarify the role of Zn, Hg, and Pb in physiological and pathological conditions.
Collapse
Affiliation(s)
- N Berríos-Cartagena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Rubio-Dávila
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - I Rivera-Delgado
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Feliciano-Bonilla
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - E A De Cardona-Juliá
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - J G Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
45
|
Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 2021; 12:4709. [PMID: 34354080 PMCID: PMC8342458 DOI: 10.1038/s41467-021-25058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Allostery represents a fundamental mechanism of biological regulation that involves long-range communication between distant protein sites. It also provides a powerful framework for novel therapeutics. NMDA receptors (NMDARs), glutamate-gated ionotropic receptors that play central roles in synapse maturation and plasticity, are prototypical allosteric machines harboring large extracellular N-terminal domains (NTDs) that provide allosteric control of key receptor properties with impact on cognition and behavior. It is commonly thought that GluN2A and GluN2B receptors, the two predominant NMDAR subtypes in the adult brain, share similar allosteric transitions. Here, combining functional and structural interrogation, we reveal that GluN2A and GluN2B receptors utilize different long-distance allosteric mechanisms involving distinct subunit-subunit interfaces and molecular rearrangements. NMDARs have thus evolved multiple levels of subunit-specific allosteric control over their transmembrane ion channel pore. Our results uncover an unsuspected diversity in NMDAR molecular mechanisms with important implications for receptor physiology and precision drug development. NMDA receptors are glutamate-gated ion channels essential for synapse maturation and plasticity. Here the authors show that GluN2A and GluN2B NMDA receptors — the two principal subtypes NMDARs in the adult CNS — operate through distinct long range allosteric mechanisms.
Collapse
Affiliation(s)
- Meilin Tian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laura Piot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Mélissa David
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shixin Ye
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, Le Kremlin-Bicêtre, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
46
|
Wang H, Lv S, Stroebel D, Zhang J, Pan Y, Huang X, Zhang X, Paoletti P, Zhu S. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron 2021; 109:2443-2456.e5. [PMID: 34186027 DOI: 10.1016/j.neuron.2021.05.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/01/2021] [Accepted: 05/25/2021] [Indexed: 02/09/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are glutamate-gated calcium-permeable ion channels that are widely implicated in synaptic transmission and plasticity. Here, we report a gallery of cryo-electron microscopy (cryo-EM) structures of the human GluN1-GluN2A NMDA receptor at an overall resolution of 4 Å in complex with distinct ligands or modulators. In the full-length context of GluN1-GluN2A receptors, we visualize the competitive antagonists bound to the ligand-binding domains (LBDs) of GluN1 and GluN2A subunits, respectively. We reveal that the binding of positive allosteric modulator shortens the distance between LBDs and the transmembrane domain (TMD), which further stretches the opening of the gate. In addition, we unexpectedly visualize the binding cavity of the "foot-in-the-door" blocker 9-aminoacridine within the LBD-TMD linker region, differing from the conventional "trapping" blocker binding site at the vestibule within the TMD. Our study provides molecular insights into the crosstalk between LBDs and TMD during channel activation, inhibition, and allosteric transition.
Collapse
Affiliation(s)
- Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Jinbao Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yijie Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejing Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
47
|
Xu Y, Barnes AP, Alkayed NJ. Role of GPR39 in Neurovascular Homeostasis and Disease. Int J Mol Sci 2021; 22:8200. [PMID: 34360964 PMCID: PMC8346997 DOI: 10.3390/ijms22158200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Anthony P. Barnes
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| |
Collapse
|
48
|
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: The quest continues. Neuropharmacology 2021; 195:108688. [PMID: 34174263 DOI: 10.1016/j.neuropharm.2021.108688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Michael G Stewart
- Dept of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
49
|
Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094724. [PMID: 33946908 PMCID: PMC8125092 DOI: 10.3390/ijms22094724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.
Collapse
|
50
|
Expression Analysis of Zinc Transporters in Nervous Tissue Cells Reveals Neuronal and Synaptic Localization of ZIP4. Int J Mol Sci 2021; 22:ijms22094511. [PMID: 33925953 PMCID: PMC8123391 DOI: 10.3390/ijms22094511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.
Collapse
|