1
|
El-Danaf RN, Kapuralin K, Rajesh R, Simon F, Drou N, Pinto-Teixeira F, Özel MN, Desplan C. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila. Nat Commun 2025; 16:698. [PMID: 39814708 PMCID: PMC11735856 DOI: 10.1038/s41467-025-56059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain. To address their origin, we used single-cell mRNA sequencing to define the transcriptome of LCN subtypes and identified lines that are expressed throughout their development. We show that LCNs originate from stem cells in four distinct brain regions exhibiting different modes of neurogenesis, including the ventral and dorsal tips of the outer proliferation center, the ventral superficial inner proliferation center and the central brain. We show that this convergence of similar neurons illustrates the complexity of generating neuronal diversity, and likely reflects the evolutionary origin of each subtype that detects a specific visual feature and might influence behaviors specific to each species.
Collapse
Affiliation(s)
- Rana Naja El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Félix Simon
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Nizar Drou
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Filipe Pinto-Teixeira
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Mehmet Neset Özel
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
4
|
Ricquebourg R, Konstantinides N. [A temporal mechanism for the generation of neuronal diversity]. Med Sci (Paris) 2024; 40:251-257. [PMID: 38520100 DOI: 10.1051/medsci/2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
One of the greatest challenges in neuroscience is to understand how a complex structure, such as the brain, is built. Spatial and temporal patternings of neuronal progenitors are responsible for the generation of most of the neuronal diversity observed in the brain. This review focuses on the temporal patterning of neuronal progenitors, i.e. the sequential expression of transcription factors that changes the capacity of stem cells to generate different neuronal types, and which is conserved in animals. Recent papers have offered a near complete understanding of the mechanism of temporal patterning in the developing visual system of Drosophila, and of how this contributes to the specification of diverse neuronal identities, which are then maintained by the sustained expression of downstream transcription factors. The insect visual system provides a unique model to study the evolution of neuronal cell types, as well as the evolution of neurodevelopmental mechanisms that generate them.
Collapse
|
5
|
El-Danaf RN, Rajesh R, Desplan C. Temporal regulation of neural diversity in Drosophila and vertebrates. Semin Cell Dev Biol 2023; 142:13-22. [PMID: 35623984 PMCID: PMC11585012 DOI: 10.1016/j.semcdb.2022.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The generation of neuronal diversity involves temporal patterning mechanisms by which a given progenitor sequentially produces multiple cell types. Several parallels are evident between the brain development programs of Drosophila and vertebrates, such as the successive emergence of specific cell types and the use of combinations of transcription factors to specify cell fates. Furthermore, cell-extrinsic cues such as hormones and signaling pathways have also been shown to be regulatory modules of temporal patterning. Recently, transcriptomic and epigenomic studies using large single-cell sequencing datasets have provided insights into the transcriptional dynamics of neurogenesis in the Drosophila and mammalian central nervous systems. We review these commonalities in the specification of neuronal identity and highlight the conserved or convergent strategies of brain development by discussing temporal patterning mechanisms found in flies and vertebrates.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Konstantinides N, Holguera I, Rossi AM, Escobar A, Dudragne L, Chen YC, Tran TN, Martínez Jaimes AM, Özel MN, Simon F, Shao Z, Tsankova NM, Fullard JF, Walldorf U, Roussos P, Desplan C. A complete temporal transcription factor series in the fly visual system. Nature 2022; 604:316-322. [PMID: 35388222 PMCID: PMC9074256 DOI: 10.1038/s41586-022-04564-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/18/2022] [Indexed: 01/17/2023]
Abstract
The brain consists of thousands of neuronal types that are generated by stem cells producing different neuronal types as they age. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs)1-6. Here we used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila optic lobe neurons. We verify that tTFs regulate the progression of the series by activating the next tTF(s) and repressing the previous one(s), and also identify more complex mechanisms of regulation. Moreover, we establish the temporal window of origin and birth order of each neuronal type in the medulla and provide evidence that these tTFs are sufficient to explain the generation of all of the neuronal diversity in this brain region. Finally, we describe the first steps of neuronal differentiation and show that these steps are conserved in humans. We find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons. This comprehensive analysis of a temporal series of tTFs in the optic lobe offers mechanistic insights into how tTF series are regulated, and how they can lead to the generation of a complete set of neurons.
Collapse
Affiliation(s)
- Nikolaos Konstantinides
- Department of Biology, New York University, New York, NY, USA.
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY, USA
| | - Anthony M Rossi
- Department of Biology, New York University, New York, NY, USA
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, USA
| | - Thinh N Tran
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | | | - Félix Simon
- Department of Biology, New York University, New York, NY, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Homburg, Germany
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, New York, NY, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
8
|
Simon F, Konstantinides N. Single-cell transcriptomics in the Drosophila visual system: Advances and perspectives on cell identity regulation, connectivity, and neuronal diversity evolution. Dev Biol 2021; 479:107-122. [PMID: 34375653 DOI: 10.1016/j.ydbio.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/10/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
The Drosophila visual system supports complex behaviors and shares many of its anatomical and molecular features with the vertebrate brain. Yet, it contains a much more manageable number of neurons and neuronal types. In addition to the extensive Drosophila genetic toolbox, this relative simplicity has allowed decades of work to yield a detailed account of its neuronal type diversity, morphology, connectivity and specification mechanisms. In the past three years, numerous studies have applied large scale single-cell transcriptomic approaches to the Drosophila visual system and have provided access to the complete gene expression profile of most neuronal types throughout development. This makes the fly visual system particularly well suited to perform detailed studies of the genetic mechanisms underlying the evolution and development of neuronal systems. Here, we highlight how these transcriptomic resources allow exploring long-standing biological questions under a new light. We first present the efforts made to characterize neuronal diversity in the Drosophila visual system and suggest ways to further improve this description. We then discuss current advances allowed by the single-cell datasets, and envisage how these datasets can be further leveraged to address fundamental questions regarding the regulation of neuronal identity, neuronal circuit development and the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Félix Simon
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Nikolaos Konstantinides
- Department of Biology, New York University, New York, NY, 10003, USA; Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR 7592, Université Paris Diderot, Paris, France.
| |
Collapse
|
9
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
10
|
Rossi AM, Desplan C. Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity. eLife 2020; 9:58880. [PMID: 32628110 PMCID: PMC7365662 DOI: 10.7554/elife.58880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Temporal patterning of neural progenitors leads to the sequential production of diverse neurons. To understand how extrinsic cues influence intrinsic temporal programs, we studied Drosophila mushroom body progenitors (neuroblasts) that sequentially produce only three neuronal types: γ, then α’β’, followed by αβ. Opposing gradients of two RNA-binding proteins Imp and Syp comprise the intrinsic temporal program. Extrinsic activin signaling regulates the production of α’β’ neurons but whether it affects the intrinsic temporal program was not known. We show that the activin ligand Myoglianin from glia regulates the temporal factor Imp in mushroom body neuroblasts. Neuroblasts missing the activin receptor Baboon have a delayed intrinsic program as Imp is higher than normal during the α’β’ temporal window, causing the loss of α’β’ neurons, a decrease in αβ neurons, and a likely increase in γ neurons, without affecting the overall number of neurons produced. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, United States
| |
Collapse
|
11
|
Myasnikova E, Spirov A. Gene regulatory networks in Drosophila early embryonic development as a model for the study of the temporal identity of neuroblasts. Biosystems 2020; 197:104192. [PMID: 32619531 DOI: 10.1016/j.biosystems.2020.104192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 11/27/2022]
Abstract
Genes belonging to the "gap" and "gap-like" family constitute the best-studied gene regulatory networks (GRNs) in Drosophila embryogenesis. Gap genes are a core of two subnetworks controlling embryonic segmentation: (hunchback, hb; Krüppel, Kr; giant, gt; and knirps, kni) and (hb; Kr; pou-domain, pdm; and, probably, castor, cas). Of particular interest is that (hb, Kr, pdm, cas) also specifies the temporal identity of stem cells, neuroblasts, in Drosophila neurogenesis. This GRN controls the sequential differentiation of neuroblasts during the asymmetric cell division. In the last decades, modeling of the patterning of gene ensemble (hb, Kr, gt, kni) in segmentation was in the center of attention. We show that our previously published and extensively studied model at a certain level of external factors is able to reproduce temporal patterns of (hb, Kr, pdm, cas) in neurogenesis with minor evolutionary explicable modifications. This result testifies in favor of a hypothesis that the similarity of two gene ensembles active in segmentation and neurogenesis is a result of co-option of the network architecture in evolution from the common ancestral form. By means of the model dynamical analysis, it is shown that the establishment of the robust patterns in both systems could be explained in terms of the action of attractors in the gap gene dynamical system. We formulate the common principles underlying the robustness of both GRNs in segmentation and neurogenesis due to the similar functional organization of the gene ensembles as having the same evolutionary origin.
Collapse
Affiliation(s)
- Ekaterina Myasnikova
- Peter the Great Saint-Petersburg Polytechnical University, 29 Politekhnicheskaya str, St. Petersburg, 195251, Russia.
| | - Alexander Spirov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, 44 Thorez Pr, St.Petersburg, 194223, Russia; Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, 1500 Stony Brook Road, Stony Brook, 11794, NY, USA
| |
Collapse
|
12
|
Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. Proc Natl Acad Sci U S A 2020; 117:5016-5027. [PMID: 32071204 DOI: 10.1073/pnas.1918628117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, neural progenitors change their competence states over time to sequentially generate different types of neurons and glia. Several cascades of temporal transcription factors (tTFs) have been discovered in Drosophila to control the temporal identity of neuroblasts, but the temporal regulation mechanism is poorly understood in vertebrates. Mammalian retinal progenitor cells (RPCs) give rise to several types of neuronal and glial cells following a sequential yet overlapping temporal order. Here, by temporal cluster analysis, RNA-sequencing analysis, and loss-of-function and gain-of-function studies, we show that the Fox domain TF Foxn4 functions as a tTF during retinogenesis to confer RPCs with the competence to generate the mid/late-early cell types: amacrine, horizontal, cone, and rod cells, while suppressing the competence of generating the immediate-early cell type: retinal ganglion cells (RGCs). In early embryonic retinas, Foxn4 inactivation causes down-regulation of photoreceptor marker genes and decreased photoreceptor generation but increased RGC production, whereas its overexpression has the opposite effect. Just as in Drosophila, Foxn4 appears to positively regulate its downstream tTF Casz1 while negatively regulating its upstream tTF Ikzf1. Moreover, retina-specific ablation of Foxn4 reveals that it may be indirectly involved in the synaptogenesis, establishment of laminar structure, visual signal transmission, and long-term maintenance of the retina. Together, our data provide evidence that Foxn4 acts as a tTF to bias RPCs toward the mid/late-early cell fates and identify a missing member of the tTF cascade that controls RPC temporal identities to ensure the generation of proper neuronal diversity in the retina.
Collapse
|
13
|
Spirov AV, Myasnikova EM. Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts. Mol Biol 2019. [DOI: 10.1134/s0026893319020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Meissner GW, Nern A, Singer RH, Wong AM, Malkesman O, Long X. Mapping Neurotransmitter Identity in the Whole-Mount Drosophila Brain Using Multiplex High-Throughput Fluorescence in Situ Hybridization. Genetics 2019; 211:473-482. [PMID: 30563859 PMCID: PMC6366916 DOI: 10.1534/genetics.118.301749] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Identifying the neurotransmitters used by specific neurons is a critical step in understanding the function of neural circuits. However, methods for the consistent and efficient detection of neurotransmitter markers remain limited. Fluorescence in situ hybridization (FISH) enables direct labeling of type-specific mRNA in neurons. Recent advances in FISH allow this technique to be carried out in intact tissue samples such as whole-mount Drosophila melanogaster brains. Here, we present a FISH platform for high-throughput detection of eight common neurotransmitter phenotypes in Drosophila brains. We greatly increase FISH throughput by processing samples mounted on coverslips and optimizing fluorophore choice for each probe to facilitate multiplexing. As application examples, we demonstrate cases of neurotransmitter coexpression, reveal neurotransmitter phenotypes of specific cell types, and explore the onset of neurotransmitter expression in the developing optic lobe. Beyond neurotransmitter markers, our protocols can in principle be used for large-scale FISH detection of any mRNA in whole-mount fly brains.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Robert H Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| |
Collapse
|
15
|
Bhaskaran N, Liu Z, Saravanamuthu SS, Yan C, Hu Y, Dong L, Zelenka P, Zheng L, Bletsos V, Harris R, Harrington B, Weinberg A, Thiele CJ, Ye F, Pandiyan P. Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Front Immunol 2018; 9:184. [PMID: 29467767 PMCID: PMC5808336 DOI: 10.3389/fimmu.2018.00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 11/17/2022] Open
Abstract
While T helper (Th) cells play a crucial role in host defense, an imbalance in Th effector subsets due to dysregulation in their differentiation and expansion contribute to inflammatory disorders. Here, we show that Casz1, whose function is previously unknown in CD4+ T cells, coordinates Th differentiation in vitro and in vivo. Casz1 deficiency in CD4+ T cells lowers susceptibility to experimental autoimmune encephalomyelitis, consistent with the reduced frequency of Th17 cells, despite an increase in Th1 cells in mice. Loss of Casz1 in the context of mucosal Candida infection severely impairs Th17 and Treg responses, and lowers the ability of the mice to clear the secondary infection. Importantly, in both the models, absence of Casz1 causes a significant diminution in IFN-γ+IL-17A+ double-positive inflammatory Th17 cells (Th1* cells) in tissues in vivo. Transcriptome analyses of CD4+ T cells lacking Casz1 show a signature consistent with defective Th17 differentiation. With regards to Th17 differentiation, Casz1 limits repressive histone marks and enables acquisition of permissive histone marks at Rorc, Il17a, Ahr, and Runx1 loci. Taken together, these data identify Casz1 as a new Th plasticity regulator having important clinical implications for autoimmune inflammation and mucosal immunity.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Senthil S. Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Chunhua Yan
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Ying Hu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Lijin Dong
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Peggy Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassili Bletsos
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Rachel Harris
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brenna Harrington
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Carol J. Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Fengchun Ye
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
16
|
Perry M, Konstantinides N, Pinto-Teixeira F, Desplan C. Generation and Evolution of Neural Cell Types and Circuits: Insights from the Drosophila Visual System. Annu Rev Genet 2017; 51:501-527. [PMID: 28961025 DOI: 10.1146/annurev-genet-120215-035312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the Drosophila visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA;
| | | | - Filipe Pinto-Teixeira
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors. Curr Biol 2017; 27:1303-1313. [PMID: 28434858 DOI: 10.1016/j.cub.2017.03.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023]
Abstract
Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.
Collapse
|
18
|
|
19
|
Narbonne-Reveau K, Lanet E, Dillard C, Foppolo S, Chen CH, Parrinello H, Rialle S, Sokol NS, Maurange C. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. eLife 2016; 5:e13463. [PMID: 27296804 PMCID: PMC4907696 DOI: 10.7554/elife.13463] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/26/2016] [Indexed: 12/30/2022] Open
Abstract
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.
Collapse
Affiliation(s)
| | - Elodie Lanet
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ching-Huan Chen
- Department of Biology, Indiana University, Bloomington, United States
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, United States
| | | |
Collapse
|
20
|
Dorr KM, Amin NM, Kuchenbrod LM, Labiner H, Charpentier MS, Pevny LH, Wessels A, Conlon FL. Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development 2015; 142:2037-47. [PMID: 25953344 DOI: 10.1242/dev.119107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/16/2015] [Indexed: 01/06/2023]
Abstract
Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields.
Collapse
Affiliation(s)
- Kerry M Dorr
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Lauren M Kuchenbrod
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Hanna Labiner
- Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Marta S Charpentier
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Larysa H Pevny
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Neuroscience Center, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Frank L Conlon
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|