1
|
Kumar A, Kumar M, Tripathi V, Prabhat A, Bhardwaj SK. Abrupt change in the timing of the day/night negatively affects sleep behaviour and cognitive performance in diurnal zebra finches. Chronobiol Int 2025:1-13. [PMID: 40405691 DOI: 10.1080/07420528.2025.2506630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/20/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
We investigated the consequence of abrupt directional shifts in the timing of light (hence darkness) period on sleep behaviour, novel object exploration and cognitive performance in diurnal zebra finches maintained under an equinox (12:12h LD) photoperiod. To two cohorts of birds (n = 80), the timing of 12 h light-on (hence of the darkness) for a week was either advanced by 6 h by reducing the dark period or delayed by 6 h by lengthening the dark period, with controls maintained on LD cycle as before. The first cohort of birds were examined for the effects on 24 h activity and feeding behaviors, while the second cohorts of birds were examined for the effects on sleep, neophobia and cognitive performance; the latter two were tested by the novel object exploration and spatial learning, respectively. The abrupt LD cycle shifts negatively affected sleep behaviour and cognition, as evidenced by behavioral and gene expression assays. There was a significant decrease in the mRNA expression levels of gene coding for the tyrosine hydroxylase (TH, the regulatory enzyme of the dopamine synthesis), cAMP response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in hippocampus and TH alone in midbrain. These results support growing evidence of negative effects on behaviour and advanced brain functions in a diurnal species exposed to abrupt shifts in 24 h LD cycles.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
| | - Mayank Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
| | - Vatsala Tripathi
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Abhilash Prabhat
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
2
|
Wu P, Zhu J, He Q, Wang Z, Shi L. Visual numerical cognition in pigeons: conformity to the Weber-Fechner law. Anim Cogn 2025; 28:39. [PMID: 40387950 PMCID: PMC12089156 DOI: 10.1007/s10071-025-01957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
As representatives of a basal bird lineage, pigeons have exhibited remarkable visual numerical cognition, comparable even to that of monkeys. Nevertheless, whether visual numerical cognition in pigeons conforms to the Weber-Fechner law remains unknown. To address this, we designed a fully automated apparatus tailored for pigeons and used it to train them to perform a delayed match-to-numerosity task. The results showed that on a linear scale, pigeons represented smaller numerosities with higher precision and larger numerosities with lower precision, exhibiting a numerical magnitude effect. When the linear scale was compressed into a logarithmic scale, this magnitude effect was offset, resulting in similar representational characteristics across different numerosities. This finding suggests that the mental number line of pigeons is logarithmic rather than linear, consistent with the Weber-Fechner law. While biological brains seek precision in representing numerical information, they must also take computational load into account. This representational strategy may be the optimal outcome of the trade-off between computational precision and computational load that biological brains have achieved through long-term evolution.
Collapse
Affiliation(s)
- Peng Wu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, 450001, China
| | - Juncai Zhu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, 450001, China
| | - Qingzhi He
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, 450001, China
| | - Zhizhong Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, 450001, China.
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, 100084, China.
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Veit W, Browning H, Garcia-Pelegrin E, Davies JR, DuBois JG, Clayton NS. Dimensions of corvid consciousness. Anim Cogn 2025; 28:35. [PMID: 40316871 PMCID: PMC12048460 DOI: 10.1007/s10071-025-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025]
Abstract
Corvids have long been a target of public fascination and of scientific attention, particularly in the study of animal minds. Using Birch et al.'s (2020) 5-dimensional framework for animal consciousness we ask what it is like to be a corvid and propose a speculative but empirically informed answer. We go on to suggest future directions for research on corvid consciousness and how it can inform ethical treatment and animal welfare legislation.
Collapse
Affiliation(s)
| | | | | | - James R Davies
- University of Cambridge, Cambridge, UK
- University of Bristol, Bristol, UK
| | | | | |
Collapse
|
4
|
Yatsuda C, Izawa EI. Sex difference of LiCl-induced feeding suppression and, autonomic and HPA axis responses in crows. Physiol Behav 2025; 293:114846. [PMID: 39961427 DOI: 10.1016/j.physbeh.2025.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Visceral sensation is crucial for feeding, emotion, and decision making in humans and non-human animals. Visceral discomforting stimulation activates stress-coping systems, such as the autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis, with varied responses and thresholds between sexes. Despite these systems working together during visceral discomfort, ANS and HPA have been separately investigated with few studies examining the co-occurrence of the ANS and HPA responses to visceral stimulations. The basic profiles of the ANS and HPA responses to visceral discomfort and sex differences in birds are poorly elucidated. This study investigated the effects of visceral stimulation via intraperitoneal injection of lithium chloride (LiCl) on feeding behavior, ANS and HPA activities, and sex differences in crows. We identified the LiCl dose that suppressed the intake of a preferred food and compared the LiCl-induced feeding suppression between sexes. Changes in heart rate variability (HRV), as a proxy of sympathetic and parasympathetic activities, and serum corticosterone (CORT) levels by LiCl injection were compared. Feeding suppression occurred at higher LiCl doses in males than in females. HRV analysis revealed that LiCl injection reduced HR and increased parasympathetic activity; however, it did not change sympathetic activity, with no sex differences in any variables. In contrast, LiCl injections at lower doses increased serum CORT levels more in males than in females. Our findings provide the first evidence of sex-specific response profiles to feeding suppression and ANS and HPA activities associated with LiCl-induced visceral discomfort in birds.
Collapse
Affiliation(s)
- Chisato Yatsuda
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Ei-Ichi Izawa
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
5
|
van Hasselt SJ, Martinez-Gonzalez D, Mekenkamp GJ, Vyssotski AL, Verhulst S, Beckers GJL, Rattenborg NC, Meerlo P. Sleep pressure causes birds to trade asymmetric sleep for symmetric sleep. Curr Biol 2025; 35:1918-1926.e3. [PMID: 40168984 DOI: 10.1016/j.cub.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
Sleep is a dangerous part of an animal's life.1,2,3 Nonetheless, following sleep loss, mammals and birds sleep longer and deeper, as reflected by increased electroencephalogram (EEG) slow-wave activity (SWA; ≈1-5 Hz spectral power) during non-rapid eye movement (NREM) sleep.4,5 Stimulating a brain region during wakefulness also causes that region to sleep deeper afterwards,6,7,8,9 indicating that NREM sleep is a local, homeostatically regulated process.10,11 Birds and some marine mammals can keep one eye open during NREM sleep,12,13 a behavior associated with lighter sleep or wakefulness in the hemisphere opposite the open eye-states called asymmetric and unihemispheric NREM sleep, respectively.13,14,15,16,17,18,19,20,21,22,23 Closure of both eyes is associated with symmetric NREM or REM sleep. Birds rely on asymmetric and unihemispheric sleep to stay safe.17,24,25 However, as sleeping deeply with only one hemisphere at a time increases the time required for both hemispheres to fulfill their need for NREM sleep, increased sleep pressure might cause birds to engage in symmetric sleep at the expense of asymmetric sleep.26,27 Using high-density EEG recordings of European jackdaws (Coloeus monedula), we investigated intra- and inter-hemispheric asymmetries during normal sleep and following sleep deprivation (SD). The proportion of asymmetric sleep was lower early in the sleep period and following SD-periods of increased sleep pressure. Our findings demonstrate a trade-off between the benefits of sleep and vigilance and indicate that a bird's utilization of asymmetric sleep is constrained by temporal dynamics in their need for sleep.
Collapse
Affiliation(s)
- Sjoerd J van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 79747 Groningen, the Netherlands
| | - Dolores Martinez-Gonzalez
- Max Planck Institute for Biological Intelligence, Avian Sleep, Eberhard-Gwinner-Straβe 5, 82319 Seewiesen, Germany
| | - Gert-Jan Mekenkamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 79747 Groningen, the Netherlands
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich, Swiss Federal Institute of Technology (ETH) Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 79747 Groningen, the Netherlands
| | - Gabriël J L Beckers
- Experimental Psychology and Helmholtz Institute, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Niels C Rattenborg
- Max Planck Institute for Biological Intelligence, Avian Sleep, Eberhard-Gwinner-Straβe 5, 82319 Seewiesen, Germany.
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 79747 Groningen, the Netherlands.
| |
Collapse
|
6
|
Gutiérrez-Ibáñez C, Němec P, Paré M, Wylie DR, Lefebvre L. How do big brains evolve? Trends Ecol Evol 2025:S0169-5347(25)00063-1. [PMID: 40251059 DOI: 10.1016/j.tree.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
In both birds and mammals, variation in brain size predominantly reflects variation in mass or volume of the pallium (neocortex) and, to a lesser extent, of the cerebellum, suggesting convergent coevolution of brains and cognition. When brain measures are based on neuron counts, however, a surprisingly different picture emerges: The number of neurons in the cerebellum surpasses those in the pallium of all mammals (including humans and other primates) and in many but not all birds studied to date. In particular, parrots and corvids, clades known for cognitive abilities that match those of primates, have brains that contain more pallial than cerebellar neurons. Birds and mammals may thus have followed different evolutionary routes of pallial-cerebellar coordination behind enhanced cognitive complexity.
Collapse
Affiliation(s)
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Paré
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Louis Lefebvre
- Department of Biology, McGill University, Montréal, QC, Canada; CREAF, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Field DJ, Burton MG, Benito J, Plateau O, Navalón G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol Lett 2025; 21:20240500. [PMID: 39837495 PMCID: PMC11750382 DOI: 10.1098/rsbl.2024.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Among the most revolutionary insights emerging from 200 years of research on dinosaurs is that the clade Dinosauria is represented by approximately 11 000 living species of birds. Although the origin of birds among dinosaurs has been reviewed extensively, recent years have witnessed tremendous progress in our understanding of the deep evolutionary origins of numerous distinctive avian anatomical systems. These advances have been enabled by exciting new fossil discoveries, leading to an ever-expanding phylogenetic framework with which to pinpoint the origins of characteristic avian features. The present review focuses on four notable avian systems whose Mesozoic evolutionary history has been greatly clarified by recent discoveries: brain, kinetic palate, pectoral girdle and postcranial skeletal pneumaticity.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - M. Grace Burton
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Olivia Plateau
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Lois-Milevicich J, Rat-Fischer L, de la Colina MA, Gómez RO, Reboreda JC, Kacelnik A. Mechanical problem solving by plush-crested jays: are tools special after all? Anim Cogn 2024; 27:82. [PMID: 39638926 PMCID: PMC11621189 DOI: 10.1007/s10071-024-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Tool use is taxonomically associated with high behavioural flexibility and innovativeness, and its prevalence is greater in primates and some bird species. This association, however, is not known to be causally determinant of tool-related competence since flexibility and innovativeness are often observed in the absence of tool use and vice versa. For this reason, it is interesting to explore whether animals that can be loosely categorized as outstanding, or 'intelligent' physical problem solvers, are also remarkable using tools innovatively, rather than tool use presenting special constraints. We investigate this problem using plush-crested jays (Cyanocorax chrysops), a corvid new to cognitive research that shows highly flexible and inquisitive behaviour in the wild and has not been reported to use tools. We tested jays in two tasks of apparent similar manipulative complexity and incentive, one involving a tool (T) and the other not (NT). In the NT task birds had to open a box with a transparent lid blocked by a latch to get a reward, whereas in the T task, they had to use a rake to pull out the reward from the box. Eight out of nine subjects succeeded in the NT task, whereas none of them learned to solve the T task. This is consistent with tool use involving dedicated competencies, rather than just high problem-solving proficiency.
Collapse
Affiliation(s)
- Jimena Lois-Milevicich
- Departamento de Ecología, Genética y Evolución & IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Lauriane Rat-Fischer
- Laboratoire Ethologie Cognition Développement, Université Paris Nanterre, Nanterre, France
| | | | - Raúl Orencio Gómez
- Departamento de Biodiversidad y Biología Experimental & CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Reboreda
- Departamento de Ecología, Genética y Evolución & IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alex Kacelnik
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Kaplan G. The evolution of social play in songbirds, parrots and cockatoos - emotional or highly complex cognitive behaviour or both? Neurosci Biobehav Rev 2024; 161:105621. [PMID: 38479604 DOI: 10.1016/j.neubiorev.2024.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 04/20/2024]
Abstract
Social play has been described in many animals. However, much of this social behaviour among birds, particularly in adults, is still relatively unexplored in terms of the environmental, psychological, and social dynamics of play. This paper provides an overview of what we know about adult social play in birds and addresses areas in which subtleties and distinctions, such as in play initiation and social organisation and its relationship to expressions of play, are considered in detail. The paper considers emotional, social, innovative, and cognitive aspects of play, then the environmental conditions and affiliative bonds, suggesting a surprisingly complex framework of criteria awaiting further research. Adult social play has so far been studied in only a small number of avian species, exclusively in those with a particularly large brain relative to body size without necessarily addressing brain functions and lateralization. When lateralization of brain function is considered, it can further illuminate a possibly significant relevance of play behaviour to the evolution of cognition, to management of emotions, and the development of sociality.
Collapse
Affiliation(s)
- Gisela Kaplan
- University of New England, Armidale, NSW, Australia.
| |
Collapse
|
10
|
Steinemer A, Simon A, Güntürkün O, Rook N. Parallel executive pallio-motor loops in the pigeon brain. J Comp Neurol 2024; 532:e25611. [PMID: 38625816 DOI: 10.1002/cne.25611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/18/2024]
Abstract
A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.
Collapse
Affiliation(s)
- Alina Steinemer
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Annika Simon
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Nimpf S, Kaplan HS, Nordmann GC, Cushion T, Keays DA. Long-term, high-resolution in vivo calcium imaging in pigeons. CELL REPORTS METHODS 2024; 4:100711. [PMID: 38382523 PMCID: PMC10921020 DOI: 10.1016/j.crmeth.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/05/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
In vivo 2-photon calcium imaging has led to fundamental advances in our understanding of sensory circuits in mammalian species. In contrast, few studies have exploited this methodology in birds, with investigators primarily relying on histological and electrophysiological techniques. Here, we report the development of in vivo 2-photon calcium imaging in awake pigeons. We show that the genetically encoded calcium indicator GCaMP6s, delivered by the adeno-associated virus rAAV2/7, allows high-quality, stable, and long-term imaging of neuronal populations at single-cell and single-dendrite resolution in the pigeon forebrain. We demonstrate the utility of our setup by investigating the processing of colors in the visual Wulst, the avian homolog of the visual cortex. We report that neurons in the Wulst are color selective and display diverse response profiles to light of different wavelengths. This technology provides a powerful tool to decipher the operating principles that underlie sensory encoding in birds.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany.
| | - Harris S Kaplan
- Harvard University, Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gregory C Nordmann
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - Thomas Cushion
- University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany; University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
12
|
Meng W. Editorial: Application and research progress of avian models in neuroscience. Front Mol Neurosci 2023; 16:1319308. [PMID: 37942300 PMCID: PMC10628669 DOI: 10.3389/fnmol.2023.1319308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
13
|
Kumar A, Prabhat A, Kumar V, Bhardwaj SK. Artificial night illumination disrupts sleep, and attenuates mood and learning in diurnal animals: evidence from behavior and gene expression studies in zebra finches. Photochem Photobiol Sci 2023; 22:2247-2257. [PMID: 37329435 DOI: 10.1007/s43630-023-00447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of an illuminated night on sleep, mood, and cognitive performance in non-seasonal diurnal zebra finches that were exposed for 6 weeks to an ecologically relevant dimly lit night (12L:12dLAN; 150 lx: 5 lx) with controls on the dark night (12L:12D; 150 lx: < 0.01 lx). Food and water were provided ad libitum. Under dLAN (dim light at night), birds showed disrupted nocturnal (frequent awakenings) and overall decreased sleep duration. They also exhibited a compromised novel object exploration, a marker of the bird's mood state, and committed more errors, took significantly longer duration to learn with low retrieval performance of the learned task when tested for a color-discrimination (learning) task under the dLAN. Further, compared to controls, there was reduced mRNA expression level of genes involved in the neurogenesis, neural plasticity (bdnf, dcx and egr1) and motivation (th, drd2, taar1 and htr2c; dopamine synthesis and signaling genes) in the brain (hippocampus (HP), nidopallium caudolaterale (NCL), and midbrain) of birds under dLAN. These results show concurrent negative behavioral and molecular neural effects of the dimly illuminated nights, and provide insights into the possible impact on sleep and mental health in diurnal species inhabiting an increasingly urbanized ecosystem.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Abhilash Prabhat
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sanjay Kumar Bhardwaj
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
14
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Hahner L, Nieder A. Costs and benefits of voluntary attention in crows. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230517. [PMID: 37593715 PMCID: PMC10427815 DOI: 10.1098/rsos.230517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Behavioural signatures of voluntary, endogenous selective attention have been found in both mammals and birds, but the relationship between performance benefits at attended and costs at unattended locations remains unclear. We trained two carrion crows (Corvus corone) on a Posner-like spatial cueing task with dissociated cue and target locations, using both highly predictive and neutral central cues to compare reaction time (RT) and detection accuracy for validly, invalidly and neutrally cued targets. We found robust RT effects of predictive cueing at varying stimulus-onset asynchronies (SOA) that resulted from both advantages at cued locations and costs at un-cued locations. Both crows showed cueing effects around 15-25 ms with an early onset at 100 ms SOA, comparable to macaques. Our results provide a direct assessment of costs and benefits of voluntary attention in a bird species. They show that crows are able to guide spatial attention using associative cues, and that the processing advantage at attended locations impairs performance at unattended locations.
Collapse
Affiliation(s)
- Linus Hahner
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Saban W, Gabay S. Contributions of Lower Structures to Higher Cognition: Towards a Dynamic Network Model. J Intell 2023; 11:121. [PMID: 37367523 DOI: 10.3390/jintelligence11060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Researchers often attribute higher cognition to the enlargement of cortical regions throughout evolution, reflecting the belief that humans sit at the top of the cognitive pyramid. Implicitly, this approach assumes that the subcortex is of secondary importance for higher-order cognition. While it is now recognized that subcortical regions can be involved in various cognitive domains, it remains unclear how they contribute to computations essential for higher-level cognitive processes such as endogenous attention and numerical cognition. Herein, we identify three models of subcortical-cortical relations in these cognitive processes: (i) subcortical regions are not involved in higher cognition; (ii) subcortical computations support elemental forms of higher cognition mainly in species without a developed cortex; and (iii) higher cognition depends on a whole-brain dynamic network, requiring integrated cortical and subcortical computations. Based on evolutionary theories and recent data, we propose the SEED hypothesis: the Subcortex is Essential for the Early Development of higher cognition. According to the five principles of the SEED hypothesis, subcortical computations are essential for the emergence of cognitive abilities that enable organisms to adapt to an ever-changing environment. We examine the implications of the SEED hypothesis from a multidisciplinary perspective to understand how the subcortex contributes to various forms of higher cognition.
Collapse
Affiliation(s)
- William Saban
- Center for Accessible Neuropsychology, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Occupational Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shai Gabay
- Department of Psychology, the Institute of Information Processing and Decision Making, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
17
|
Brea J, Clayton NS, Gerstner W. Computational models of episodic-like memory in food-caching birds. Nat Commun 2023; 14:2979. [PMID: 37221167 DOI: 10.1038/s41467-023-38570-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
Birds of the crow family adapt food-caching strategies to anticipated needs at the time of cache recovery and rely on memory of the what, where and when of previous caching events to recover their hidden food. It is unclear if this behavior can be explained by simple associative learning or if it relies on higher cognitive processes like mental time-travel. We present a computational model and propose a neural implementation of food-caching behavior. The model has hunger variables for motivational control, reward-modulated update of retrieval and caching policies and an associative neural network for remembering caching events with a memory consolidation mechanism for flexible decoding of the age of a memory. Our methodology of formalizing experimental protocols is transferable to other domains and facilitates model evaluation and experiment design. Here, we show that memory-augmented, associative reinforcement learning without mental time-travel is sufficient to explain the results of 28 behavioral experiments with food-caching birds.
Collapse
Affiliation(s)
- Johanni Brea
- School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- School of Life Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Wulfram Gerstner
- School of Computer and Communication Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Zoabi S, Andreyanov M, Heinrich R, Ron S, Carmi I, Gutfreund Y, Berlin S. A custom-made AAV1 variant (AAV1-T593K) enables efficient transduction of Japanese quail neurons in vitro and in vivo. Commun Biol 2023; 6:337. [PMID: 36977781 PMCID: PMC10050006 DOI: 10.1038/s42003-023-04712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The widespread use of rodents in neuroscience has prompted the development of optimized viral variants for transduction of brain cells, in vivo. However, many of the viruses developed are less efficient in other model organisms, with birds being among the most resistant to transduction by current viral tools. Resultantly, the use of genetically-encoded tools and methods in avian species is markedly lower than in rodents; likely holding the field back. We sought to bridge this gap by developing custom viruses towards the transduction of brain cells of the Japanese quail. We first develop a protocol for culturing primary neurons and glia from quail embryos, followed by characterization of cultures via immunostaining, single cell mRNA sequencing, patch clamp electrophysiology and calcium imaging. We then leveraged the cultures for the rapid screening of various viruses, only to find that all yielded poor to no infection of cells in vitro. However, few infected neurons were obtained by AAV1 and AAV2. Scrutiny of the sequence of the AAV receptor found in quails led us to rationally design a custom-made AAV variant (AAV1-T593K; AAV1*) that exhibits improved transduction efficiencies in vitro and in vivo (14- and five-fold, respectively). Together, we present unique culturing method, transcriptomic profiles of quail's brain cells and a custom-tailored AAV1 for transduction of quail neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shaked Ron
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Yoram Gutfreund
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
19
|
Rimawi I, Turgeman G, Avital-Cohen N, Rozenboim I, Yanai J. Parental Preconception and Pre-Hatch Exposure to a Developmental Insult Alters Offspring's Gene Expression and Epigenetic Regulations: An Avian Model. Int J Mol Sci 2023; 24:5047. [PMID: 36902484 PMCID: PMC10003510 DOI: 10.3390/ijms24055047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Parental exposure to insults was initially considered safe if stopped before conception. In the present investigation, paternal or maternal preconception exposure to the neuroteratogen chlorpyrifos was investigated in a well-controlled avian model (Fayoumi) and compared to pre-hatch exposure focusing on molecular alterations. The investigation included the analysis of several neurogenesis, neurotransmission, epigenetic and microRNA genes. A significant decrease in the vesicular acetylcholine transporter (SLC18A3) expression was detected in the female offspring in the three investigated models: paternal (57.7%, p < 0.05), maternal (36%, p < 0.05) and pre-hatch (35.6%, p < 0.05). Paternal exposure to chlorpyrifos also led to a significant increase in brain-derived neurotrophic factor (BDNF) gene expression mainly in the female offspring (27.6%, p < 0.005), while its targeting microRNA, miR-10a, was similarly decreased in both female (50.5%, p < 0.05) and male (56%, p < 0.05) offspring. Doublecortin's (DCX) targeting microRNA, miR-29a, was decreased in the offspring after maternal preconception exposure to chlorpyrifos (39.8%, p < 0.05). Finally, pre-hatch exposure to chlorpyrifos led to a significant increase in protein kinase C beta (PKCß; 44.1%, p < 0.05), methyl-CpG-binding domain protein 2 (MBD2; 44%, p < 0.01) and 3 (MBD3; 33%, p < 0.05) genes expression in the offspring. Although extensive studies are required to establish a mechanism-phenotype relationship, it should be noted that the current investigation does not include phenotype assessment in the offspring.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Nataly Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
20
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
21
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
22
|
Buniyaadi A, Prabhat A, Bhardwaj SK, Kumar V. Night melatonin levels affect cognition in diurnal animals: Molecular insights from a corvid exposed to an illuminated night environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119618. [PMID: 35714793 DOI: 10.1016/j.envpol.2022.119618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the role of nocturnal melatonin secretion in the cognitive performance of diurnal animals. An initial experiment measured the cognitive performance in Indian house crows treated for 11 days with 12 h light at 1.426 W/m2 (∼150 lux) coupled with 12 h of 0.058 W/m2 (∼6-lux) dim light at night (dLAN) or with absolute darkness (0 lux dark night, LD). dLAN treatment significantly decreased midnight melatonin levels and negatively impacted cognitive performance. Subsequently, the role of exogenous melatonin (50 μg; administered intraperitoneally half an hour before the night began) was assessed on the regulation of cognitive performance in two separate experimental cohorts of crows kept under dLAN; LD controls received vehicle. Exogenous melatonin restored its mid-night levels under dLAN at par with those under LD controls, and improved the cognitive performance, as measured in the innovative problem-solving, and spatial and pattern learning-memory efficiency tests in dLAN-treated crows. There were concurrent molecular changes in the cognition-associated brain areas, namely the hippocampus, nidopallium caudolaterale and midbrain. In particular, the expression levels of genes involved in neurogenesis and synaptic plasticity (bdnf, dcx, egr1, creb), and dopamine synthesis and signalling (th, drd1, drd2, darpp32, taar1) were restored to LD control levels in crows treated with illuminated nights and received melatonin. These results demonstrate that the maintenance of nocturnal melatonin levels is crucial for an optimal higher-order brain function in diurnal animals in the face of an environmental threat, such as light pollution.
Collapse
Affiliation(s)
- Amaan Buniyaadi
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Abhilash Prabhat
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | | | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
23
|
Blaisdell AP, Schroeder JE. Evidence for object-place binding in pigeons in a sequence-learning procedure. Learn Behav 2022; 50:405-416. [PMID: 35378692 PMCID: PMC9468098 DOI: 10.3758/s13420-022-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
We studied object-location binding in pigeons using a sequence learning procedure. A sequence of four objects was presented, one at a time at one of four locations on a touchscreen. A single peck at the object ended the trial, and food reinforcement was delivered intermittently. In Experiment 1, a between-subjects design was used to present objects, locations, or both in a regular sequence or randomly. Response time costs on nonreinforced probe tests on which object order, location order, or both were disrupted revealed sequence learning effects. Pigeons encoded location order when it was consistent, but not object order when it alone was consistent. When both were consistent, pigeons encoded both, and showed evidence of object-location binding. In Experiment 2, two groups of pigeons received training on sequences where the same object always appeared at the same location. For some pigeons a consistent sequence was used while for others sequence order was randomized. Only when sequence order was consistent was object-location binding found. These experiments are the first demonstrations of strong and lasting feature binding in pigeons and are consistent with a functional account of learning.
Collapse
Affiliation(s)
- Aaron P Blaisdell
- UCLA Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA, 90095-1563, USA.
| | - Julia E Schroeder
- UCLA Department of Psychology, University of California, 1285 Franz Hall, Los Angeles, CA, 90095-1563, USA
| |
Collapse
|
24
|
Andrews CP. On the use of body mass measures in severity assessment in laboratory passerine birds. Anim Welf 2022. [DOI: 10.7120/09627286.31.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Criteria for assessing the severity of scientific procedures in laboratory rodents include the loss of body mass. However, guidance is limited for passerine birds and application of criteria developed for mammals risks poor welfare decisions. Here, I ask whether, and how, body mass
criteria could be incorporated into laboratory welfare assessment of passerines. Passerine birds strategically adjust their body mass to minimise combined mortality risk from starvation and predation. A systematic literature review found that strategic mass changes can be sizeable (sometimes
> 10%) even over short timescales. Many aspects of a bird's current or past environment, including husbandry and experimental procedures, may alter perceived starvation or predation risks and thus drive strategic mass change via evolved mechanisms. Therefore, body mass criteria used for
rodents may be too stringent for passerines, potentially leading to over-estimated severity. Strategic mass changes might obscure those stemming from experimental interventions yet could also offer insights into whether birds perceive an intervention or altered husbandry as a threat. Mass
criteria for severity assessment should be species- and context-specific in order to balance needs for refinement and reduction. To guide the development of appropriate criteria, a future research priority is for greater data collection and sharing based on standardised routine monitoring
of mass variation under a representative range of husbandry conditions and procedures.
Collapse
Affiliation(s)
- CP Andrews
- University of Stirling, Division of Psychology, Faculty of Natural Sciences, Stirling FK9 4LA, UK
| |
Collapse
|
25
|
Sato K, Momose-Sato Y. Functional development of olfactory nerve-related neural circuits in the embryonic chick forebrain revealed by voltage-sensitive dye imaging. Eur J Neurosci 2022; 56:4914-4929. [PMID: 35920370 DOI: 10.1111/ejn.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
Multiple-site optical recordings with NK2761, a voltage-sensitive absorption dye, were applied to the embryonic chick olfactory system, and the functional development of olfactory nerve (N.I)-related neural circuits was examined in the forebrain. The stimulation of the N. I elicited neural responses in N.I-olfactory bulb (OB)-forebrain preparations at the embryonic 8-12 day (E8-E12) stages. At the E11 stage, we functionally identified two circuits projecting from the OB to the forebrain. The first circuit passed through the ventral side of the forebrain and spread in the dorso-caudal direction, while the second circuit passed through the dorsal side to the first circuit. Pharmacological experiments showed that NMDA receptor function was more significant for the transfer of sensory information in these circuits. The functional development of N.I-related circuits was investigated, and the results obtained revealed that the ventral circuit was generated earlier than the dorsal circuit. Neural responses in the ventral circuit were detected from the E9 stage in normal physiological solution and the E8 stage in Mg2+ -free solution, which activated NMDA receptor function. At the E10 stage, neural responses in the dorsal circuit were clearly recognized in addition to ventral responses. We attempted to identify possible candidates for relay nuclei in the forebrain by comparing contour line maps of the optical signal amplitude with previously reported neuroanatomical data. The present results suggest that N.I-related neural circuits from the periphery to the subpallium functionally mature earlier than those to the pallium during ontogenesis.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Inagi-shi, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
26
|
Executive Functions in Birds. BIRDS 2022. [DOI: 10.3390/birds3020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Executive functions comprise of top-down cognitive processes that exert control over information processing, from acquiring information to issuing a behavioral response. These cognitive processes of inhibition, working memory, and cognitive flexibility underpin complex cognitive skills, such as episodic memory and planning, which have been repeatedly investigated in several bird species in recent decades. Until recently, avian executive functions were studied in relatively few bird species but have gained traction in comparative cognitive research following MacLean and colleagues’ large-scale study from 2014. Therefore, in this review paper, the relevant previous findings are collected and organized to facilitate further investigations of these core cognitive processes in birds. This review can assist in integrating findings from avian and mammalian cognitive research and further the current understanding of executive functions’ significance and evolution.
Collapse
|
27
|
Age-related reduction of hemispheric asymmetry by pigeons: A behavioral and FDG-PET imaging investigation of visual discrimination. Learn Behav 2022; 50:125-139. [DOI: 10.3758/s13420-021-00507-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
|
28
|
Khvatov IA, Smirnova AA, Samuleeva MV, Ershov EV, Buinitskaya SD, Kharitonov AN. Hooded Crows (Corvus cornix) May Be Aware of Their Own Body Size. Front Psychol 2021; 12:769397. [PMID: 34975660 PMCID: PMC8716556 DOI: 10.3389/fpsyg.2021.769397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Body-awareness is one of the manifestations of self-awareness, expressed in the ability of people and animals to represent their own body physical properties. Relatively little work has been devoted to this phenomenon in comparison with the studies of the ability of self-recognition in the mirror, and most studies have been conducted on mammals and human infants. Crows are known to be “clever” birds, so we investigated whether hooded crows (Corvus cornix) may be aware of their own body size. We set up an experimental design in which the crows had to pass through one of three openings to reach the bait. In the first experiment, we studied whether crows prefer a larger hole if all the three are suitable for passage, and what other predictors influence their choice. In the second experiment, we assessed the ability of the crows to select a single passable hole out of three on the first attempt, even though the area of the former was smaller than that of the other two. The results of the first experiment suggest that when choosing among three passable holes, crows prefer those holes that require less effort from them, e.g., they do not need to crouch or make other additional movements. In the second experiment, three of the five crows reliably more often chose a single passable hole on the first try, despite its smaller size. We believe that these results suggest that hooded crows may be aware of their own body size.
Collapse
Affiliation(s)
- Ivan A. Khvatov
- Moscow Institute of Psychoanalysis, Moscow, Russia
- *Correspondence: Ivan A. Khvatov,
| | - Anna A. Smirnova
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria V. Samuleeva
- Moscow Institute of Psychoanalysis, Moscow, Russia
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Svetlana D. Buinitskaya
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N. Kharitonov
- Moscow Institute of Psychoanalysis, Moscow, Russia
- Institute of Psychology, Russian Academy of Sciences, Moscow, Russia
- Institute of Experimental Psychology, Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
29
|
Martin RJ, Martin GK, Roberts WA, Sherry DF. No evidence for future planning in Canada jays ( Perisoreus canadensis). Biol Lett 2021; 17:20210504. [PMID: 34875182 PMCID: PMC8651407 DOI: 10.1098/rsbl.2021.0504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 11/12/2022] Open
Abstract
In the past 20 years, research in animal cognition has challenged the belief that complex cognitive processes are uniquely human. At the forefront of these challenges has been research on mental time travel and future planning in jays. We tested whether Canada jays (Perisoreus canadensis) demonstrated future planning, using a procedure that has produced evidence of future planning in California scrub-jays. Future planning in this procedure is caching in locations where the bird will predictably experience a lack of food in the future. Canada jays showed no evidence of future planning in this sense and instead cached in the location where food was usually available, opposite to the behaviour described for California scrub-jays. We provide potential explanations for these differing results adding to the recent debates about the role of complex cognition in corvid caching strategies.
Collapse
Affiliation(s)
- R. Jeffrey Martin
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Advanced Facility for Avian Research, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - Glynis K. Martin
- Department of Psychology, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Advanced Facility for Avian Research, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - William A. Roberts
- Department of Psychology, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Advanced Facility for Avian Research, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - David F. Sherry
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Department of Psychology, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Advanced Facility for Avian Research, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| |
Collapse
|
30
|
Resurgent Na + currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun 2021; 12:6762. [PMID: 34799550 PMCID: PMC8604930 DOI: 10.1038/s41467-021-26521-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4's C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.
Collapse
|
31
|
Lende DH, Casper BI, Hoyt KB, Collura GL. Elements of Neuroanthropology. Front Psychol 2021; 12:509611. [PMID: 34712160 PMCID: PMC8545903 DOI: 10.3389/fpsyg.2021.509611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroanthropology is the integration of neuroscience into anthropology and aims to understand “brains in the wild.” This interdisciplinary field examines patterns of human variation in field settings and provides empirical research that complements work done in clinical and laboratory settings. Neuroanthropology often uses ethnography in combination with theories and methods from cognitive science as a way to capture how culture, mind, and brain interact. This article describes nine elements that outline how to do neuroanthropology research: (1) integrating biology and culture through neuroscience and biocultural anthropology; (2) extending focus of anthropology on what people say and do to include what people process; (3) sizing culture appropriately, from broad patterns of culture to culture in small-scale settings; (4) understanding patterns of cultural variation, in particular how culture produces patterns of shared variation; (5) considering individuals in interaction with culture, with levels of analysis that can go from biology to social structures; (6) focusing on interactive elements that bring together biological and cultural processes; (7) conceptual triangulation, which draws on anthropology, psychology, and neuroscience in conjunction with field, clinic, and laboratory; (8) critical complementarity as a way to integrate the strengths of critical scholarship with interdisciplinary work; and (9) using methodological triangulation as a way to advance interdisciplinary research. These elements are illustrated through three case studies: research on US combat veterans and how they use Brazilian Jiu Jitsu as a way to manage the transition to becoming civilians, work on human-raptor interactions to understand how and why these interactions can prove beneficial for human handlers, and adapting cue reactivity research on addiction to a field-based approach to understand how people interact with cues in naturalistic settings.
Collapse
Affiliation(s)
- Daniel H Lende
- Department of Anthropology, University of South Florida, Tampa, FL, United States
| | - Breanne I Casper
- Department of Anthropology, University of South Florida, Tampa, FL, United States
| | - Kaleigh B Hoyt
- Department of Anthropology, University of South Florida, Tampa, FL, United States
| | - Gino L Collura
- Department of Anthropology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
Flores-Santin J, Burggren WW. Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research. Front Physiol 2021; 12:712633. [PMID: 34744759 PMCID: PMC8566884 DOI: 10.3389/fphys.2021.712633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research focusing on physiological, morphological, behavioral, and other aspects of development has long depended upon the chicken (Gallus gallus domesticus) as a key animal model that is presumed to be typical of birds and generally applicable to mammals. Yet, the modern chicken in its many forms is the result of artificial selection more intense than almost any other domesticated animal. A consequence of great variation in genotype and phenotype is that some breeds have inherent aberrant physiological and morphological traits that may show up relatively early in development (e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such traits can be useful as models of specific diseases, this high degree of specialization can color general experimental results and affect their translational value. Against this background, in this review we first consider the characteristics that make an animal model attractive for developmental research (e.g., accessibility, ease of rearing, size, fecundity, development rates, genetic variation, etc.). We then explore opportunities presented by the embryo to adult continuum of alternative bird models, including quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that expanding developmental studies beyond the chicken model to include additional avian groups will both validate the chicken model as well as potentially identify even more suitable avian models for answering questions applicable to both basic biology and the human condition.
Collapse
Affiliation(s)
- Josele Flores-Santin
- Facultad de Ciencias, Biologia, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Warren W. Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas Denton, Denton, TX, United States
| |
Collapse
|
33
|
Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117083. [PMID: 33965856 DOI: 10.1016/j.envpol.2021.117083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl2) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
34
|
Amodio P, Farrar BG, Krupenye C, Ostojić L, Clayton NS. Little evidence that Eurasian jays protect their caches by responding to cues about a conspecific's desire and visual perspective. eLife 2021; 10:69647. [PMID: 34505575 PMCID: PMC8536255 DOI: 10.7554/elife.69647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Eurasian jays have been reported to protect their caches by responding to cues about either the visual perspective or current desire of an observing conspecific, similarly to other corvids. Here, we used established paradigms to test whether these birds can - like humans - integrate multiple cues about different mental states and perform an optimal response accordingly. Across five experiments, which also include replications of previous work, we found little evidence that our jays adjusted their caching behaviour in line with the visual perspective and current desire of another agent, neither by integrating these social cues nor by responding to only one type of cue independently. These results raise questions about the reliability of the previously reported effects and highlight several key issues affecting reliability in comparative cognition research.
Collapse
Affiliation(s)
- Piero Amodio
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Benjamin G Farrar
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom.,Institute for Globally Distributed Open Research and Education (IGDORE), Sweden, Sweden
| | - Christopher Krupenye
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, United States.,Department of Psychology, Durham University, Durham, United Kingdom
| | - Ljerka Ostojić
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom.,Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, Rijeka, Croatia
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Abstract
A new study employing viral targeting techniques has identified excitatory and inhibitory cell groups in the songbird auditory forebrain that exhibit properties remarkably similar to those in the mammalian cortex. This network contributes to the neural substrate mediating sophisticated cognition in birds.
Collapse
|
36
|
Rensel MA, Schlinger BA. 11ß hydroxysteroid dehydrogenases regulate circulating glucocorticoids but not central gene expression. Gen Comp Endocrinol 2021; 305:113734. [PMID: 33548254 PMCID: PMC7954975 DOI: 10.1016/j.ygcen.2021.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.
Collapse
Affiliation(s)
- Michelle A Rensel
- Institute for Society and Genetics, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E Young Drive E, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
The Evolutionary History of Brains for Numbers. Trends Cogn Sci 2021; 25:608-621. [PMID: 33926813 DOI: 10.1016/j.tics.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Humans and other animals share a number sense', an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.
Collapse
|
38
|
Abstract
Many species from diverse and often distantly related animal groups (e.g. monkeys, crows, fish and bees) have a sense of number. This means that they can assess the number of items in a set - its 'numerosity'. The brains of these phylogenetically distant species are markedly diverse. This Review examines the fundamentally different types of brains and neural mechanisms that give rise to numerical competence across the animal tree of life. Neural correlates of the number sense so far exist only for specific vertebrate species: the richest data concerning explicit and abstract number representations have been collected from the cerebral cortex of mammals, most notably human and nonhuman primates, but also from the pallium of corvid songbirds, which evolved independently of the mammalian cortex. In contrast, the neural data relating to implicit and reflexive numerical representations in amphibians and fish is limited. The neural basis of a number sense has not been explored in any protostome so far. However, promising candidate regions in the brains of insects, spiders and cephalopods - all of which are known to have number skills - are identified in this Review. A comparative neuroscientific approach will be indispensable for identifying evolutionarily stable neuronal circuits and deciphering codes that give rise to a sense of number across phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Sci Rep 2021; 11:5312. [PMID: 33674647 PMCID: PMC7935914 DOI: 10.1038/s41598-021-84274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Nithya Kuttiyarthu Veetil
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
40
|
Baciadonna L, Cornero FM, Emery NJ, Clayton NS. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn Behav 2021; 49:9-22. [PMID: 32661811 DOI: 10.3758/s13420-020-00434-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pioneering research on avian behaviour and cognitive neuroscience have highlighted that avian species, mainly corvids and parrots, have a cognitive tool kit comparable with apes and other large-brained mammals, despite conspicuous differences in their neuroarchitecture. This cognitive tool kit is driven by convergent evolution, and consists of complex processes such as casual reasoning, behavioural flexibility, imagination, and prospection. Here, we review experimental studies in corvids and parrots that tested complex cognitive processes within this tool kit. We then provide experimental examples for the potential involvement of metacognitive skills in the expression of the cognitive tool kit. We further expand the discussion of cognitive and metacognitive abilities in avian species, suggesting that an integrated assessment of these processes, together with revised and multiple tasks of mirror self-recognition, might shed light on one of the most highly debated topics in the literature-self-awareness in animals. Comparing the use of multiple assessments of self-awareness within species and across taxa will provide a more informative, richer picture of the level of consciousness in different organisms.
Collapse
Affiliation(s)
- Luigi Baciadonna
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| | - Francesca M Cornero
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Nathan J Emery
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
41
|
Kersten Y, Friedrich-Müller B, Nieder A. A histological study of the song system of the carrion crow (Corvus corone). J Comp Neurol 2021; 529:2576-2595. [PMID: 33474740 DOI: 10.1002/cne.25112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
The song system of songbirds (oscines) is one of the best studied neuroethological model systems. So far, it has been treated as a relatively constrained sensorimotor system. Songbirds such as crows, however, are also known for their capability to cognitively control their audio-vocal system. Yet, the neuroanatomy of the corvid song system has never been explored systematically. We aim to close this scientific gap by presenting a stereotactic investigation of the extended song system of the carrion crow (Corvus corone), an oscine songbird of the corvid family that has become an interesting model system for cognitive neuroscience. In order to identify and delineate the song nuclei, the ascending auditory nuclei, and the descending vocal-motor nuclei, four stains were applied. In addition to the classical Nissl-, myelin-, and a combination of Nissl-and-myelin staining, staining for tyrosine hydroxylase was used to reveal the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the song system. We show that the crow brain contains the important song-related nuclei, including auditory input and motor output structures, and map them throughout the brain. Fiber-stained sections reveal putative connection patterns between the crow's song nuclei comparable to other songbirds.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Schnell AK, Clayton NS. Cephalopods: Ambassadors for rethinking cognition. Biochem Biophys Res Commun 2021; 564:27-36. [PMID: 33390247 DOI: 10.1016/j.bbrc.2020.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
Traditional approaches in comparative cognition have a long history of focusing on a narrow range of vertebrate species. However, in recent years the range of model species has expanded. Despite this development, invertebrate taxa are still largely neglected in comparative cognition, which limits our ability to locate the origins of cognitive traits. The time has come to rethink cognition and develop a more comprehensive understanding of cognitive evolution by expanding comparative analyses to include a diverse range of invertebrate taxa. In this review, we contend that cephalopods are suitable ambassadors for rethinking cognition. Cephalopods have large complex brains, exhibit sophisticated behavioral traits, and increasing evidence suggests that they possess complex cognitive abilities once thought to be unique to large-brained vertebrates. Comparing cephalopods with vertebrates, whose cognition has evolved independently, provides prominent opportunities to circumvent current limitations in comparative cognition that have arisen from traditional vertebrate comparisons. Increased efforts in investigating the cognitive abilities of cephalopods have also led to important welfare-related improvements. These large-brained molluscs are paving the way for a more inclusive approach to investigating cognitive evolution that we hope will extend to other invertebrate taxa.
Collapse
|
43
|
Pika S, Sima MJ, Blum CR, Herrmann E, Mundry R. Ravens parallel great apes in physical and social cognitive skills. Sci Rep 2020; 10:20617. [PMID: 33303790 PMCID: PMC7728792 DOI: 10.1038/s41598-020-77060-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Human children show unique cognitive skills for dealing with the social world but their cognitive performance is paralleled by great apes in many tasks dealing with the physical world. Recent studies suggested that members of a songbird family-corvids-also evolved complex cognitive skills but a detailed understanding of the full scope of their cognition was, until now, not existent. Furthermore, relatively little is known about their cognitive development. Here, we conducted the first systematic, quantitative large-scale assessment of physical and social cognitive performance of common ravens with a special focus on development. To do so, we fine-tuned one of the most comprehensive experimental test-batteries, the Primate Cognition Test Battery (PCTB), to raven features enabling also a direct, quantitative comparison with the cognitive performance of two great ape species. Full-blown cognitive skills were already present at the age of four months with subadult ravens' cognitive performance appearing very similar to that of adult apes in tasks of physical (quantities, and causality) and social cognition (social learning, communication, and theory of mind). These unprecedented findings strengthen recent assessments of ravens' general intelligence, and aid to the growing evidence that the lack of a specific cortical architecture does not hinder advanced cognitive skills. Difficulties in certain cognitive scales further emphasize the quest to develop comparative test batteries that tap into true species rather than human specific cognitive skills, and suggest that socialization of test individuals may play a crucial role. We conclude to pay more attention to the impact of personality on cognitive output, and a currently neglected topic in Animal Cognition-the linkage between ontogeny and cognitive performance.
Collapse
Affiliation(s)
- Simone Pika
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076, Osnabrück, Germany.
- Research Group "Evolution of Communication", Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Miriam Jennifer Sima
- Research Group "Evolution of Communication", Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Christian R Blum
- Research Group "Evolution of Communication", Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Esther Herrmann
- Research Group "Human Origins of Self-Regulation", Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Psychology, Centre for Comparative and Evolutionary Psychology, University of Portsmouth, Portsmouth, UK
| | - Roger Mundry
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
44
|
Cabrera-Álvarez MJ, Clayton NS. Neural Processes Underlying Tool Use in Humans, Macaques, and Corvids. Front Psychol 2020; 11:560669. [PMID: 33117228 PMCID: PMC7561402 DOI: 10.3389/fpsyg.2020.560669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022] Open
Abstract
It was thought that tool use in animals is an adaptive specialization. Recent studies, however, have shown that some non-tool-users, such as rooks and jays, can use and manufacture tools in laboratory settings. Despite the abundant evidence of tool use in corvids, little is known about the neural mechanisms underlying tool use in this family of birds. This review summarizes the current knowledge on the neural processes underlying tool use in humans, macaques and corvids. We suggest a possible neural network for tool use in macaques and hope this might inspire research to discover a similar brain network in corvids. We hope to establish a framework to elucidate the neural mechanisms that supported the convergent evolution of tool use in birds and mammals.
Collapse
|
45
|
Košťál Ľ, Skalná Z, Pichová K. Use of cognitive bias as a welfare tool in poultry. J Anim Sci 2020; 98:S63-S79. [PMID: 32016360 PMCID: PMC7433926 DOI: 10.1093/jas/skaa039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/02/2020] [Indexed: 11/14/2022] Open
Abstract
In human psychology, the link between cognition and emotions is broadly accepted. However, the idea of using the interaction between cognition and emotions as a tool for a better understanding of animal emotions or for welfare assessment is relatively new. The first avian species used in cognitive bias tests was the European starling followed by the domestic chicken and other species. The most frequently used paradigm is the affect-induced judgment bias. There are many variations of the judgment bias tests in birds. The test itself is preceded by discrimination training. Discrimination tasks vary from visual cue discrimination, discrimination of time intervals to spatial location discrimination. During the discrimination training, birds flip or do not flip the lids of the food dishes, and their latency to approach the cues in a straight alley maze, in a two-choice arena, or different locations in spatial judgment task arena are measured. Alternately, the birds fulfill operant tasks in a Skinner box. Before or after the discrimination training phase, birds are subjected to manipulations that are hypothesized to induce positive or negative emotional states. In the last stage, birds are subjected to judgment bias tests. The assumption is that animals in a negative affective state would more likely respond to ambiguous cues, as if they predict the negative event, than animals in a more positive state. However, the results of some avian studies are inconsistent, particularly those studying the effect of environmental enrichment. In starlings, each of the three studies has supplied conflicting results. In poultry, none of the four studies demonstrated a positive effect of environmental enrichment on emotional states. Only the study using unpredictable stressors in combination with environmental complexity showed that animals kept in a more complex environment are more optimistic. Manipulation of the social environment seems to be more effective in judgment bias induction. Conflicting results could be attributable to the design of the tests, the manner of affect induction, or the data analysis. Further optimization and validation of avian cognitive bias tests could help to avoid problems such as the loss of ambiguity. New methods of attention and memory bias testing are promising. However, regardless of the abovementioned complications, a cognitive bias paradigm is a valuable tool, which can help us better understand avian emotions and assess poultry welfare.
Collapse
Affiliation(s)
- Ľubor Košťál
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Skalná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Pichová
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
46
|
Yamahachi H, Zai AT, Tachibana RO, Stepien AE, Rodrigues DI, Cavé-Lopez S, Lorenz C, Arneodo EM, Giret N, Hahnloser RHR. Undirected singing rate as a non-invasive tool for welfare monitoring in isolated male zebra finches. PLoS One 2020; 15:e0236333. [PMID: 32776943 PMCID: PMC7416931 DOI: 10.1371/journal.pone.0236333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
Research on the songbird zebra finch (Taeniopygia guttata) has advanced our behavioral, hormonal, neuronal, and genetic understanding of vocal learning. However, little is known about the impact of typical experimental manipulations on the welfare of these birds. Here we explore whether the undirected singing rate can be used as an indicator of welfare. We tested this idea by performing a post hoc analysis of singing behavior in isolated male zebra finches subjected to interactive white noise, to surgery, or to tethering. We find that the latter two experimental manipulations transiently but reliably decreased singing rates. By contraposition, we infer that a high-sustained singing rate is suggestive of successful coping or improved welfare in these experiments. Our analysis across more than 300 days of song data suggests that a singing rate above a threshold of several hundred song motifs per day implies an absence of an acute stressor or a successful coping with stress. Because singing rate can be measured in a completely automatic fashion, its observation can help to reduce experimenter bias in welfare monitoring. Because singing rate measurements are non-invasive, we expect this study to contribute to the refinement of the current welfare monitoring tools in zebra finches.
Collapse
Affiliation(s)
- Homare Yamahachi
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anja T. Zai
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ryosuke O. Tachibana
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sophie Cavé-Lopez
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Ezequiel M. Arneodo
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Żakowski W. Animal Use in Neurobiological Research. Neuroscience 2020; 433:1-10. [PMID: 32156550 DOI: 10.1016/j.neuroscience.2020.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
The fact that neurobiological research is reliant upon laboratory-reared rodents is well known. The following paper discusses this topic broadly, but also aims to highlight other species used in the study of the nervous system and the evolution of animal species usage from the end of World War II through recent investigations. Attention is drawn to the dramatic reduction in the diversity of species used in neuroscience, with a significant shift toward two species, the mouse (Mus musculus) and rat (Rattus norvegicus). Such a limitation in animal species causes many difficulties in the development of new therapies for various neuropsychiatric diseases. Based on numerous scientific publications, the advantages of using a greater diversity of species in neuroscience and the disadvantages of focusing on mice and rats are presented.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
48
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
49
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
50
|
Volitional control of vocalizations in corvid songbirds. PLoS Biol 2019; 17:e3000375. [PMID: 31454343 PMCID: PMC6711494 DOI: 10.1371/journal.pbio.3000375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Songbirds are renowned for their acoustically elaborate songs. However, it is unclear whether songbirds can cognitively control their vocal output. Here, we show that crows, songbirds of the corvid family, can be trained to exert control over their vocalizations. In a detection task, three male carrion crows rapidly learned to emit vocalizations in response to a visual cue with no inherent meaning (go trials) and to withhold vocalizations in response to another cue (catch trials). Two of these crows were then trained on a go/nogo task, with the cue colors reversed, in addition to being rewarded for withholding vocalizations to yet another cue (nogo trials). Vocalizations in response to the detection of the go cue were temporally precise and highly reliable in all three crows. Crows also quickly learned to withhold vocal output in nogo trials, showing that vocalizations were not produced by an anticipation of a food reward in correct trials. The results demonstrate that corvids can volitionally control the release and onset of their vocalizations, suggesting that songbird vocalizations are under cognitive control and can be decoupled from affective states. Songbirds are renowned for their acoustically elaborate songs, but it is unclear whether they have cognitive control over their vocal output. Using operant conditioning, this study shows that carrion crows, songbirds of the corvid family, can exert control over their vocalizations.
Collapse
|