1
|
Moreno-Rodríguez M, Bengoetxea de Tena I, Martínez-Gardeazabal J, Pereira-Castelo G, Llorente-Ovejero A, Manuel I, Rodríguez-Puertas R. Cannabinoid agonist WIN55,212-2 prevents scopolamine-induced impairment of spatial memory in rats. Eur J Pharmacol 2025; 998:177612. [PMID: 40252898 DOI: 10.1016/j.ejphar.2025.177612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
The endocannabinoid system is involved in diverse processes, like learning and memory, governed by cholinergic neurotransmission. Recent research demonstrates that in a rat model of dementia derived from basal forebrain cholinergic degeneration, WIN55,212-2, a potent cannabinoid receptor agonist, improves cognition through increased cortical choline levels. However, the effect of cannabinoids on cholinergic deficits is still under investigation. In this work, we studied the effect of this treatment in a pharmacological rat model of transient cholinergic hypofunction by the acute administration of the muscarinic antagonist, scopolamine (2 mg/kg), in spatial, recognition and aversive memory tests. Scopolamine induced memory impairment was observed in the three tests and, importantly, the cannabinoid subchronic treatment with low doses of WIN55,212-2 (0.5 mg/kg) prevented this deleterious effect in spatial memory when evaluated in Barnes maze test. Autoradiographic studies indicate that, following the WIN55,212-2 treatment, cannabinoid receptor density increased in the motor and somatosensory cortices. In layers I-V of the motor cortex, the activity of cannabinoid and muscarinic receptors also increased. These results suggest that WIN55,212-2, through the activation of cannabinoid receptors, indirectly elevates the muscarinic tone in key cortical areas for learning and memory, preventing the memory deficits induced by scopolamine specifically in spatial memory. This highlights the importance of the crosstalk between the endocannabinoid and the cholinergic system for learning and memory processes and suggest that cannabinoid agonists might be an alternative for the treatment of cognitive deficits associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Bengoetxea de Tena
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gorka Pereira-Castelo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
2
|
Handa T, Sugiyama T, Islam T, Johansen JP, Yanagawa Y, McHugh TJ, Okamoto H. The neural pathway from the superior subpart of the medial habenula to the interpeduncular nucleus suppresses anxiety. Mol Psychiatry 2025:10.1038/s41380-025-02964-8. [PMID: 40140491 DOI: 10.1038/s41380-025-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The medial habenula (MHb) and its projection target, the interpeduncular nucleus (IPN), are highly conserved throughout vertebrate evolution. The MHb-IPN pathway connects the limbic system to the brainstem, consisting of subpathways that project in a topographically organized manner, and has been implicated in the regulation of fear and anxiety. Previous studies have revealed subregion-specific functions of the cholinergic ventral MHb and a substance P (SP)-positive (SP+) subpart of the dorsal MHb (dMHb). In contrast, the dMHb also contains another subpart, a SP-negative subpart known as the 'superior part of MHb (MHbS)'. Although the MHbS has been characterized from various aspects, e.g. distinct c-Fos responses to stressful events and electrophysiological properties compared to other subregions, many of its physiological functions remain to be investigated. Here we found that dopamine receptor D3 (DRD3)-Cre mice enable the labeling of the IPN subregion that receives the MHbS projection. The Cre-expressing somata within the lateral subnucleus of the IPN (LIPN) were concentrated in its most lateral area, which we refer to as the 'lateral subregion of the LIPN (lLIPN)'. This region is characterized by the absence of SP+ axons, in contrast to the medial subregion of the LIPN (mLIPN) innervated by the SP+ axons from the dorsal MHb. Chemogenetic activation and genetically induced synaptic silencing of the DRD3-Cre+ cells reduced and enhanced anxiety-like behavior, respectively. Moreover, c-Fos expression was increased in the lLIPN under an anxiogenic environment. These findings suggest that the MHbS-lLIPN pathway is activated under anxiogenic environments to counteract anxiety.
Collapse
Affiliation(s)
- Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Molecular Neuroscience, Medical Research Institute, Institute of Science Tokyo (formerly Tokyo Medical and Dental University), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-15 Showacho, Maebashi, Gunma, 371-8511, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN CBS-Kao Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8489, Japan.
- Institute of Neuropsychiatry, 91 Bentencho, Shinjuku, Tokyo, 162-0851, Japan.
| |
Collapse
|
3
|
Patel C, Patel R, Kesharwani A, Rao L, Jain NS. Central cholinergic transmission modulates endocannabinoid-induced marble-burying behavior in mice. Behav Brain Res 2025; 476:115252. [PMID: 39278464 DOI: 10.1016/j.bbr.2024.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Central cholinergic system and endocannabinoid, anandamide exhibits anti-compulsive-like behavior in mice. However, the role of the central cholinergic system in the anandamide-induced anti-compulsive-like behavior is still unexplored. Therefore, the present study assessed the role of central cholinergic transmission in the anandamide-induced anti-compulsive activity using a marble-burying behavior (MBB) model in mice. The modulation in the anandamide-induced effect on MBB was evaluated using mice with altered central cholinergic transmission achieved by pretreatment (i.c.v.) with various cholinergic agents like acetylcholine (ACh), acetylcholinesterase inhibitor (AChEI), neostigmine, nicotine, mAChR antagonist, atropine, and nAChR antagonist, mecamylamine. The influence of anandamide treatment on the brain AChE activity was also evaluated. The results revealed that i.c.v. injection of anandamide (10, 20 µg/mouse, i.c.v.) dose-dependently reduced MBB in mice. Moreover, anandamide in all the tested doses inhibited the brain AChE activity indicating the role of an enhanced central cholinergic transmission in its anti-compulsive-like effect . Furthermore, the anti-compulsive-like effect of anandamide (20 µg/mouse, i.c.v.) was found to be enhanced in mice centrally pre-treated with, ACh (0.1 µg/mouse, i.c.v.) or AChEI, neostigmine (0.3 µg/mouse, i.c.v.). In addition, the anandamide-induced anti-compulsive-like effect was significantly increased in mice pre-treated with a low dose of nicotine (0.1 µg/mouse, i.c.v.) while, it was attenuated by the higher dose of nicotine (2 µg/mouse, i.c.v.). On the other hand, the anandamide (20 µg/mouse, i.c.v.) induced anti-compulsive-like effect was found to be diminished in mice pre-treated with mAChR antagonist, atropine (0.1, 0.5 µg/mouse, i.c.v.) and pre-injection of nAChR antagonist, mecamylamine (0.1, 0.5 µg/mouse, i.c.v.) potentiated the anandamide induced anti-compulsive-like response in mice. Thus, the present investigation delineates the modulatory role of an enhanced central cholinergic transmission in the anandamide-induced anti-compulsive-like behavior in mice by inhibition of brain AChE or via muscarinic and nicotinic receptors mediated mechanism.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Anuradha Kesharwani
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Laxmi Rao
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
4
|
Stinson HE, Ninan I. GABA B receptor-mediated potentiation of ventral medial habenula glutamatergic transmission in GABAergic and glutamatergic interpeduncular nucleus neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631193. [PMID: 39803438 PMCID: PMC11722340 DOI: 10.1101/2025.01.03.631193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.e., an enhancement of synaptic transmission upon activation of GABAB receptors. This GABAB receptor-mediated potentiation of ventral MHb-IPN synaptic transmission has been implicated in regulating fear memory. Although IPN is known to contain parvalbumin (PV) and somatostatin (SST) GABAergic neurons and vesicular glutamate transporter 3 (VGLUT3)-expressing neurons, it is unknown how GABAB receptor activation affects ventral MHb-mediated glutamatergic transmission onto these three subtypes of IPN neurons. Our studies show robust glutamatergic connectivity from ventral MHb to PV and SST neurons in the IPN, while the ventral MHb-mediated glutamatergic transmission in IPN VGLUT3 neurons is weak. Although activation of GABAB receptors produces a robust potentiation of ventral MHb-mediated glutamatergic transmission in PV neurons, we observed a modest effect in IPN SST neurons. Despite the diminished basal synaptic transmission between ventral MHb and IPN VGLUT3 neurons, activation of GABAB receptors causes transient conversion of non-responding ventral MHb synapses into active synapses in some IPN VGLUT3 neurons. Thus, our results show strong ventral MHb connectivity to GABAergic IPN neurons compared to VGLUT3-expressing IPN neurons. Furthermore, GABAB receptor activation produces a differential effect on ventral MHb-mediated glutamatergic transmission onto PV, SST, and VGLUT3 neurons in the IPN.
Collapse
Affiliation(s)
- Hannah E. Stinson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ipe Ninan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
5
|
Roy N, Ogawa S, Tsuda S, Parhar IS. GPR139 agonist and antagonist differentially regulate retrieval and consolidation of fear memory in the zebrafish. Front Neurosci 2024; 18:1461148. [PMID: 39717703 PMCID: PMC11665214 DOI: 10.3389/fnins.2024.1461148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
G protein-coupled receptor 139 (GPR139), a highly conserved orphan receptor, is predominantly expressed in the habenula of vertebrate species. Habenula is an ancient epithalamic structure, which is critical to comprehending adaptive behaviors in vertebrates. We have previously demonstrated the role of GPR139 agonists in fear-associated decision-making processes in zebrafish. However, how GPR139 signaling in the habenula modulates such adaptive behavioral responses remains unsolved. Fish centrally administered with a synthetic antagonist for human GPR139 (NCRW0005-F05) exhibited significant suppression of odorant cue (alarm substance, AS)-induced fear learning in the conditioned place avoidance paradigm. On the other hand, co-treatment with a GPR139 antagonist and a synthetic agonist for human GPR139 (JNJ-63533054) interrupted the fear conditioning process by significantly reducing locomotion during post-conditioning. Calcium imaging of acute brain slices showed a significant increase in peak amplitude of calcium transients in the habenula upon bath application of either a GPR139 antagonist or agonist. Furthermore, KCl-evoked calcium transients were reduced by the GPR139 antagonist and co-treatment of the GPR139 antagonist-agonist. These results suggest that the GPR139 antagonist did not block the inhibitory action of the GPR139 agonist in the decision-making process during the fear-retrieval phase; however, solitarily, it functions in governing the fear consolidation process via activation of the ventral habenula neurons in zebrafish.
Collapse
Affiliation(s)
- Nisa Roy
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sachiko Tsuda
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ishwar S. Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
6
|
Yin XS, Chen BR, Ye XC, Wang Y. Modulating the Pronociceptive Effect of Sleep Deprivation: A Possible Role for Cholinergic Neurons in the Medial Habenula. Neurosci Bull 2024; 40:1811-1825. [PMID: 39158824 PMCID: PMC11625038 DOI: 10.1007/s12264-024-01281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/22/2024] [Indexed: 08/20/2024] Open
Abstract
Sleep deprivation has been shown to exacerbate pain sensitivity and may contribute to the onset of chronic pain, yet the precise neural mechanisms underlying this association remain elusive. In our study, we explored the contribution of cholinergic neurons within the medial habenula (MHb) to hyperalgesia induced by sleep deprivation in rats. Our findings indicate that the activity of MHb cholinergic neurons diminishes during sleep deprivation and that chemogenetic stimulation of these neurons can mitigate the results. Interestingly, we did not find a direct response of MHb cholinergic neurons to pain stimulation. Further investigation identified the interpeduncular nucleus (IPN) and the paraventricular nucleus of the thalamus (PVT) as key players in the pro-nociceptive effect of sleep deprivation. Stimulating the pathways connecting the MHb to the IPN and PVT alleviated the hyperalgesia. These results underscore the important role of MHb cholinergic neurons in modulating pain sensitivity linked to sleep deprivation, highlighting potential neural targets for mitigating sleep deprivation-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100730, China
| | - Bai-Rong Chen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Xi-Chun Ye
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Liang J, Zhou Y, Feng Q, Zhou Y, Jiang T, Ren M, Jia X, Gong H, Di R, Jiao P, Luo M. A brainstem circuit amplifies aversion. Neuron 2024; 112:3634-3650.e5. [PMID: 39270652 DOI: 10.1016/j.neuron.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors. IPN GABA neurons are activated by aversive stimuli and their predicting cues, with their response intensity closely tracking aversive values. Activating these neurons does not trigger aversive behavior on its own but rather amplifies responses to aversive stimuli, whereas their ablation or inhibition suppresses such responses. Detailed circuit dissection revealed anatomically distinct subgroups within the IPN GABA neuron population, highlighting the NI-projecting subgroup as the modulator of aversiveness related to fear and opioid withdrawal. These findings unveil the IPN-NI circuit as an aversion amplifier and suggest potential targets for interventions against affective disorders and opioid relapse.
Collapse
Affiliation(s)
- Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yu Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China.
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Miao Ren
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Peijie Jiao
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing 102206, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China.
| |
Collapse
|
8
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
9
|
De Filippo R, Schmitz D. Transcriptomic mapping of the 5-HT receptor landscape. PATTERNS (NEW YORK, N.Y.) 2024; 5:101048. [PMID: 39569210 PMCID: PMC11574285 DOI: 10.1016/j.patter.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 11/22/2024]
Abstract
Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study presents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across ≈4 million cells in the adult mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed differential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell dimension. Leveraging a multiplexed error-robust fluorescence in situ hybridization (MERFISH) dataset provided by Harvard University of ≈10 million cells, we analyzed the spatial distribution of each Htr, confirming previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we provide an online interactive visualizer.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
10
|
Molas S, Williams E, Snively L, O'Meara B, Jacobs H, Kolb M, Zhao-Shea R, Baratta M, Tapper A. Interpeduncular GABAergic neuron function controls threat processing and innate defensive adaptive learning. RESEARCH SQUARE 2024:rs.3.rs-4661779. [PMID: 39372946 PMCID: PMC11451651 DOI: 10.21203/rs.3.rs-4661779/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The selection of appropriate defensive behaviors in the face of potential threat is fundamental to survival. However, after repeated exposures to threatening stimuli that did not signal real danger, an animal must learn to adjust and optimize defensive behaviors. Despite extensive research on innate threat processing, little is known how individuals change their defensive behaviors when presented with recurrent threat exposures without evidence of a real risk. Insight into this process is critical as its dysregulation may contribute to neuropsychiatric conditions, such as anxiety disorders. Here, we used the visual looming stimulus (VLS) paradigm in mice to investigate innate threat processing and adaptive defensive learning. Repeated exposure to VLS over consecutive sessions reduced immediate freezing responses and time spent inside a sheltered area upon VLS events, leading to an increase in foraging behaviors. Fiber photometry recordings and optogenetic manipulations revealed that VLS innate adaptive defensive learning is associated with reduced recruitment of the midbrain interpeduncular nucleus (IPN), a structure associated with fear and anxiety-related behaviors. Functional circuit-mapping identified a role for select IPN projections to the laterodorsal tegmental nucleus in gating defensive learning. Finally, we uncovered a subpopulation of IPN neurons that express the neuropeptide somatostatin and encode safety- and avoidance signals in response to VLS. These results identify critical behavioral signatures of innate defensive responses and a circuit that regulates the essential features of threat processing.
Collapse
|
11
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
12
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
13
|
Han Y, Dong Q, Peng J, Li B, Sun C, Ma C. Laminar Distribution of Cannabinoid Receptor 1 in the Prefrontal Cortex of Nonhuman Primates. Mol Neurobiol 2024; 61:1-12. [PMID: 38062346 DOI: 10.1007/s12035-023-03828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/23/2023] [Indexed: 07/11/2024]
Abstract
Cannabis is an annual herb of the genus Cannabis, with a history of medical use going back thousands of years. However, its abuse causes many side-effects, including confusion of consciousness, alienation, and mental disorders such as schizophrenia and depression. Research conducted on rodents suggests that there are two types of cannabinoid receptors-cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is found mostly in the central nervous system, particularly in the prefrontal cortex (PFC), and alterations in its expression in the PFC have been strongly linked to mental disorders. Within the layers of the PFC, Brodmann area 46 is associated with the processing of complex cognitive information. However, it remains unclear whether CB1R is expressed in the PFC 46 area of non-human primate. In this work, we applied western blotting along with immunofluorescent histochemical staining to investigate the distribution pattern of CB1R in the PFC of nonhuman primate, Our findings reveal that CB1R is highly expressed in the monkey PFC, especially in area 46. Furthermore, CB1R exhibits a layered distribution pattern within area 46 of the PFC, with the inner granular layer displaying the highest expression levels. Additionally, CB1R+PV+ cells are widely distributed in lay II-VI of area 46, with layer IV showing notable prevalence. In conclusion, CB1R is distributed in the PV interneurons in area 46 of the prefrontal cortex, particularly in layer IV, suggesting that cannabis may modulate PFC activities via regulating interneuron in the PFC. And cannabis-induced side effects may be caused by abnormal expression of CB1R.
Collapse
Affiliation(s)
- Yingying Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qianyu Dong
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Baoming Li
- Department of Physiology and Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chong Sun
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
14
|
Molas S, Freels TG, Zhao-Shea R, Lee T, Gimenez-Gomez P, Barbini M, Martin GE, Tapper AR. Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit. Nat Commun 2024; 15:2891. [PMID: 38570514 PMCID: PMC10991551 DOI: 10.1038/s41467-024-47255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
- Institute for Behavioral Genetics, University of Colorado Boulder 1480 30th St, Boulder, 80303, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder 1905 Colorado Ave, Boulder, 80309, CO, USA.
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Timothy Lee
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Melanie Barbini
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Gilles E Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
| |
Collapse
|
15
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
16
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Molas S, Zhao-Shea R, Freels TG, Tapper AR. Viral Tracing Confirms Paranigral Ventral Tegmental Area Dopaminergic Inputs to the Interpeduncular Nucleus Where Dopamine Release Encodes Motivated Exploration. eNeuro 2023; 10:ENEURO.0282-22.2022. [PMID: 36599671 PMCID: PMC9840383 DOI: 10.1523/eneuro.0282-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent data indicate that VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive signaling, salience, and novelty, based in part on anatomic location and projection, highlighting a need to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and familiarity, has recently come into question. To verify the existence of this circuit, we combined presynaptic targeted and retrograde viral tracing in the dopamine transporter-Cre mouse line. Consistent with previous reports, synaptic tracing revealed that axon terminals from the VTA innervate the caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral region, project to the nucleus accumbens shell, as well as the IPN. To test whether functional DAergic neurotransmission exists in the IPN, we expressed the genetically encoded DA sensor, dLight 1.2, in the IPN of C57BL/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but not familiar conspecific and during exploration of the anxiogenic open arms of the elevated plus maze. Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in encoding motivated exploration.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
19
|
Zhou R, Wang G, Li Q, Meng F, Liu C, Gan R, Ju D, Liao M, Xu J, Sang D, Gao X, Zhou S, Wu K, Sun Q, Guo Y, Wu C, Chen Z, Chen L, Shi B, Wang H, Wang X, Li H, Cai T, Li B, Wang F, Funato H, Yanagisawa M, Zhang EE, Liu Q. A signalling pathway for transcriptional regulation of sleep amount in mice. Nature 2022; 612:519-527. [PMID: 36477534 DOI: 10.1038/s41586-022-05510-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.
Collapse
Affiliation(s)
- Rui Zhou
- College of Biological Sciences, China Agriculture University, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Guodong Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Fanxi Meng
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Can Liu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Gan
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Meimei Liao
- College of Biological Sciences, China Agriculture University, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Junjie Xu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Di Sang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Gao
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kejia Wu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Quanzhi Sun
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Zhiyu Chen
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Haiyan Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Xia Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Huaiye Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Bin Li
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing (NIBS), Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
20
|
Allain F, Carter M, Dumas S, Darcq E, Kieffer BL. The mu opioid receptor and the orphan receptor GPR151 contribute to social reward in the habenula. Sci Rep 2022; 12:20234. [PMID: 36424418 PMCID: PMC9691715 DOI: 10.1038/s41598-022-24395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The mu opioid receptor (MOR) and the orphan GPR151 receptor are inhibitory G protein coupled receptors that are enriched in the habenula, a small brain region involved in aversion processing, addiction and mood disorders. While MOR expression in the brain is widespread, GPR151 expression is restricted to the habenula. In a previous report, we created conditional ChrnB4-Cre × Oprm1fl/fl (so-called B4MOR) mice, where MORs are deleted specifically in Chrnb4-positive neurons restricted to the habenula, and shown a role for these receptors in naloxone aversion. Here we characterized the implication of habenular MORs in social behaviors. B4MOR-/- mice and B4MOR+/+ mice were compared in several social behavior measures, including the chronic social stress defeat (CSDS) paradigm, the social preference (SP) test and social conditioned place preference (sCPP). In the CSDS, B4MOR-/- mice showed lower preference for the social target (unfamiliar mouse of a different strain) at baseline, providing a first indication of deficient social interactions in mice lacking habenular MORs. In the SP test, B4MOR-/- mice further showed reduced sociability for an unfamiliar conspecific mouse. In the sCPP, B4MOR-/- mice also showed impaired place preference for their previous familiar littermates after social isolation. We next created and tested Gpr151-/- mice in the SP test, and also found reduced social preference compared to Gpr151+/+ mice. Altogether our results support the underexplored notion that the habenula regulates social behaviors. Also, our data suggest that the inhibitory habenular MOR and GPR151 receptors normally promote social reward, possibly by dampening the aversive habenula activity.
Collapse
Affiliation(s)
- Florence Allain
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France
| | - Michelle Carter
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
| | | | - Emmanuel Darcq
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France
| | - Brigitte L Kieffer
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada.
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France.
| |
Collapse
|
21
|
Li X, Zhao G, Huang H, Ye J, Xu J, Zhou Y, Zhu X, Wang L, Wang F. Lifespan changes in cannabinoid 1 receptor mRNA expression in the female C57BL/6J mouse brain. J Comp Neurol 2022; 531:294-313. [PMID: 36240125 DOI: 10.1002/cne.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Many brain functions that underlie behavior, cognition, and emotions vary with age, as does susceptibility to neuropsychological disorders. The expression of specific genes that are involved in these functions, such as the genes encoding for oxytocin, its receptors, and apolipoprotein D, varies with age across different brain regions. The cannabinoid 1 receptor (CB1 R) is one of the most widely spread G-protein coupled receptors in the central nervous system and is increasingly recognized for its important contribution to various brain functions. Although changes in CB1 R expression with age have been reported in the male mouse brain, they have not been well investigated in the female brain. Here, we used fluorescence in situ hybridization to target CB1 R mRNA in the whole brains of female C57BL/6J mice aged 4, 6, 12, 52 (12 months) and 86 weeks (20 months), and quantified CB1 R-positive cells in 36 brain regions across the whole brain. The results showed that CB1 R-positive cells number changed with age. Specifically, CB1 R expression increased with age in some subregions of the cortex, decreased with age in the lateral septal area, and reached its lowest level at 52 weeks in the thalamus, hypothalamus, and hindbrain subregions. Cluster analysis revealed that some brain regions shared similar temporal characteristics in CB1 R-positive cell number across the lifespan. Our results provide evidence that investigation of the neural basis of age-related characteristics of female brain functions is not only warranted but required.
Collapse
Affiliation(s)
- Xulin Li
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
22
|
Bailly J, Allain F, Schwartz E, Tirel C, Dupuy C, Petit F, Diana MA, Darcq E, Kieffer BL. Habenular Neurons Expressing Mu Opioid Receptors Promote Negative Affect in a Projection-Specific Manner. Biol Psychiatry 2022:S0006-3223(22)01594-3. [PMID: 36496267 PMCID: PMC10027626 DOI: 10.1016/j.biopsych.2022.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The mu opioid receptor (MOR) is central to hedonic balance and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, notably the habenula (Hb), where the receptor is highly dense. Our previous data suggest that the inhibitory activity of MOR in the Hb may limit aversive states. To investigate this hypothesis, we tested whether neurons expressing MOR in the Hb (Hb-MOR neurons) promote negative affect. METHODS Using Oprm1-Cre knockin mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of Hb-MOR neuron stimulation for approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze, and marble burying), and despair-like behavior (tail suspension). RESULTS Optostimulation of Hb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus, Hb-MOR neurons project to the dorsal raphe nucleus. Optostimulation of Hb-MOR/interpeduncular nucleus terminals triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of Hb-MOR/dorsal raphe nucleus terminals increased levels of anxiety with no effect on other behaviors, revealing 2 dissociable pathways controlling negative affect. CONCLUSIONS Together, the data demonstrate that Hb neurons expressing MOR facilitate aversive states via 2 distinct Hb circuits, contributing to despair-like behavior (Hb-MOR/interpeduncular nucleus) and anxiety (Hb-MOR/dorsal raphe nucleus). The findings support the notion that inhibition of these neurons by either endogenous or exogenous opioids may relieve negative affect, a mechanism that would have implications for hedonic homeostasis and addiction.
Collapse
Affiliation(s)
- Julie Bailly
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Allain
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Eric Schwartz
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chloé Tirel
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Charles Dupuy
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Petit
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Marco A Diana
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
23
|
Koukouli F, Montmerle M, Aguirre A, De Brito Van Velze M, Peixoto J, Choudhary V, Varilh M, Julio-Kalajzic F, Allene C, Mendéz P, Zerlaut Y, Marsicano G, Schlüter OM, Rebola N, Bacci A, Lourenço J. Visual-area-specific tonic modulation of GABA release by endocannabinoids sets the activity and coordination of neocortical principal neurons. Cell Rep 2022; 40:111202. [PMID: 36001978 PMCID: PMC9433882 DOI: 10.1016/j.celrep.2022.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas. CB1+ basket cells exhibit visual-area-specific morphology and connectivity patterns Tonic CB1 signaling underlies high pyramidal neurons (PN) activity in V2M but not V1 Tonic CB1 signaling differentially modulates PN-correlated activity in V1 and V2M Numerical simulations capture specific CB1-dependent firing dynamics of V1 and V2M
Collapse
Affiliation(s)
- Fani Koukouli
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Martin Montmerle
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Andrea Aguirre
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Jérémy Peixoto
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vikash Choudhary
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | | | - Camille Allene
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Yann Zerlaut
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | - Oliver M Schlüter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nelson Rebola
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alberto Bacci
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Joana Lourenço
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
24
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Bengoetxea de Tena I, Moreno-Rodríguez M, Llorente-Ovejero A, Monge-Benito S, Martínez-Gardeazabal J, Onandia-Hinchado I, Manuel I, Giménez-Llort L, Rodríguez-Puertas R. HANDLING AND NOVEL OBJECT RECOGNITION MODULATE FEAR RESPONSE AND ENDOCANNABINOID SIGNALING IN NUCLEUS BASALIS MAGNOCELLULARIS. Eur J Neurosci 2022; 55:1532-1546. [PMID: 35266590 PMCID: PMC9313565 DOI: 10.1111/ejn.15642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Storage of aversive memories is of utmost importance for survival, allowing animals to avoid upcoming similar stimuli. However, without reinforcement, the learned avoidance response gradually decreases over time. Although the molecular mechanisms controlling this extinction process are not well known, there is evidence that the endocannabinoid system plays a key role through CB1 receptor‐mediated modulation of cholinergic signaling. In this study, we measured fear extinction throughout 7 months using naïve rats, assessed in passive avoidance (PA) test in a non‐reinforced manner. Then, we evaluated the effect of gentle handling and non‐aversive novel object recognition test (NORT) on the extinction and expression of fear memories by measuring passive avoidance responses. Neurochemical correlates were analyzed by functional autoradiography for cannabinoid, cholinergic, and dopaminergic receptors. Despite results showing a gradual decrease of passive avoidance response, it did not fully disappear even after 7 months, indicating the robustness of this process. Meanwhile, in rats that received gentle handling or performed NORT after receiving the PA aversive stimulus, extinction occurred within a week. In contrast, gentle handling performed before receiving the aversive stimulus exacerbated fear expression and triggered escape response in PA. The neurochemical analysis showed increased cannabinoid and cholinergic activity in the nucleus basalis magnocellularis (NBM) in rats that had performed only PA, as opposed to rats that received gentle handling before PA. Additionally, a correlation between CB1 mediated‐signaling in the NBM and freezing in PA was found, suggesting that the endocannabinoid system might be responsible for modulating fear response induced by aversive memories.
Collapse
Affiliation(s)
- I Bengoetxea de Tena
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - M Moreno-Rodríguez
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - A Llorente-Ovejero
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - S Monge-Benito
- Dept. Audiovisual Communication and Advertising, Fac. of Social Sciences and Communication, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J Martínez-Gardeazabal
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Onandia-Hinchado
- Dept. Clinical and Health Psychology and Research Methodology, Fac. of Psychology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Manuel
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - L Giménez-Llort
- Dept. Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - R Rodríguez-Puertas
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
26
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
27
|
Cong J, Lu K, Zou W, Li Z, Guo Z, Tong X, Zheng J, Zhu J, Li S, Zhang W, Guo Y, Gao TM, Chen R. Astroglial CB1 Cannabinoid Receptors Mediate CP 55,940-Induced Conditioned Place Aversion Through Cyclooxygenase-2 Signaling in Mice. Front Cell Neurosci 2021; 15:772549. [PMID: 34887729 PMCID: PMC8650095 DOI: 10.3389/fncel.2021.772549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids (CBs), such as phytocannabinoids, synthetic CBs, and endogenous CBs, can be neuroprotective, rewarding, or aversive. The aversive effects of CBs may hinder their medical and recreational applications. It is unknown which type of CB receptors mediates the direct aversive effects of synthetic CB CP 55,940 which is an analog of Δ9-tetrahydrocannabinol, the major psychoactive component of marijuana. In this study, we address this question by taking the advantage of systematic type 1 CB receptor (CB1R) knockout mice and conditional reinstatement of this receptor only in astrocytes. We show that CP 55,940 at a concentration of 1 mg/kg induces conditioned place aversion (CPA) and the CPA effect of CP 55,940 is mediated by the astroglial CB1Rs. Inhibiting cyclooxygenase-2 (COX-2) eliminates CP 55,940-induced CPA in mice that only express CB1Rs in astrocytes. These findings conclude that CPA effect of CP 55,940 is mediated by the astroglial CB1Rs through COX-2 signaling, suggesting that selective COX-2 inhibition or precise isolation of astroglial CB1R activity may be the strategy for treating aversive response of medical and recreational administrations of marijuana.
Collapse
Affiliation(s)
- Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Department of Histology and Embryology, School of Basic Sciences, Southern Medical University, Guangzhou, China
| | - Wenjie Zou
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziming Li
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhipeng Guo
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangzhen Tong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiawei Zheng
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwu Guo
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
29
|
Ioannidou C, Busquets-Garcia A, Ferreira G, Marsicano G. Neural Substrates of Incidental Associations and Mediated Learning: The Role of Cannabinoid Receptors. Front Behav Neurosci 2021; 15:722796. [PMID: 34421557 PMCID: PMC8378742 DOI: 10.3389/fnbeh.2021.722796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to form associations between different stimuli in the environment to guide adaptive behavior is a central element of learning processes, from perceptual learning in humans to Pavlovian conditioning in animals. Like so, classical conditioning paradigms that test direct associations between low salience sensory stimuli and high salience motivational reinforcers are extremely informative. However, a large part of everyday learning cannot be solely explained by direct conditioning mechanisms - this includes to a great extent associations between individual sensory stimuli, carrying low or null immediate motivational value. This type of associative learning is often described as incidental learning and can be captured in animal models through sensory preconditioning procedures. Here we summarize the evolution of research on incidental and mediated learning, overview the brain systems involved and describe evidence for the role of cannabinoid receptors in such higher-order learning tasks. This evidence favors a number of contemporary hypotheses concerning the participation of the endocannabinoid system in psychosis and psychotic experiences and provides a conceptual framework for understanding how the use of cannabinoid drugs can lead to altered perceptive states.
Collapse
Affiliation(s)
- Christina Ioannidou
- INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Arnau Busquets-Garcia
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Guillaume Ferreira
- University of Bordeaux, Bordeaux, France
- INRAE, Nutrition and Integrative Neurobiology, Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
30
|
Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Mol Psychiatry 2021; 26:3737-3750. [PMID: 32989244 DOI: 10.1038/s41380-020-00893-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023]
Abstract
Guanine nucleotide binding protein (G protein) gamma 8 (Gng8) is a subunit of G proteins and expressed in the medial habenula (MHb) and interpeduncular nucleus (IPN). Recent studies have demonstrated that Gng8 is involved in brain development; however, the roles of Gng8 on cognitive function have not yet been addressed. In the present study, we investigated the expression of Gng8 in the brain and found that Gng8 was predominantly expressed in the MHb-IPN circuit of the mouse brain. We generated Gng8 knockout (KO) mice by CRISPR/Cas9 system in order to assess the role of Gng8 on cognitive function. Gng8 KO mice exhibited deficiency in learning and memory in passive avoidance and Morris water maze tests. In addition, Gng8 KO mice significantly reduced long-term potentiation (LTP) in the hippocampus compared to that of wild-type (WT) mice. Furthermore, we observed that levels of acetylcholine (ACh) and choline acetyltransferase (ChAT) in the MHb and IPN of Gng8 KO mice were significantly decreased, compared to WT mice. The administration of nAChR α4β2 agonist A85380 rescued memory impairment in the Gng8 KO mice, suggesting that Gng8 regulates cognitive function via modulation of cholinergic activity. Taken together, Gng8 is a potential therapeutic target for memory-related diseases and/or neurodevelopmental diseases.
Collapse
|
31
|
Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, Li XW, Yang JM, Gao TM. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 2021; 131:e145692. [PMID: 34263737 DOI: 10.1172/jci145692] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Anxiety-related disorders can be treated by cognitive therapies and transcranial magnetic stimulation, which involve the medial prefrontal cortex (mPFC). Subregions of the mPFC have been implicated in mediating different and even opposite roles in anxiety-related behaviors. However, precise causal targets of these top-down connections among diverse possibilities have not been established. Here, we show that the lateral septum (LS) and the central nucleus of the amygdala (CeA) represent 2 direct targets of the infralimbic cortex (IL), a subregion of the mPFC that modulates anxiety and fear. Two projections were unexpectedly found to exert opposite effects on the anxious state and learned freezing: the IL-LS projection promoted anxiety-related behaviors and fear-related freezing, whereas the IL-CeA projection exerted anxiolytic and fear-releasing effects for the same features. Furthermore, selective inhibition of corresponding circuit elements showed opposing behavioral effects compared with excitation. Notably, the IL-CeA projection implemented top-down control of the stress-induced high-anxiety state. These results suggest that distinct IL outputs exert opposite effects in modulating anxiety and fear and that modulating the excitability of these projections with distinct strategies may be beneficial for the treatment of anxiety disorders.
Collapse
|
32
|
Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, Yu H, Love SL, Hillard CJ, Liu QS. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 2021; 26:3178-3191. [PMID: 33093652 PMCID: PMC8060365 DOI: 10.1038/s41380-020-00905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Collapse
Affiliation(s)
- Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meng-Ming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Santidra L Love
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
33
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
34
|
Fu R, Tang Y, Li W, Ren Z, Li D, Zheng J, Zuo W, Chen X, Zuo QK, Tam KL, Zou Y, Bachmann T, Bekker A, Ye JH. Endocannabinoid signaling in the lateral habenula regulates pain and alcohol consumption. Transl Psychiatry 2021; 11:220. [PMID: 33854035 PMCID: PMC8046806 DOI: 10.1038/s41398-021-01337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hyperalgesia, which often occurs in people suffering from alcohol use disorder, may drive excessive drinking and relapse. Emerging evidence suggests that the lateral habenula (LHb) may play a significant role in this condition. Previous research suggests that endocannabinoid signaling (eCBs) is involved in drug addiction and pain, and that the LHb contains core components of the eCBs machinery. We report here our findings in rats subjected to chronic ethanol vapor exposure. We detected a substantial increase in endocannabinoid-related genes, including Mgll and Daglb mRNA levels, as well as monoacylglycerol lipase (MAGL) protein levels, as well as a decrease in Cnr1 mRNA and type-1 cannabinoid receptor (CB1R) protein levels, in the LHb of ethanol-exposed rats. Also, rats withdrawing from ethanol exposure displayed hypersensitivity to mechanical and thermal nociceptive stimuli. Conversely, intra-LHb injection of the MAGL inhibitor JZL184, the fatty acid amide hydrolase inhibitor URB597, or the CB1R agonist WIN55,212-2 produced an analgesic effect, regardless of ethanol or air exposure history, implying that alcohol exposure does not change eCB pain responses. Intra-LHb infusion of the CB1R inverse agonist rimonabant eliminated the analgesic effect of these chemicals. Rimonabant alone elicited hyperalgesia in the air-, but not ethanol-exposed animals. Moreover, intra-LHb JZL184, URB597, or WIN55,212-2 reduced ethanol consumption in both homecages and operant chambers in rats exposed to ethanol vapor but not air. These findings suggest that LHb eCBs play a pivotal role in nociception and facilitating LHb eCBs may attenuate pain in drinkers.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ying Tang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kelsey L Tam
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yucong Zou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
35
|
DeGroot SR, Zhao-Shea R, Chung L, Klenowski PM, Sun F, Molas S, Gardner PD, Li Y, Tapper AR. Midbrain Dopamine Controls Anxiety-like Behavior by Engaging Unique Interpeduncular Nucleus Microcircuitry. Biol Psychiatry 2020; 88:855-866. [PMID: 32800629 PMCID: PMC8043246 DOI: 10.1016/j.biopsych.2020.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dopamine (DA) is hypothesized to modulate anxiety-like behavior, although the precise role of DA in anxiety behaviors and the complete anxiety network in the brain have yet to be elucidated. Recent data indicate that dopaminergic projections from the ventral tegmental area (VTA) innervate the interpeduncular nucleus (IPN), but how the IPN responds to DA and what role this circuit plays in anxiety-like behavior are unknown. METHODS We expressed a genetically encoded G protein-coupled receptor activation-based DA sensor in mouse midbrain to detect DA in IPN slices using fluorescence imaging combined with pharmacology. Next, we selectively inhibited or activated VTA→IPN DAergic inputs via optogenetics during anxiety-like behavior. We used a biophysical approach to characterize DA effects on neural IPN circuits. Site-directed pharmacology was used to test if DA receptors in the IPN can regulate anxiety-like behavior. RESULTS DA was detected in mouse IPN slices. Silencing/activating VTA→IPN DAergic inputs oppositely modulated anxiety-like behavior. Two neuronal populations in the ventral IPN (vIPN) responded to DA via D1 receptors (D1Rs). vIPN neurons were controlled by a small population of D1R neurons in the caudal IPN that directly respond to VTA DAergic terminal stimulation and innervate the vIPN. IPN infusion of a D1R agonist and antagonist bidirectionally controlled anxiety-like behavior. CONCLUSIONS VTA DA engages D1R-expressing neurons in the caudal IPN that innervate vIPN, thereby amplifying the VTA DA signal to modulate anxiety-like behavior. These data identify a DAergic circuit that mediates anxiety-like behavior through unique IPN microcircuitry.
Collapse
Affiliation(s)
- Steven R. DeGroot
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA,Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Paul M. Klenowski
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China,PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Susanna Molas
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China,PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China,Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA,Lead Contact, Correspondence to:
| |
Collapse
|
36
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
37
|
McIlwrath SL, Montera MA, Gott KM, Yang Y, Wilson CM, Selwyn R, Westlund KN. Manganese-enhanced MRI reveals changes within brain anxiety and aversion circuitry in rats with chronic neuropathic pain- and anxiety-like behaviors. Neuroimage 2020; 223:117343. [PMID: 32898676 PMCID: PMC8858643 DOI: 10.1016/j.neuroimage.2020.117343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.
Collapse
Affiliation(s)
| | - Marena A Montera
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Katherine M Gott
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Yirong Yang
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Colin M Wilson
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Reed Selwyn
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Karin N Westlund
- Research Services New Mexico VA HealthCare System Albuquerque NM 87108 USA; University of New Mexico Health Sciences Center, Albuquerque, NM USA
| |
Collapse
|
38
|
T-Type Calcium Channels Contribute to Burst Firing in a Subpopulation of Medial Habenula Neurons. eNeuro 2020; 7:ENEURO.0201-20.2020. [PMID: 32719103 PMCID: PMC7433892 DOI: 10.1523/eneuro.0201-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Action potential (AP) burst firing caused by the activation of low-voltage-activated T-type Ca2+ channels is a unique mode of neuronal firing. T-type channels have been implicated in diverse physiological and pathophysiological processes, including epilepsy, autism, and mood regulation, but the brain structures involved remain incompletely understood. The medial habenula (MHb) is an epithalamic structure implicated in anxiety-like and withdrawal behavior. Previous studies have shown that MHb neurons fire tonic APs at a frequency of ∼2–10 Hz or display depolarized low-amplitude membrane oscillations. Here, we report in C57BL/6J mice that a subpopulation of MHb neurons are capable of firing transient, high-frequency AP bursts mediated by T-type channels. Burst firing was observed following rebounding from hyperpolarizing current injections or during depolarization from hyperpolarized membrane potentials in ∼20% of MHb neurons. It was rarely observed at baseline but could be evoked in MHb neurons displaying different initial activity states. Further, we show that T-type channel mRNA, in particular Cav3.1, is expressed in the MHb in both cholinergic and substance P-ergic neurons. Pharmacological Cav3 antagonism blocked both burst firing and evoked Ca2+ currents in MHb neurons. Additionally, we observed high-frequency AP doublet firing at sustained depolarized membrane potentials that was independent of T-type channels. Thus, there is a greater diversity of AP firing patterns in MHb neurons than previously identified, including T-type channel-mediated burst firing, which may uniquely contribute to behaviors with relevance to neuropsychiatric disease.
Collapse
|
39
|
Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, Arnouil D, Saraswat D, Varilh M, Cannich A, Julio-Kalajzic F, Bonilla-Del Río I, Almeida A, Puente N, Achicallende S, Lopez-Rodriguez ML, Jollé C, Déglon N, Pellerin L, Josephine C, Bonvento G, Panatier A, Lutz B, Piazza PV, Guzmán M, Bellocchio L, Bouzier-Sore AK, Grandes P, Bolaños JP, Marsicano G. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 2020; 583:603-608. [PMID: 32641832 DOI: 10.1038/s41586-020-2470-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.
Collapse
Affiliation(s)
- Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Integrative Pharmacology and Systems Neuroscience, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, New Brunswick, Canada.,Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Roman Serrat
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Christina Ioannidou
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Paula Gómez-Sotres
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Monica Resch-Beusher
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Eva Resel
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Dorian Arnouil
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Dave Saraswat
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | | | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | | | - Charlotte Jollé
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies (LCMN), University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-University of Bordeaux, Bordeaux, France.,INSERM U1082, University of Poitiers, Poitiers, France
| | - Charlène Josephine
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Aude Panatier
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Pier-Vincenzo Piazza
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Aelis Farma, Bordeaux, France
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain. .,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France. .,University of Bordeaux, Bordeaux, France.
| |
Collapse
|
40
|
Terral G, Marsicano G, Grandes P, Soria-Gómez E. Cannabinoid Control of Olfactory Processes: The Where Matters. Genes (Basel) 2020; 11:E431. [PMID: 32316252 PMCID: PMC7230191 DOI: 10.3390/genes11040431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction has a direct influence on behavior and cognitive processes. There are different neuromodulatory systems in olfactory circuits that control the sensory information flowing through the rest of the brain. The presence of the cannabinoid type-1 (CB1) receptor, (the main cannabinoid receptor in the brain), has been shown for more than 20 years in different brain olfactory areas. However, only over the last decade have we started to know the specific cellular mechanisms that link cannabinoid signaling to olfactory processing and the control of behavior. In this review, we aim to summarize and discuss our current knowledge about the presence of CB1 receptors, and the function of the endocannabinoid system in the regulation of different olfactory brain circuits and related behaviors.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, CEDEX, 33077 Bordeaux, France; (G.T.); (G.M.)
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
41
|
Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020; 106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The brain dopamine (DA) system participates in forming and expressing memory. Despite a well-established role of DA neurons in the ventral tegmental area in memory formation, the exact DA circuits that control memory expression remain unclear. Here, we show that DA neurons in the dorsal raphe nucleus (DRN) and their medulla input control the expression of incentive memory. DRN DA neurons are activated by both rewarding and aversive stimuli in a learning-dependent manner and exhibit elevated activity during memory recall. Disrupting their physiological activity or DA synthesis blocks the expression of natural appetitive and aversive memories as well as drug memories associated with opioids. Moreover, a glutamatergic pathway from the lateral parabrachial nucleus to the DRN selectively regulates the expression of reward memories associated with opioids or foods. Our study reveals a specialized DA subsystem important for memory expression and suggests new targets for interventions against opioid addiction.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.
| | - Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiyu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Ting Yan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Liu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangmiao Sun
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
42
|
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL. Anatomical and single-cell transcriptional profiling of the murine habenular complex. eLife 2020; 9:e51271. [PMID: 32043968 PMCID: PMC7012610 DOI: 10.7554/elife.51271] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Kee Wui Huang
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Daniel Hochbaum
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Minsuk Hyun
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Gianna Radeljic
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Bernardo L Sabatini
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
43
|
Cho C, Lee S, Kim A, Yarishkin O, Ryoo K, Lee Y, Jung H, Yang E, Lee DY, Lee B, Kim H, Oh U, Im H, Hwang EM, Park J. TMEM16A expression in cholinergic neurons of the medial habenula mediates anxiety-related behaviors. EMBO Rep 2020; 21:e48097. [PMID: 31782602 PMCID: PMC7001509 DOI: 10.15252/embr.201948097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/09/2022] Open
Abstract
TMEM16A, a Ca2+ -activated Cl- channel, is known to modulate the excitability of various types of cells; however, its function in central neurons is largely unknown. Here, we show the specific expression of TMEM16A in the medial habenula (mHb) via RNAscope in situ hybridization, immunohistochemistry, and electrophysiology. When TMEM16A is ablated in the mHb cholinergic neurons (TMEM16A cKO mice), the slope of after-hyperpolarization of spontaneous action potentials decreases and the firing frequency is reduced. Reduced mHb activity also decreases the activity of the interpeduncular nucleus (IPN). Moreover, TMEM16A cKO mice display anxiogenic behaviors and deficits in social interaction without despair-like phenotypes or cognitive dysfunctions. Finally, chemogenetic inhibition of mHb cholinergic neurons using the DREADD (Designer Receptors Exclusively Activated by Designer Drugs) approach reveals similar behavioral phenotypes to those of TMEM16A cKO mice. We conclude that TMEM16A plays a key role in anxiety-related behaviors regulated by mHb cholinergic neurons and could be a potential therapeutic target against anxiety-related disorders.
Collapse
Affiliation(s)
- Chang‐Hoon Cho
- School of Biosystems and Biomedical SciencesCollege of Health SciencesKorea UniversitySeoulKorea
| | - Sangjoon Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKISTSeoulKorea
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Center for NeuroscienceBrain Science InstituteKorea Institute of Science and Technology (KIST)SeoulKorea
| | - Ajung Kim
- Center for Functional ConnectomicsKISTSeoulKorea
- KHU‐KIST Department of Converging Science and TechnologyGraduate SchoolKyung Hee UniversitySeoulKorea
| | | | - Kanghyun Ryoo
- School of Biosystems and Biomedical SciencesCollege of Health SciencesKorea UniversitySeoulKorea
| | - Young‐Sun Lee
- School of Biosystems and Biomedical SciencesCollege of Health SciencesKorea UniversitySeoulKorea
| | - Hyun‐Gug Jung
- School of Biosystems and Biomedical SciencesCollege of Health SciencesKorea UniversitySeoulKorea
- Center for Functional ConnectomicsKISTSeoulKorea
| | - Esther Yang
- Department of AnatomyCollege of MedicineKorea UniversitySeoulKorea
| | - Da Yong Lee
- Center for Functional ConnectomicsKISTSeoulKorea
| | - Byeongjun Lee
- Sensory Research CenterCRIBrain Science InstituteKorea Institute of Science and TechnologySeoulKorea
| | - Hyun Kim
- Department of AnatomyCollege of MedicineKorea UniversitySeoulKorea
| | - Uhtaek Oh
- Sensory Research CenterCRIBrain Science InstituteKorea Institute of Science and TechnologySeoulKorea
| | - Heh‐In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKISTSeoulKorea
- Center for NeuroscienceBrain Science InstituteKorea Institute of Science and Technology (KIST)SeoulKorea
- Division of Bio‐Medical Science & TechnologyKIST SchoolKorea University of Science and TechnologySeoulKorea
| | - Eun Mi Hwang
- Center for Functional ConnectomicsKISTSeoulKorea
- KHU‐KIST Department of Converging Science and TechnologyGraduate SchoolKyung Hee UniversitySeoulKorea
- Division of Bio‐Medical Science & TechnologyKIST SchoolKorea University of Science and TechnologySeoulKorea
| | - Jae‐Yong Park
- School of Biosystems and Biomedical SciencesCollege of Health SciencesKorea UniversitySeoulKorea
| |
Collapse
|
44
|
Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 2020; 528:283-307. [PMID: 31396962 PMCID: PMC6889053 DOI: 10.1002/cne.24753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
Abstract
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Lely A. Quina
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | | | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Evelyn K. Lambe
- Departments of Physiology, Obstetrics and Gynecology, and Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle WA, 98101
| |
Collapse
|
45
|
Boulos LJ, Ben Hamida S, Bailly J, Maitra M, Ehrlich AT, Gavériaux-Ruff C, Darcq E, Kieffer BL. Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 2020; 45:247-255. [PMID: 31005059 PMCID: PMC6901535 DOI: 10.1038/s41386-019-0395-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023]
Abstract
The medial habenula (MHb) is considered a brain center regulating aversive states. The mu opioid receptor (MOR) has been traditionally studied at the level of nociceptive and mesolimbic circuits, for key roles in pain relief and reward processing. MOR is also densely expressed in MHb, however, MOR function at this brain site is virtually unknown. Here we tested the hypothesis that MOR in the MHb (MHb-MOR) also regulates aversion processing. We used chnrb4-Cre driver mice to delete the Oprm1 gene in chnrb4-neurons, predominantly expressed in the MHb. Conditional mutant (B4MOR) mice showed habenula-specific reduction of MOR expression, restricted to chnrb4-neurons (50% MHb-MORs). We tested B4MOR mice in behavioral assays to evaluate effects of MOR activation by morphine, and MOR blockade by naloxone. Locomotor, analgesic, rewarding, and motivational effects of morphine were preserved in conditional mutants. In contrast, conditioned place aversion (CPA) elicited by naloxone was reduced in both naïve (high dose) and morphine-dependent (low dose) B4MOR mice. Further, physical signs of withdrawal precipitated by either MOR (naloxone) or nicotinic receptor (mecamylamine) blockade were attenuated. These data suggest that MORs expressed in MHb B4-neurons contribute to aversive effects of naloxone, including negative effect and aversive effects of opioid withdrawal. MORs are inhibitory receptors, therefore we propose that endogenous MOR signaling normally inhibits chnrb4-neurons of the MHb and moderates their known aversive activity, which is unmasked upon receptor blockade. Thus, in addition to facilitating reward at several brain sites, tonic MOR activity may also limit aversion within the MHb circuitry.
Collapse
Affiliation(s)
- L. J. Boulos
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada ,0000 0004 0638 2716grid.420255.4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France ,0000 0001 2157 9291grid.11843.3fUniversité de Strasbourg, Illkirch, France ,0000 0001 2112 9282grid.4444.0Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U 1258 Illkirch, France
| | - S. Ben Hamida
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada ,0000 0004 0638 2716grid.420255.4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France ,0000 0001 2157 9291grid.11843.3fUniversité de Strasbourg, Illkirch, France ,0000 0001 2112 9282grid.4444.0Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U 1258 Illkirch, France
| | - J. Bailly
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada
| | - M. Maitra
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada
| | - A. T. Ehrlich
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada ,0000 0004 0638 2716grid.420255.4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France ,0000 0001 2157 9291grid.11843.3fUniversité de Strasbourg, Illkirch, France ,0000 0001 2112 9282grid.4444.0Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U 1258 Illkirch, France
| | - C. Gavériaux-Ruff
- 0000 0004 0638 2716grid.420255.4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France ,0000 0001 2157 9291grid.11843.3fUniversité de Strasbourg, Illkirch, France ,0000 0001 2112 9282grid.4444.0Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U 1258 Illkirch, France
| | - E. Darcq
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada
| | - B. L. Kieffer
- McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada ,0000 0004 0638 2716grid.420255.4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France ,0000 0001 2157 9291grid.11843.3fUniversité de Strasbourg, Illkirch, France ,0000 0001 2112 9282grid.4444.0Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U 1258 Illkirch, France
| |
Collapse
|
46
|
Abstract
Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.
Collapse
|
47
|
Melani R, Von Itter R, Jing D, Koppensteiner P, Ninan I. Opposing effects of an atypical glycinergic and substance P transmission on interpeduncular nucleus plasticity. Neuropsychopharmacology 2019; 44:1828-1836. [PMID: 31005058 PMCID: PMC6785085 DOI: 10.1038/s41386-019-0396-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
The medial habenula-interpeduncular nucleus (MHb-IPN) pathway has recently been implicated in the suppression of fear memory. A notable feature of this pathway is the corelease of neurotransmitters and neuropeptides from MHb neurons. Our studies in mice reveal that an activation of substance P-positive dorsomedial habenula (dMHb) neurons results in simultaneous release of glutamate and glycine in the lateral interpeduncular nucleus (LIPN). This glycine receptor activity inhibits an activity-dependent long-lasting potentiation of glutamatergic synapses in LIPN neurons, while substance P enhances this plasticity. An endocannabinoid CB1 receptor-mediated suppression of GABAB receptor activity allows substance P to induce a long-lasting increase in glutamate release in LIPN neurons. Consistent with the substance P-dependent synaptic potentiation in the LIPN, the NK1R in the IPN is involved in fear extinction but not fear conditioning. Thus, our study describes a novel plasticity mechanism in the LIPN and a region-specific role of substance P in fear extinction.
Collapse
Affiliation(s)
- Riccardo Melani
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Richard Von Itter
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Deqiang Jing
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Peter Koppensteiner
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Ipe Ninan
- Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
49
|
Terral G, Busquets-Garcia A, Varilh M, Achicallende S, Cannich A, Bellocchio L, Bonilla-Del Río I, Massa F, Puente N, Soria-Gomez E, Grandes P, Ferreira G, Marsicano G. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory. Curr Biol 2019; 29:2455-2464.e5. [PMID: 31327715 DOI: 10.1016/j.cub.2019.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023]
Abstract
The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Federico Massa
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Guillaume Ferreira
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
50
|
Otsu Y, Lecca S, Pietrajtis K, Rousseau CV, Marcaggi P, Dugué GP, Mailhes-Hamon C, Mameli M, Diana MA. Functional Principles of Posterior Septal Inputs to the Medial Habenula. Cell Rep 2019; 22:693-705. [PMID: 29346767 PMCID: PMC5792424 DOI: 10.1016/j.celrep.2017.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex vivo and in vivo physiology, we examine the synaptic properties of posterior septal afferents to the MHb and how they influence behavior. We demonstrate that MHb cells receive sparse inputs producing purely glutamatergic responses via calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), heterotrimeric GluN2A-GluN2B-GluN1 N-methyl-D-aspartate (NMDA) receptors, and inhibitory group II metabotropic glutamate receptors. We describe the complex integration dynamics of these components by MHb cells. Finally, we combine ex vivo data with realistic afferent firing patterns recorded in vivo to demonstrate that efficient optogenetic septal stimulation in the MHb induces anxiolysis and promotes locomotion, contributing long-awaited evidence in favor of the importance of this septo-habenular pathway. Medial habenular (MHb) neurons receive sparse inputs from the posterior septum (PS) PS afferents to the MHb function in a purely glutamatergic mode Excitatory ionotropic and inhibitory metabotropic receptors convey PS inputs in the MHb PS activation in the MHb increases locomotion and induces anxiolysis
Collapse
Affiliation(s)
- Yo Otsu
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Salvatore Lecca
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Katarzyna Pietrajtis
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Charly Vincent Rousseau
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Païkan Marcaggi
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Guillaume Pierre Dugué
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Marco Alberto Diana
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|