1
|
Sweeney CG, Thomas ME, Liu CJ, Vattino LG, Smith KE, Takesian AE. Reliable sensory processing of superficial cortical interneurons is modulated by behavioral state. Cell Rep 2025; 44:115678. [PMID: 40349343 DOI: 10.1016/j.celrep.2025.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
GABAergic interneurons in cortical layer 1 (L1) integrate sensory and top-down inputs to modulate network activity and support learning-related plasticity. However, little is known about how sensory inputs drive L1 interneuron activity. We used two-photon calcium imaging to measure sound-evoked responses in two L1 interneuron populations expressing vasoactive intestinal peptide (VIP) or neuron-derived neurotrophic factor (NDNF) in mouse auditory cortex. We found that L1 interneurons respond to both simple and complex sounds, but their responses are highly variable across trials. Despite this variability, these interneurons respond reliably to a narrow range of stimuli, reflecting selectivity for specific spectrotemporal sound features. Response reliability was modulated by behavioral state and predicted by the activity of neighboring interneurons. These findings reveal that L1 interneurons exhibit sensory tuning and identify the modulation of response reliability as a potential mechanism by which L1 relays state-dependent cues to shape sensory representations.
Collapse
Affiliation(s)
- Carolyn G Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
| | - Lucas G Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Kasey E Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Jia H, Wang M, Pakan JMP, Li SC, Chen X. Burst firing represents learned composite stimuli in primary sensory cortices. Curr Opin Neurobiol 2025; 93:103039. [PMID: 40334497 DOI: 10.1016/j.conb.2025.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
The primary cortical areas of each sensory modality occupy a significant portion of the mammalian neocortex. Beyond mapping basic sensory features, such as visual object orientation or sound frequency, these regions may play a broader role in sensory processing. Here, we review recent advances in our understanding of sensory representations through a unique neuronal firing mode called bursting, with a particular focus on layer 2/3 (L2/3) pyramidal neurons. While maps of single-feature inputs are preserved in primary sensory cortices, individual L2/3 pyramidal neurons receive heterogeneous inputs from multiple basic features. The co-activation of these inputs can induce bursting, forming sparse yet persistent representations of composite sensory stimuli. Unlike basic sensory feature maps, which drift over time, experience-driven bursting patterns in L2/3 remain stable over long periods. Notably, these bursting representations are holistic, as single-featured component stimuli rarely elicit such activity. We propose that these holistic bursting neurons (HB neurons) in L2/3 play a crucial role in integrating sensory experiences, generating durable, sparse, and reliable representations that may serve as building blocks of long-term memory in the complexity of the real-world.
Collapse
Affiliation(s)
- Hongbo Jia
- Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Institute of Neuroscience and the SyNergy Cluster, Technical University of Munich, 80802, Munich, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, 39120, Magdeburg, Germany.
| | - Meng Wang
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Janelle M P Pakan
- Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, 39120, Magdeburg, Germany
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; NewLight Neuroscience Unit, Chongqing, 400064, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. Nature 2025; 641:960-970. [PMID: 40108473 DOI: 10.1038/s41586-025-08730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Rapid learning confers significant advantages on animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by gradual changes to cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6,7, challenging the prevailing model of sensory cortical plasticity. Here we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex drives both rapid learning and slower performance gains but becomes dispensable once mice achieve 'expert' performance. Instead of enhanced cue representations8, two-photon calcium imaging of auditory cortical neurons throughout learning revealed two higher-order signals that were causal to learning and performance. A reward-prediction signal emerged rapidly within tens of trials, was present after action-related errors early in training, and faded in expert mice. Silencing at the time of this signal impaired rapid learning, suggesting that it serves an associative role. A distinct cell ensemble encoded and controlled licking suppression that drove slower performance improvements. These ensembles were spatially clustered but uncoupled from sensory representations, indicating higher-order functional segregation within auditory cortex. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
5
|
Merkler M, Ip NY, Sakata S. Developmental overproduction of cortical superficial neurons impairs adult auditory cortical processing. Sci Rep 2025; 15:11993. [PMID: 40200030 PMCID: PMC11978756 DOI: 10.1038/s41598-025-95968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.
Collapse
Affiliation(s)
- Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
6
|
Park J, Kim YG, Kim T, Baek M. Electrical Stimulation of the M1 Activates Somatostatin Interneurons in the S1: Potential Mechanisms Underlying Pain Suppression. eNeuro 2025; 12:ENEURO.0541-24.2025. [PMID: 40228867 PMCID: PMC12043047 DOI: 10.1523/eneuro.0541-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Chronic pain affects millions globally, yet no universally effective treatment exists. The primary motor cortex (M1) has been a key target for chronic pain therapies, with electrical stimulation of the M1 (eMCS) showing promise. However, the mechanisms underlying M1-mediated analgesic effects are not fully understood. We investigated the role of the primary somatosensory cortex (S1) in M1-mediated analgesia using a neuropathic pain mouse model. In this model, neuropathic pain is associated with increased spontaneous activity of layer V pyramidal neurons (LV-PNs) in the S1, partly attributed to the reduced activity of somatostatin-expressing inhibitory neurons (SST+ INs), which normally suppress LV-PNs. While manipulation of either LV-PNs or SST+ INs has been shown to alleviate pain, the role of S1 in M1-mediated analgesia has not been identified. Using multichannel silicon probes, we applied eMCS to neuropathic mice and observed significant analgesia. Histological analyses revealed that eMCS activated SST+ INs and suppressed hyperactivity of LV-PNs in the S1, suggesting that eMCS suppresses pain by modulating S1 neuronal circuits, alongside other pain-related regions. Notably, eMCS induced long-lasting analgesia, persisting for at least 2 d poststimulation. These findings implicate S1 as a critical mediator of eMCS-induced analgesia and suggest eMCS as a potential durable therapeutic strategy for chronic pain.
Collapse
Affiliation(s)
- Junhee Park
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Yong Geon Kim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Taehyeon Kim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Myungin Baek
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Efron B, Ntelezos A, Katz Y, Lampl I. Detection and neural encoding of whisker-generated sounds in mice. Curr Biol 2025; 35:1211-1226.e8. [PMID: 39978346 DOI: 10.1016/j.cub.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
The vibrissa system of mice and other rodents enables active sensing via whisker movements and is traditionally considered a purely tactile system. Here, we ask whether whisking against objects produces audible sounds and whether mice are capable of perceiving these sounds. We found that whisking by head-fixed mice against objects produces audible sounds well within their hearing range. We recorded neural activity in the auditory cortex of mice in which we had abolished vibrissae tactile sensation and found that the firing rate of auditory neurons was strongly modulated by whisking against objects. Furthermore, the object's identity could be reliably decoded from the population's neuronal activity and closely matched the decoding patterns derived from sounds that were recorded simultaneously, suggesting that neuronal activity reflects acoustic information. Lastly, trained mice, in which vibrissae tactile sensation was abolished, were able to accurately identify objects solely based on the sounds produced during whisking. Our results suggest that, beyond its traditional role as a tactile sensory system, the vibrissa system of rodents engages both tactile and auditory modalities in a multimodal manner during active exploration.
Collapse
Affiliation(s)
- Ben Efron
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Athanasios Ntelezos
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonatan Katz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Chen C, Xu S, Wang Y, Wang X. Location-specific neural facilitation in marmoset auditory cortex. Nat Commun 2025; 16:2773. [PMID: 40113772 PMCID: PMC11926104 DOI: 10.1038/s41467-025-58034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
A large body of literature has shown that sensory neurons typically exhibit adaptation to repetitive stimulation. However, adaptation alone does not account for the ability of sensory systems to remain vigilant to the environment in spite of repetitive sensory stimulation. Here, we investigated single neuron responses to sequences of sounds repeatedly delivered from a particular spatial location. Instead of inducing adaptation, repetitive stimulation evoked long-lasting and location-specific facilitation (LSF) in firing rate of nearly 90% of recorded neurons. The LSF decreased with decreasing presentation probability and diminished when sounds were randomly delivered from multiple spatial locations. Intracellular recordings showed that repetitive sound stimulation evoked sustained membrane potential depolarization. Computational modeling showed that increased arousal, not decreased inhibition, underlies the LSF. Our findings reveal a novel form of contextual modulation in the marmoset auditory cortex that may play a role in tasks such as auditory streaming and the cocktail party effect.
Collapse
Affiliation(s)
- Chenggang Chen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Xu
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yunyan Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Tsukano H, Garcia MM, Dandu PR, Kato HK. Predictive filtering of sensory response via orbitofrontal top-down input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.17.613562. [PMID: 39345607 PMCID: PMC11429993 DOI: 10.1101/2024.09.17.613562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Habituation is a crucial sensory filtering mechanism whose dysregulation can lead to a continuously intense world in disorders with sensory overload. While habituation is considered to require top-down predictive signaling to suppress irrelevant inputs, the exact brain loci storing the internal predictive model and the circuit mechanisms of sensory filtering remain unclear. We found that daily neural habituation in the primary auditory cortex (A1) was reversed by inactivation of the orbitofrontal cortex (OFC). Top-down projections from the ventrolateral OFC, but not other frontal areas, carried predictive signals that grew with daily sound experience and suppressed A1 via somatostatin-expressing inhibitory neurons. Thus, prediction signals from the OFC cancel out behaviorally irrelevant anticipated stimuli by generating their "negative images" in sensory cortices.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| |
Collapse
|
10
|
Failor SW, Carandini M, Harris KD. Visual experience orthogonalizes visual cortical stimulus responses via population code transformation. Cell Rep 2025; 44:115235. [PMID: 39888718 DOI: 10.1016/j.celrep.2025.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
Sensory and behavioral experience can alter visual cortical stimulus coding, but the precise form of this plasticity is unclear. We measured orientation tuning in 4,000-neuron populations of mouse V1 before and after training on a visuomotor task. Changes to single-cell tuning curves appeared complex, including development of asymmetries and of multiple peaks. Nevertheless, these complex tuning curve transformations can be explained by a simple equation: a convex transformation suppressing responses to task stimuli specifically in cells responding at intermediate levels. The strength of the transformation varies across trials, suggesting a dynamic circuit mechanism rather than static synaptic plasticity. The transformation results in sparsening and orthogonalization of population codes for task stimuli. It cannot improve the performance of an optimal stimulus decoder, which is already perfect even for naive codes, but it improves the performance of a suboptimal decoder model with inductive bias as might be found in downstream readout circuits.
Collapse
Affiliation(s)
- Samuel W Failor
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. Neuron 2025; 113:291-306.e7. [PMID: 39561767 PMCID: PMC11757082 DOI: 10.1016/j.neuron.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
13
|
Williams LE, Küffer L, Bawa T, Husi E, Pagès S, Holtmaat A. Repetitive Sensory Stimulation Potentiates and Recruits Sensory-Evoked Cortical Population Activity. J Neurosci 2025; 45:e2189232024. [PMID: 39510832 PMCID: PMC11756624 DOI: 10.1523/jneurosci.2189-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Sensory experience and learning are thought to be associated with plasticity of neocortical circuits. Repetitive sensory stimulation can induce long-term potentiation (LTP) of cortical excitatory synapses in anesthetized mice; however, it is unclear if these phenomena are associated with sustained changes in activity during wakefulness. Here we used time-lapse, calcium imaging of layer (L) 2/3 neurons in the primary somatosensory cortex (S1), in awake male mice, to assess the effects of a bout of rhythmic whisker stimulation (RWS) at a frequency by which rodents sample objects. We found that RWS induced a 1 h increase in whisker-evoked L2/3 neuronal activity in most cells. This was not observed for whiskers functionally connected to distant cortical columns. We also found that RWS could heterogeneously recruit or suppress whisker-evoked activity in different populations of neurons. Vasoactive intestinal-peptide-expressing (VIP) interneurons, which promote plasticity through disinhibition of pyramidal neurons, were found to exclusively elevate activity during RWS. These findings indicate that cortical neurons' representation of sensory input can be modulated over hours through repetitive sensory stimulation, which may be gated by activation of disinhibitory circuits.
Collapse
Affiliation(s)
- Leena Eve Williams
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Laura Küffer
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Tanika Bawa
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva 1211, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Stéphane Pagès
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
14
|
Santi A, Moore S, Fogelson KA, Wang A, Lawlor J, Amato J, Burke K, Lauer AM, Kuchibhotla KV. Revealing hidden knowledge in amnestic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632026. [PMID: 39829851 PMCID: PMC11741257 DOI: 10.1101/2025.01.09.632026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) is a form of dementia in which memory and cognitive decline is thought to arise from underlying neurodegeneration. These cognitive impairments, however, are transient when they first appear and can fluctuate across disease progression. Here, we investigate the neural mechanisms underlying fluctuations of performance in amnestic mice. We trained APP/PS1+ mice on an auditory go/no-go task that dissociated learning of task contingencies (knowledge) from its more variable expression under reinforcement (performance). APP/PS1+ exhibited significant performance deficits compared to control mice. Using large-scale two-photon imaging of 6,216 excitatory neurons in 8 mice, we found that auditory cortical networks were more suppressed, less selective to the sensory cues, and exhibited aberrant higher-order encoding of reward prediction compared to control mice. A small sub-population of neurons, however, displayed the opposite phenotype, reflecting a potential compensatory mechanism. Volumetric analysis demonstrated that deficits were concentrated near Aβ plaques. Strikingly, we found that these cortical deficits were reversed almost instantaneously on probe (non-reinforced) trials when APP/PS1+ performed as well as control mice, providing neural evidence for intact stimulus-action knowledge despite variable ongoing performance. A biologically-plausible reinforcement learning model recapitulated these results and showed that synaptic weights from sensory-to-decision neurons were preserved (i.e. intact stimulus-action knowledge) despite poor performance that was due to inadequate contextual scaling (i.e. impaired performance). Our results suggest that the amnestic phenotype is transient, contextual, and endogenously reversible, with the underlying neural circuits retaining the underlying stimulus-action associations. Thus, memory deficits commonly observed in amnestic mouse models, and potentially at early stages of dementia in humans, relate more to contextual drivers of performance rather than degeneration of the underlying memory traces.
Collapse
|
15
|
Tobin M, Sheth J, Wood KC, Michel EK, Geffen MN. Distinct Inhibitory Neurons Differently Shape Neuronal Codes for Sound Intensity in the Auditory Cortex. J Neurosci 2025; 45:e1502232024. [PMID: 39516042 PMCID: PMC11714344 DOI: 10.1523/jneurosci.1502-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons have distinct effects on population neuronal responses to noise bursts of varying intensities. We optogenetically stimulated SST or VIP neurons while simultaneously measuring the calcium responses of populations of hundreds of neurons in the auditory cortex (AC) of male and female awake, head-fixed mice to sounds. Upon SST neuronal activation, noise burst representations became more discrete for different intensity levels, relying on cell identity rather than strength. By contrast, upon VIP neuronal activation, noise bursts of different intensity levels activated overlapping neuronal populations, albeit at different response strengths. At the single-cell level, SST and VIP neuronal activation differentially modulated the response-level curves of monotonic and nonmonotonic neurons. SST neuronal activation effects were consistent with a shift of the neuronal population responses toward a more localist code with different cells responding to sounds of different intensities. By contrast, VIP neuronal activation shifted responses toward a more distributed code, in which sounds of different intensity levels are encoded in the relative response of similar populations of cells. These results delineate how distinct inhibitory neurons in the AC dynamically control cortical population codes. Different inhibitory neuronal populations may be recruited under different behavioral demands, depending on whether categorical or invariant representations are advantageous for the task.
Collapse
Affiliation(s)
- Melanie Tobin
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Janaki Sheth
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Katherine C Wood
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Erin K Michel
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
16
|
Corbo J, Erkat OB, McClure J, Khdour H, Polack PO. Discretized representations in V1 predict suboptimal orientation discrimination. Nat Commun 2025; 16:41. [PMID: 39746991 PMCID: PMC11696038 DOI: 10.1038/s41467-024-55409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neuronal population activity in sensory cortices is the substrate for perceptual decisions. Yet, we still do not understand how neuronal information content in sensory cortices relates to behavioral reports. To reconcile neurometric and psychometric performance, we recorded the activity of V1 neurons in mice performing a Go/NoGo orientation discrimination task. We found that, around the discrimination threshold, V1 does not represent the orientation of the stimuli as canonically expected. Instead, it forms categorical representations characterized by a relocation of activity at task-relevant domains of the orientation representational space. The relative neuronal activity at those discrete domains accurately predicted the probabilities of the animals' decisions. Our results thus suggest that the categorical integration of discretized feature representations from sensory cortices explains perceptual decisions.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - John McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Hussein Khdour
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| |
Collapse
|
17
|
Lee TY, Weissenberger Y, King AJ, Dahmen JC. Midbrain encodes sound detection behavior without auditory cortex. eLife 2024; 12:RP89950. [PMID: 39688376 DOI: 10.7554/elife.89950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this was also the case in mice in which auditory cortical input to the midbrain had been removed by bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth of non-acoustic information and can, independently of the auditory cortex, carry much richer neural representations than previously thought.
Collapse
Affiliation(s)
- Tai-Ying Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Yves Weissenberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Zhu M, Mosso MB, Ma X, Park E, Barth AL. Long-lasting, subtype-specific regulation of somatostatin interneurons during sensory learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624383. [PMID: 39605654 PMCID: PMC11601575 DOI: 10.1101/2024.11.19.624383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Somatostatin (SST)-expressing inhibitory neurons are a major class of neocortical γ-amino butyric acid (GABA) neurons, where morphological, electrophysiological, and transcriptomic analyses indicate more than a dozen different subtypes. However, whether this diversity is related to specific roles in cortical computations and plasticity remains unclear. Here we identify learning-dependent, subtype-specific plasticity in layer 2/3 SST neurons of the mouse somatosensory cortex. Martinotti-type, SST neurons expressing calbindin-2 show a selective decrease in excitatory synaptic input and stimulus-evoked calcium responses as mice learn a stimulus-reward association. Using these insights, we develop a label-free classifier using basal activity from in vivo imaging that accurately predicts learning-associated response plasticity. Our data indicate that molecularly-defined SST neuron subtypes play specific and highly-regulated roles in sensory information processing and learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Matthew B. Mosso
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Xiaoyang Ma
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| |
Collapse
|
19
|
Tobin M, Sheth J, Wood KC, Michel EK, Geffen MN. "Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.01.526470. [PMID: 36778269 PMCID: PMC9915672 DOI: 10.1101/2023.02.01.526470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons have distinct effects on population neuronal responses to noise bursts of varying intensities. We optogenetically stimulated SST or VIP neurons while simultaneously measuring the calcium responses of populations of hundreds of neurons in the auditory cortex of male and female awake, head-fixed mice to sounds. Upon SST neuronal activation, noise bursts representations became more discrete for different intensity levels, relying on cell identity rather than strength. By contrast, upon VIP neuronal activation, noise bursts of different intensity level activated overlapping neuronal populations, albeit at different response strengths. At the single-cell level, SST and VIP neuronal activation differentially modulated the response-level curves of monotonic and nonmonotonic neurons. SST neuronal activation effects were consistent with a shift of the neuronal population responses toward a more localist code with different cells responding to sounds of different intensity. By contrast, VIP neuronal activation shifted responses towards a more distributed code, in which sounds of different intensity level are encoded in the relative response of similar populations of cells. These results delineate how distinct inhibitory neurons in the auditory cortex dynamically control cortical population codes. Different inhibitory neuronal populations may be recruited under different behavioral demands, depending on whether categorical or invariant representations are advantageous for the task.
Collapse
Affiliation(s)
- Melanie Tobin
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Janaki Sheth
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Katherine C. Wood
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Erin K. Michel
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Maria N. Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
20
|
Tian GJ, Zhu O, Shirhatti V, Greenspon CM, Downey JE, Freedman DJ, Doiron B. Neuronal firing rate diversity lowers the dimension of population covariability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610535. [PMID: 39257801 PMCID: PMC11383671 DOI: 10.1101/2024.08.30.610535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Populations of neurons produce activity with two central features. First, neuronal responses are very diverse - specific stimuli or behaviors prompt some neurons to emit many action potentials, while other neurons remain relatively silent. Second, the trial-to-trial fluctuations of neuronal response occupy a low dimensional space, owing to significant correlations between the activity of neurons. These two features define the quality of neuronal representation. We link these two aspects of population response using a recurrent circuit model and derive the following relation: the more diverse the firing rates of neurons in a population, the lower the effective dimension of population trial-to-trial covariability. This surprising prediction is tested and validated using simultaneously recorded neuronal populations from numerous brain areas in mice, non-human primates, and in the motor cortex of human participants. Using our relation we present a theory where a more diverse neuronal code leads to better fine discrimination performance from population activity. In line with this theory, we show that neuronal populations across the brain exhibit both more diverse mean responses and lower-dimensional fluctuations when the brain is in more heightened states of information processing. In sum, we present a key organizational principle of neuronal population response that is widely observed across the nervous system and acts to synergistically improve population representation.
Collapse
|
21
|
Haimson B, Gilday OD, Lavi-Rudel A, Sagi H, Lottem E, Mizrahi A. Single neuron responses to perceptual difficulty in the mouse auditory cortex. SCIENCE ADVANCES 2024; 10:eadp9816. [PMID: 39141740 PMCID: PMC11323952 DOI: 10.1126/sciadv.adp9816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Perceptual learning leads to improvement in behavioral performance, yet how the brain supports challenging perceptual demands is unknown. We used two photon imaging in the mouse primary auditory cortex during behavior in a Go-NoGo task designed to test perceptual difficulty. Using general linear model analysis, we found a subset of neurons that increased their responses during high perceptual demands. Single neurons increased their responses to both Go and NoGo sounds when mice were engaged in the more difficult perceptual discrimination. This increased responsiveness contributes to enhanced cortical network discriminability for the learned sounds. Under passive listening conditions, the same neurons responded weaker to the more similar sound pairs of the difficult task, and the training protocol by itself induced specific suppression to the learned sounds. Our findings identify how neuronal activity in auditory cortex is modulated during high perceptual demands, which is a fundamental feature associated with perceptual improvement.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amichai Lavi-Rudel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Eran Lottem
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607026. [PMID: 39149350 PMCID: PMC11326227 DOI: 10.1101/2024.08.07.607026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Merging information from across sensory modalities is key to forming robust, disambiguated percepts of the world, yet how the brain achieves this feat remains unclear. Recent observations of cross-modal influences in primary sensory cortical areas have suggested that multisensory integration may occur in the earliest stages of cortical processing, but the role of these responses is still poorly understood. We address these questions by testing several hypotheses about the possible functions served by auditory influences on the barrel field of mouse primary somatosensory cortex (S1) using in vivo 2-photon calcium imaging. We observed sound-evoked spiking activity in a small fraction of cells overall, and moreover that this sparse activity was insufficient to encode auditory stimulus identity; few cells responded preferentially to one sound or another, and a linear classifier trained to decode auditory stimuli from population activity performed barely above chance. Moreover S1 did not encode information about specific audio-tactile feature conjunctions that we tested. Our ability to decode auditory audio-tactile stimuli from neural activity remained unchanged after both passive experience and reinforcement. Collectively, these results suggest that while a primary sensory cortex is highly plastic with regard to its own modality, the influence of other modalities are remarkably stable and play a largely stimulus-non-specific role.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
23
|
Panniello M, Gillon CJ, Maffulli R, Celotto M, Richards BA, Panzeri S, Kohl MM. Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning. Cell Rep 2024; 43:114244. [PMID: 38796851 PMCID: PMC11913744 DOI: 10.1016/j.celrep.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Colleen J Gillon
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Mila, Montréal, QC H2S 3H1, Canada
| | - Roberto Maffulli
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marco Celotto
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Blake A Richards
- Mila, Montréal, QC H2S 3H1, Canada; School of Computer Science, McGill University, Montréal, QC H3A 2A7, Canada; Department of Neurology & Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada; Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada; Montreal Neurological Institute, Montréal, QC H3A 2B4, Canada
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
24
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597946. [PMID: 38915657 PMCID: PMC11195094 DOI: 10.1101/2024.06.10.597946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rapid learning confers significant advantages to animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by a gradual expansion of predictive cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6-8, challenging the prevailing model of sensory cortical plasticity. Here, we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex (AC) drives both rapid learning and slower performance gains but becomes dispensable at expert. Rather than enhancement or expansion of cue representations9, two-photon calcium imaging of AC excitatory neurons throughout learning revealed two higher-order signals that were causal to learning and performance. First, a reward prediction (RP) signal emerged rapidly within tens of trials, was present after action-related errors only early in training, and faded at expert levels. Strikingly, silencing at the time of the RP signal impaired rapid learning, suggesting it serves an associative and teaching role. Second, a distinct cell ensemble encoded and controlled licking suppression that drove the slower performance improvements. These two ensembles were spatially clustered but uncoupled from underlying sensory representations, indicating a higher-order functional segregation within AC. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Present address: Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| |
Collapse
|
25
|
Zhu M, Kuhlman SJ, Barth AL. Transient enhancement of stimulus-evoked activity in neocortex during sensory learning. Learn Mem 2024; 31:a053870. [PMID: 38955432 PMCID: PMC11261211 DOI: 10.1101/lm.053870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+ imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning-indeed, under our imaging conditions thalamocortical axons were robustly activated-we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Sandra J Kuhlman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
26
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
27
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
28
|
Trisal S, VijayRaghavan K, Ramaswami M. Habituation of Sugar-Induced Proboscis Extension Reflex and Yeast-Induced Habituation Override in Drosophila melanogaster. Bio Protoc 2023; 13:e4891. [PMID: 38130897 PMCID: PMC10733151 DOI: 10.21769/bioprotoc.4891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
Habituation, the process by which animals learn to ignore insignificant stimuli, facilitates engagement with salient features of the environment. However, neural mechanisms underlying habituation also allow responses to familiar stimuli to be reinstated when such stimuli become potentially significant. Thus, the habituated state must allow a mechanism for habituation override. The remarkably precise knowledge of cell identity, connectivity, and information coding in Drosophila sensory circuits, as well as the availability of tools to genetically target these cells, makes Drosophila a valuable and important organism for analysis of habituation and habituation-override mechanisms. Studies of olfactory and gustatory habituation in Drosophila suggest that potentiation of GABAergic neurons underlies certain timescales of habituation and have specified some elements of a gustatory habituation-override pathway. More detailed understanding of gustatory habituation and habituation-override mechanisms will benefit from access to robust behavioral assays for (a) the proboscis extension reflex (PER) elicited by a sweet stimulus, (b) exposure paradigms that result in PER habituation, and, most critically, (c) manipulations that result in PER-habituation override. Here, we describe simple protocols for persistent sucrose exposure of tarsal hairs that lead to habituation of proboscis extension and for presentation of a novel appetitive stimuli that reinstate robust PER to habituated flies. This detailed protocol of gustatory habituation provides (a) a simple method to induce habituation by continuous exposure of the flies to sucrose for 10 min without leading to ingestion and (b) a novel method to override habituation by presenting yeast to the proboscis. Key features • A protocol for stimulation of Drosophila's taste (sugar) sensory neurons that induces gustatory habituation without satiation due to ingestion. • A chemical (yeast) stimulation protocol that rapidly induces habituation override/dishabituation in sugar-habituated Drosophila.
Collapse
Affiliation(s)
- Swati Trisal
- National Centre for Biological Sciences, TIFR, Bangalore, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy University, Thanjavur, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
López Espejo M, David SV. A sparse code for natural sound context in auditory cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100118. [PMID: 38152461 PMCID: PMC10749876 DOI: 10.1016/j.crneur.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Accurate sound perception can require integrating information over hundreds of milliseconds or even seconds. Spectro-temporal models of sound coding by single neurons in auditory cortex indicate that the majority of sound-evoked activity can be attributed to stimuli with a few tens of milliseconds. It remains uncertain how the auditory system integrates information about sensory context on a longer timescale. Here we characterized long-lasting contextual effects in auditory cortex (AC) using a diverse set of natural sound stimuli. We measured context effects as the difference in a neuron's response to a single probe sound following two different context sounds. Many AC neurons showed context effects lasting longer than the temporal window of a traditional spectro-temporal receptive field. The duration and magnitude of context effects varied substantially across neurons and stimuli. This diversity of context effects formed a sparse code across the neural population that encoded a wider range of contexts than any constituent neuron. Encoding model analysis indicates that context effects can be explained by activity in the local neural population, suggesting that recurrent local circuits support a long-lasting representation of sensory context in auditory cortex.
Collapse
Affiliation(s)
- Mateo López Espejo
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Stephen V. David
- Otolaryngology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Hayden DJ, Finnie PSB, Thomazeau A, Li AY, Cooke SF, Bear MF. Electrophysiological Signatures of Visual Recognition Memory across All Layers of Mouse V1. J Neurosci 2023; 43:7307-7321. [PMID: 37714707 PMCID: PMC10621768 DOI: 10.1523/jneurosci.0090-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared with novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer 4 (L4) by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDARs) and has been hypothesized to reflect potentiation of thalamocortical (TC) synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed in male and female mice, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knock-out (KO) of NMDAR in L6 principal neurons disrupts SRP. Current-source density (CSD) analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4, and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1.SIGNIFICANCE STATEMENT Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurologic and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials (VEPs), neuronal spiking activity, and oscillations in the local field potentials (LFPs) across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 (L6) of visual cortex.
Collapse
Affiliation(s)
- Dustin J Hayden
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alyssa Y Li
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Biochemistry Program, Wellesley College, Wellesley, Massachusetts 02481
| | - Samuel F Cooke
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
31
|
Quintela-Vega L, Morado-Díaz CJ, Terreros G, Sánchez JS, Pérez-González D, Malmierca MS. Novelty detection in an auditory oddball task on freely moving rats. Commun Biol 2023; 6:1063. [PMID: 37857812 PMCID: PMC10587131 DOI: 10.1038/s42003-023-05403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
The relative importance or saliency of sensory inputs depend on the animal's environmental context and the behavioural responses to these same inputs can vary over time. Here we show how freely moving rats, trained to discriminate between deviant tones embedded in a regular pattern of repeating stimuli and different variations of the classic oddball paradigm, can detect deviant tones, and this discriminability resembles the properties that are typical of neuronal adaptation described in previous studies. Moreover, the auditory brainstem response (ABR) latency decreases after training, a finding consistent with the notion that animals develop a type of plasticity to auditory stimuli. Our study suggests the existence of a form of long-term memory that may modulate the level of neuronal adaptation according to its behavioural relevance, and sets the ground for future experiments that will help to disentangle the functional mechanisms that govern behavioural habituation and its relation to neuronal adaptation.
Collapse
Affiliation(s)
- Laura Quintela-Vega
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Camilo J Morado-Díaz
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Gonzalo Terreros
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Instituto de Ciencias de la Salud. Universidad de O´Higgins, Rancagua, Chile
| | - Jazmín S Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Basic Psychology, Psychobiology and Methodology of Behavioural Sciences. Faculty of Psychology, University of Salamanca, 37005, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain.
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
32
|
Kimura R. Flexible information representation to stabilize sensory perception despite minor external input variations. Neurosci Res 2023; 195:1-8. [PMID: 37236268 DOI: 10.1016/j.neures.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Sensory information about the environment constantly changes or varies depending on circumstances. However, once we repeatedly experience objects, our brain can perceive and recognize them as identical, even if they are slightly altered or include some diversity. We can stably perceive things without interference from minor external changes or variety. Our recent study focusing on visual perception showed that repeatedly viewing the same oriented grating stimuli enables information representation for low-contrast (or weak-intensity) orientations in the primary visual cortex. We observed low contrast-preferring neurons, whose firing rates increased by reducing the luminance contrast. The number of such neurons increased after the experience, and the neuronal population, including such neurons, can represent even low-contrast orientations. This study indicated that experience leads to flexible information representations that continuously respond to inputs of various strengths at the neuronal population level in the primary sensory cortex. In this perspective article, in addition to the above mechanism, I would discuss alternative mechanisms for perceptual stabilization. The primary sensory cortex represents external information faithfully without alterations, as well as in a state distorted by experience. Both sensory representations may cooperatively and dynamically affect hierarchical downstream, resulting in stable perception.
Collapse
Affiliation(s)
- Rie Kimura
- International Research Center for Neurointelligence, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
Atsumi Y, Oisi Y, Odagawa M, Matsubara C, Saito Y, Uwamori H, Kobayashi K, Kato S, Kobayashi K, Murayama M. Anatomical identification of a corticocortical top-down recipient inhibitory circuitry by enhancer-restricted transsynaptic tracing. Front Neural Circuits 2023; 17:1245097. [PMID: 37720921 PMCID: PMC10502327 DOI: 10.3389/fncir.2023.1245097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Despite the importance of postsynaptic inhibitory circuitry targeted by mid/long-range projections (e.g., top-down projections) in cognitive functions, its anatomical properties, such as laminar profile and neuron type, are poorly understood owing to the lack of efficient tracing methods. To this end, we developed a method that combines conventional adeno-associated virus (AAV)-mediated transsynaptic tracing with a distal-less homeobox (Dlx) enhancer-restricted expression system to label postsynaptic inhibitory neurons. We called this method "Dlx enhancer-restricted Interneuron-SpECific transsynaptic Tracing" (DISECT). We applied DISECT to a top-down corticocortical circuit from the secondary motor cortex (M2) to the primary somatosensory cortex (S1) in wild-type mice. First, we injected AAV1-Cre into the M2, which enabled Cre recombinase expression in M2-input recipient S1 neurons. Second, we injected AAV1-hDlx-flex-green fluorescent protein (GFP) into the S1 to transduce GFP into the postsynaptic inhibitory neurons in a Cre-dependent manner. We succeeded in exclusively labeling the recipient inhibitory neurons in the S1. Laminar profile analysis of the neurons labeled via DISECT indicated that the M2-input recipient inhibitory neurons were distributed in the superficial and deep layers of the S1. This laminar distribution was aligned with the laminar density of axons projecting from the M2. We further classified the labeled neuron types using immunohistochemistry and in situ hybridization. This post hoc classification revealed that the dominant top-down M2-input recipient neuron types were somatostatin-expressing neurons in the superficial layers and parvalbumin-expressing neurons in the deep layers. These results demonstrate that DISECT enables the investigation of multiple anatomical properties of the postsynaptic inhibitory circuitry.
Collapse
Affiliation(s)
- Yusuke Atsumi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Department of Life Science and Technology, School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Maya Odagawa
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Chie Matsubara
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshihito Saito
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe-shi, Japan
| | - Hiroyuki Uwamori
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki-shi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
34
|
Bender PTR, McCollum M, Boyd-Pratt H, Mendelson BZ, Anderson CT. Synaptic zinc potentiates AMPA receptor function in mouse auditory cortex. Cell Rep 2023; 42:112932. [PMID: 37585291 PMCID: PMC10514716 DOI: 10.1016/j.celrep.2023.112932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.
Collapse
Affiliation(s)
- Philip T R Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Helen Boyd-Pratt
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Benjamin Z Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles T Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
35
|
Angeloni CF, Młynarski W, Piasini E, Williams AM, Wood KC, Garami L, Hermundstad AM, Geffen MN. Dynamics of cortical contrast adaptation predict perception of signals in noise. Nat Commun 2023; 14:4817. [PMID: 37558677 PMCID: PMC10412650 DOI: 10.1038/s41467-023-40477-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.
Collapse
Affiliation(s)
- Christopher F Angeloni
- Psychology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiktor Młynarski
- Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aaron M Williams
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine C Wood
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Garami
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA.
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Vivaldo CA, Lee J, Shorkey M, Keerthy A, Rothschild G. Auditory cortex ensembles jointly encode sound and locomotion speed to support sound perception during movement. PLoS Biol 2023; 21:e3002277. [PMID: 37651461 PMCID: PMC10499203 DOI: 10.1371/journal.pbio.3002277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/13/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The ability to process and act upon incoming sounds during locomotion is critical for survival and adaptive behavior. Despite the established role that the auditory cortex (AC) plays in behavior- and context-dependent sound processing, previous studies have found that auditory cortical activity is on average suppressed during locomotion as compared to immobility. While suppression of auditory cortical responses to self-generated sounds results from corollary discharge, which weakens responses to predictable sounds, the functional role of weaker responses to unpredictable external sounds during locomotion remains unclear. In particular, whether suppression of external sound-evoked responses during locomotion reflects reduced involvement of the AC in sound processing or whether it results from masking by an alternative neural computation in this state remains unresolved. Here, we tested the hypothesis that rather than simple inhibition, reduced sound-evoked responses during locomotion reflect a tradeoff with the emergence of explicit and reliable coding of locomotion velocity. To test this hypothesis, we first used neural inactivation in behaving mice and found that the AC plays a critical role in sound-guided behavior during locomotion. To investigate the nature of this processing, we used two-photon calcium imaging of local excitatory auditory cortical neural populations in awake mice. We found that locomotion had diverse influences on activity of different neurons, with a net suppression of baseline-subtracted sound-evoked responses and neural stimulus detection, consistent with previous studies. Importantly, we found that the net inhibitory effect of locomotion on baseline-subtracted sound-evoked responses was strongly shaped by elevated ongoing activity that compressed the response dynamic range, and that rather than reflecting enhanced "noise," this ongoing activity reliably encoded the animal's locomotion speed. Decoding analyses revealed that locomotion speed and sound are robustly co-encoded by auditory cortical ensemble activity. Finally, we found consistent patterns of joint coding of sound and locomotion speed in electrophysiologically recorded activity in freely moving rats. Together, our data suggest that rather than being suppressed by locomotion, auditory cortical ensembles explicitly encode it alongside sound information to support sound perception during locomotion.
Collapse
Affiliation(s)
- Carlos Arturo Vivaldo
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonyeup Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MaryClaire Shorkey
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ajay Keerthy
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
37
|
Marmelshtein A, Eckerling A, Hadad B, Ben-Eliyahu S, Nir Y. Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex. Curr Biol 2023; 33:2925-2940.e6. [PMID: 37385257 PMCID: PMC7617130 DOI: 10.1016/j.cub.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/30/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Insufficient sleep is commonplace in modern lifestyle and can lead to grave outcomes, yet the changes in neuronal activity accumulating over hours of extended wakefulness remain poorly understood. Specifically, which aspects of cortical processing are affected by sleep deprivation (SD), and whether they also affect early sensory regions, remain unclear. Here, we recorded spiking activity in the rat auditory cortex along with polysomnography while presenting sounds during SD followed by recovery sleep. We found that frequency tuning, onset responses, and spontaneous firing rates were largely unaffected by SD. By contrast, SD decreased entrainment to rapid (≥20 Hz) click trains, increased population synchrony, and increased the prevalence of sleep-like stimulus-induced silent periods, even when ongoing activity was similar. Recovery NREM sleep was associated with similar effects as SD with even greater magnitude, while auditory processing during REM sleep was similar to vigilant wakefulness. Our results show that processes akin to those in NREM sleep invade the activity of cortical circuits during SD, even in the early sensory cortex.
Collapse
Affiliation(s)
- Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anabel Eckerling
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hadad
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| |
Collapse
|
38
|
Aimi T, Matsuda K, Yuzaki M. C1ql1-Bai3 signaling is necessary for climbing fiber synapse formation in mature Purkinje cells in coordination with neuronal activity. Mol Brain 2023; 16:61. [PMID: 37488606 PMCID: PMC10367388 DOI: 10.1186/s13041-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Changes in neural activity induced by learning and novel environments have been reported to lead to the formation of new synapses in the adult brain. However, the underlying molecular mechanism is not well understood. Here, we show that Purkinje cells (PCs), which have established adult-type monosynaptic innervation by climbing fibers (CFs) after elimination of weak CFs during development, can be reinnervated by multiple CFs by increased expression of the synaptic organizer C1ql1 in CFs or Bai3, a receptor for C1ql1, in PCs. In the adult cerebellum, CFs are known to have transverse branches that run in a mediolateral direction without forming synapses with PCs. Electrophysiological, Ca2+-imaging and immunohistochemical studies showed that overexpression of C1ql1 or Bai3 caused these CF transverse branches to elongate and synapse on the distal dendrites of mature PCs. Mature PCs were also reinnervated by multiple CFs when the glutamate receptor GluD2, which is essential for the maintenance of synapses between granule cells and PCs, was deleted. Interestingly, the effect of GluD2 knockout was not observed in Bai3 knockout PCs. In addition, C1ql1 levels were significantly upregulated in CFs of GluD2 knockout mice, suggesting that endogenous, not overexpressed, C1ql1-Bai3 signaling could regulate the reinnervation of mature PCs by CFs. Furthermore, the effects of C1ql1 and Bai3 overexpression required neuronal activity in the PC and CF, respectively. C1ql1 immunoreactivity at CF-PC synapses was reduced when the neuronal activity of CFs was suppressed. These results suggest that C1ql1-Bai3 signaling may mediate CF synaptogenesis in mature PCs, potentially in concert with neuronal activity.
Collapse
Affiliation(s)
- Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
39
|
Pancholi R, Ryan L, Peron S. Learning in a sensory cortical microstimulation task is associated with elevated representational stability. Nat Commun 2023; 14:3860. [PMID: 37385989 PMCID: PMC10310840 DOI: 10.1038/s41467-023-39542-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Sensory cortical representations can be highly dynamic, raising the question of how representational stability impacts learning. We train mice to discriminate the number of photostimulation pulses delivered to opsin-expressing pyramidal neurons in layer 2/3 of primary vibrissal somatosensory cortex. We simultaneously track evoked neural activity across learning using volumetric two-photon calcium imaging. In well-trained animals, trial-to-trial fluctuations in the amount of photostimulus-evoked activity predicted animal choice. Population activity levels declined rapidly across training, with the most active neurons showing the largest declines in responsiveness. Mice learned at varied rates, with some failing to learn the task in the time provided. The photoresponsive population showed greater instability both within and across behavioral sessions among animals that failed to learn. Animals that failed to learn also exhibited a faster deterioration in stimulus decoding. Thus, greater stability in the stimulus response is associated with learning in a sensory cortical microstimulation task.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA.
| |
Collapse
|
40
|
Sadigurschi N, Scrift G, Hirrlinger J, Golan HM. Genetic impairment of folate metabolism regulates cortical interneurons and social behavior. Front Neurosci 2023; 17:1203262. [PMID: 37449270 PMCID: PMC10338116 DOI: 10.3389/fnins.2023.1203262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The implications of folate deficiency in neuropsychiatric disorders were demonstrated in numerous studies. Genetic deficiency in a key folate metabolism enzyme, MTHFR, is an example of the interaction between genetic and environmental risk factors: the maternal MTHFR deficiency governs in-utero nutrient availability, and the embryo's Mthfr genotype influences its ability to metabolize folates. Here, we explore how the maternal and offspring Mthfr genotypes affect cortical interneuron densities and distributions, mouse social outcome, and the relation of the different interneuron patterns to cortical excitability. Methods Two experiments were conducted to examine the effects of maternal and offspring Mthfr-KO heterozygosity. Mice were tested for direct social interactions (DSIs), repetitive behavior and cortical laminar distribution of interneuron populations expressing glutamate-decarboxylase-65, parvalbumin and somatostatin. Susceptibility to seizure was tested by exposure to pentylenetetrazole (PTZ). Results Maternal Mthfr+/- genotype was associated with suppressed social activities and reduced interneuron densities in all layers of the retrosplenial cortex (RSC). Somatostatin density and the somatostatin/parvalbumin ratio in the RSC and frontal cortex positively correlated with social behavior in the mice. An interaction between maternal and offspring Mthfr genotypes resulted in higher susceptibility of wild-type offspring to PTZ induced seizure. Discussion Maternal folate metabolism was shown to be critical to interneuron ontogenesis. Our results demonstrate that interneurons have a specific susceptibility to folate deficiency that may mediate folate's involvement in neuropsychiatric disease. The relations between cortical somatostatin interneuron patterns and social behavior highlight this subpopulation of interneurons as a target for further research.
Collapse
Affiliation(s)
- Noa Sadigurschi
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gilad Scrift
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hava M. Golan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
41
|
Khoury CF, Fala NG, Runyan CA. Arousal and Locomotion Differently Modulate Activity of Somatostatin Neurons across Cortex. eNeuro 2023; 10:ENEURO.0136-23.2023. [PMID: 37169583 PMCID: PMC10216262 DOI: 10.1523/eneuro.0136-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Arousal powerfully influences cortical activity, in part by modulating local inhibitory circuits. Somatostatin (SOM)-expressing inhibitory interneurons are particularly well situated to shape local population activity in response to shifts in arousal, yet the relationship between arousal state and SOM activity has not been characterized outside of sensory cortex. To determine whether SOM activity is similarly modulated by behavioral state across different levels of the cortical processing hierarchy, we compared the behavioral modulation of SOM-expressing neurons in auditory cortex (AC), a primary sensory region, and posterior parietal cortex (PPC), an association-level region of cortex, in mice. Behavioral state modulated activity differently in AC and PPC. In PPC, transitions to high arousal were accompanied by large increases in activity across the full PPC neural population, especially in SOM neurons. In AC, arousal transitions led to more subtle changes in overall activity, as individual SOM and Non-SOM neurons could be either positively or negatively modulated during transitions to high arousal states. The coding of sensory information in population activity was enhanced during periods of high arousal in AC, but not in PPC. Our findings suggest unique relationships between activity in local circuits and arousal across cortex, which may be tailored to the roles of specific cortical regions in sensory processing or the control of behavior.
Collapse
Affiliation(s)
- Christine F Khoury
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Noelle G Fala
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Caroline A Runyan
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
42
|
Zhou B, Tomioka R, Song WJ. Temporal profiles of neuronal responses to repeated tone stimuli in the mouse primary auditory cortex. Hear Res 2023; 430:108710. [PMID: 36758331 DOI: 10.1016/j.heares.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
How the auditory system processes temporal information of sound has been investigated extensively using repeated stimuli. Recent studies on how the response of neurons in the primary auditory cortex (A1) changes with the progression of stimulus repetition, have reported response temporal profiles of two categories: "adaptation", i.e., gradual decrease, and "facilitation", i.e., gradual increase. To explore the existence of profiles of other categories and to examine the tone-frequency-dependence of the profile category in single neurons, here we studied the response of mouse A1 neurons to four or five tone-trains; each train comprised 10 identical tone pips, with 0.5-s inter-tone-intervals, and the four or five trains differed only in tone frequency. The response to each tone in a train was evaluated using the peak of the ON response, and how the peak response changed with the tone number in the train, i.e., the response temporal profile, was examined. We confirmed the existence of profiles of both "adaptation" and "facilitation" categories; "adaptation" could be further subcategorized into "slow adaptation" and "fast adaptation" profiles, with the latter being encountered more frequently. Moreover, two new categories of non-monotonic profiles were identified: an "adaptation with recovery" profile and a "facilitation followed by adaptation" profile. Examination of single neurons with trains of different tone frequencies revealed that some A1 neurons exhibited profiles of the same category to tone trains of different tone frequencies, whereas others exhibited profiles of different categories, depending on the tone frequency. These results demonstrate the variety in the response temporal profiles of mouse A1 neurons, which may benefit the encoding of individual tones in a train.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan
| | - Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan.
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
43
|
Narayanan DP, Tsukano H, Kline AM, Onodera K, Kato HK. Biological constraints on stereotaxic targeting of functionally-defined cortical areas. Cereb Cortex 2023; 33:3293-3310. [PMID: 35834935 PMCID: PMC10016058 DOI: 10.1093/cercor/bhac275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding computational principles in hierarchically organized sensory systems requires functional parcellation of brain structures and their precise targeting for manipulations. Although brain atlases are widely used to infer area locations in the mouse neocortex, it has been unclear whether stereotaxic coordinates based on standardized brain morphology accurately represent functional domains in individual animals. Here, we used intrinsic signal imaging to evaluate the accuracy of area delineation in the atlas by mapping functionally-identified auditory cortices onto bregma-based stereotaxic coordinates. We found that auditory cortices in the brain atlas correlated poorly with the true complexity of functional area boundaries. Inter-animal variability in functional area locations predicted surprisingly high error rates in stereotaxic targeting with atlas coordinates. This variability was not simply attributed to brain sizes or suture irregularities but instead reflected differences in cortical geography across animals. Our data thus indicate that functional mapping in individual animals is essential for dissecting cortical area-specific roles with high precision.
Collapse
Affiliation(s)
| | - Hiroaki Tsukano
- Corresponding authors: Hiroyuki Kato, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States. ; Hiroaki Tsukano, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States.
| | | | | | - Hiroyuki K Kato
- Corresponding authors: Hiroyuki Kato, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States. ; Hiroaki Tsukano, Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building, Rm. 6212B, Chapel Hill, NC, 27599-7250, United States.
| |
Collapse
|
44
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
45
|
Hayden DJ, Finnie PSB, Thomazeau A, Li AY, Cooke SF, Bear MF. Electrophysiological signatures of visual recognition memory across all layers of mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.524429. [PMID: 36747661 PMCID: PMC9900851 DOI: 10.1101/2023.01.25.524429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared to novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer (L) 4 by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDAR) and has been hypothesized to reflect potentiation of thalamocortical synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knockout of NMDAR in L6 principal neurons disrupts SRP. Current-source density analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4 and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs to in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1. Significance Statement Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurological and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials, neuronal spiking activity, and oscillations in the local field potentials across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 of visual cortex.
Collapse
|
46
|
Huang J, Liang S, Li L, Li X, Liao X, Hu Q, Zhang C, Jia H, Chen X, Wang M, Li R. Daily two-photon neuronal population imaging with targeted single-cell electrophysiology and subcellular imaging in auditory cortex of behaving mice. Front Cell Neurosci 2023; 17:1142267. [PMID: 36937184 PMCID: PMC10020347 DOI: 10.3389/fncel.2023.1142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative and mechanistic understanding of learning and long-term memory at the level of single neurons in living brains require highly demanding techniques. A specific need is to precisely label one cell whose firing output property is pinpointed amidst a functionally characterized large population of neurons through the learning process and then investigate the distribution and properties of dendritic inputs. Here, we disseminate an integrated method of daily two-photon neuronal population Ca2+ imaging through an auditory associative learning course, followed by targeted single-cell loose-patch recording and electroporation of plasmid for enhanced chronic Ca2+ imaging of dendritic spines in the targeted cell. Our method provides a unique solution to the demand, opening a solid path toward the hard-cores of how learning and long-term memory are physiologically carried out at the level of single neurons and synapses.
Collapse
Affiliation(s)
- Junjie Huang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Susu Liang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Qianshuo Hu
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Chunqing Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hongbo Jia
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Xiaowei Chen,
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- Meng Wang,
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- *Correspondence: Ruijie Li,
| |
Collapse
|
47
|
Jovanović N, Suchánková Š, Kang M, Melichar A, Bureš Z, Tureček R. Altered hearing function in mice with implanted cranial windows. Neurosci Lett 2023; 792:136969. [PMID: 36402256 DOI: 10.1016/j.neulet.2022.136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The cranial window technique has proven to be an effective method for in vivo imaging of cortical activity. However, given the invasive nature of this procedure, possible side effects could be expected in the nervous system. In this study, we evaluated the effects of unilateral cranial window surgery on auditory function in C57BL6 mice using electrophysiological and behavioral approaches. We found that one week after implantation, mice exhibited both increased thresholds and decreased amplitudes of their auditory brainstem responses. These changes were accompanied by a decrease in distortion product otoacoustic emissions, indicating a deterioration in cochlear function. In addition, behavioral testing of these mice revealed reduced suppression of their acoustic startle response by gap prepulse, suggesting a deficit in auditory processing or possibly the presence of tinnitus. The changes in auditory function appeared to be only partially reversible within four weeks after surgery. Thus, our findings suggest that cranial window implantation causes long-term functional changes in the auditory system that should be considered when interpreting data from optical imaging techniques.
Collapse
Affiliation(s)
- Nataša Jovanović
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic; Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
| | - Štěpánka Suchánková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic
| | - Minseok Kang
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic; Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
| | - Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských, partyzánů 1580/3, 160 00 Prague 6, Czech Republic
| | - Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4 - Krč, Czech Republic.
| |
Collapse
|
48
|
Shilling-Scrivo K, Mittelstadt J, Kanold PO. Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice. J Neurosci 2022; 42:9278-9292. [PMID: 36302637 PMCID: PMC9761686 DOI: 10.1523/jneurosci.0955-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023] Open
Abstract
Age-related hearing loss (presbycusis) affects one-third of the world's population. One hallmark of presbycusis is difficulty hearing in noisy environments. Presbycusis can be separated into two components: the aging ear and the aging brain. To date, the role of the aging brain in presbycusis is not well understood. Activity in the primary auditory cortex (A1) during a behavioral task is because of a combination of responses representing the acoustic stimuli, attentional gain, and behavioral choice. Disruptions in any of these aspects can lead to decreased auditory processing. To investigate how these distinct components are disrupted in aging, we performed in vivo 2-photon Ca2+ imaging in both male and female mice (Thy1-GCaMP6s × CBA/CaJ mice) that retain peripheral hearing into old age. We imaged A1 neurons of young adult (2-6 months) and old mice (16-24 months) during a tone detection task in broadband noise. While young mice performed well, old mice performed worse at low signal-to-noise ratios. Calcium imaging showed that old animals have increased prestimulus activity, reduced attentional gain, and increased noise correlations. Increased correlations in old animals exist regardless of cell tuning and behavioral outcome, and these correlated networks exist over a much larger portion of cortical space. Neural decoding techniques suggest that this prestimulus activity is predictive of old animals making early responses. Together, our results suggest a model in which old animals have higher and more correlated prestimulus activity and cannot fully suppress this activity, leading to the decreased representation of targets among distracting stimuli.SIGNIFICANCE STATEMENT Aging inhibits the ability to hear clearly in noisy environments. We show that the aging auditory cortex is unable to fully suppress its responses to background noise. During an auditory behavior, fewer neurons were suppressed in the old relative to young animals, which leads to higher prestimulus activity and more false alarms. We show that this excess activity additionally leads to increased correlations between neurons, reducing the amount of relevant stimulus information in the auditory cortex. Future work identifying the lost circuits that are responsible for proper background suppression could provide new targets for therapeutic strategies to preserve auditory processing ability into old age.
Collapse
Affiliation(s)
- Kelson Shilling-Scrivo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Jonah Mittelstadt
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| |
Collapse
|
49
|
Zhang N, Xu NL. Reshaping sensory representations by task-specific brain states: Toward cortical circuit mechanisms. Curr Opin Neurobiol 2022; 77:102628. [PMID: 36116166 DOI: 10.1016/j.conb.2022.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023]
Abstract
Perception is internally constructed by integrating brain states with external sensory inputs, a process depending on the topdown modulation of sensory representations. A wealth of earlier studies described task-dependent modulations of sensory cortex corroborating perceptual and behavioral phenomena. But only with recent technological advancements, the underlying circuit-level mechanisms began to be unveiled. We review recent progress along this line of research. It begins to be appreciated that topdown signals can encode various types of task-related information, ranging from task engagement, and category knowledge to decision execution; these signals are transferred via feedback pathways originating from distinct association cortices and interact with sensory cortical circuits. These plausible mechanisms support a broad range of computations from predictive coding to inference making, ultimately form dynamic percepts and endow behavioral flexibility.
Collapse
Affiliation(s)
- Ningyu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
50
|
Audette NJ, Zhou W, La Chioma A, Schneider DM. Precise movement-based predictions in the mouse auditory cortex. Curr Biol 2022; 32:4925-4940.e6. [PMID: 36283411 PMCID: PMC9691550 DOI: 10.1016/j.cub.2022.09.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Many of the sensations experienced by an organism are caused by their own actions, and accurately anticipating both the sensory features and timing of self-generated stimuli is crucial to a variety of behaviors. In the auditory cortex, neural responses to self-generated sounds exhibit frequency-specific suppression, suggesting that movement-based predictions may be implemented early in sensory processing. However, it remains unknown whether this modulation results from a behaviorally specific and temporally precise prediction, nor is it known whether corresponding expectation signals are present locally in the auditory cortex. To address these questions, we trained mice to expect the precise acoustic outcome of a forelimb movement using a closed-loop sound-generating lever. Dense neuronal recordings in the auditory cortex revealed suppression of responses to self-generated sounds that was specific to the expected acoustic features, to a precise position within the movement, and to the movement that was coupled to sound during training. Prediction-based suppression was concentrated in L2/3 and L5, where deviations from expectation also recruited a population of prediction-error neurons that was otherwise unresponsive. Recording in the absence of sound revealed abundant movement signals in deep layers that were biased toward neurons tuned to the expected sound, as well as expectation signals that were present throughout the cortex and peaked at the time of expected auditory feedback. Together, these findings identify distinct populations of auditory cortical neurons with movement, expectation, and error signals consistent with a learned internal model linking an action to its specific acoustic outcome.
Collapse
Affiliation(s)
- Nicholas J Audette
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - WenXi Zhou
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Alessandro La Chioma
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - David M Schneider
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|