1
|
Gozel O, Doiron B. Between-area communication through the lens of within-area neuronal dynamics. SCIENCE ADVANCES 2024; 10:eadl6120. [PMID: 39413191 PMCID: PMC11482330 DOI: 10.1126/sciadv.adl6120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
A core problem in systems and circuits neuroscience is deciphering the origin of shared dynamics in neuronal activity: Do they emerge through local network interactions, or are they inherited from external sources? We explore this question with large-scale networks of spatially ordered spiking neuron models where a downstream network receives input from an upstream sender network. We show that linear measures of the communication between the sender and receiver networks can discriminate between emergent or inherited population dynamics. A match in the dimensionality of the sender and receiver population activities promotes faithful communication. In contrast, a nonlinear mapping between the sender to receiver activity, for example, through downstream emergent population-wide fluctuations, can impair linear communication. Our work exposes the benefits and limitations of linear measures when analyzing between-area communication in circuits with rich population-wide neuronal dynamics.
Collapse
Affiliation(s)
- Olivia Gozel
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL 60637, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL 60637, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Morales-Gregorio A, Kurth AC, Ito J, Kleinjohann A, Barthélemy FV, Brochier T, Grün S, van Albada SJ. Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region. Cell Rep 2024; 43:114371. [PMID: 38923458 DOI: 10.1016/j.celrep.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.
Collapse
Affiliation(s)
- Aitor Morales-Gregorio
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany.
| | - Anno C Kurth
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; RWTH Aachen University, Aachen, Germany
| | - Junji Ito
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany
| | - Alexander Kleinjohann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Frédéric V Barthélemy
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Thomas Brochier
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Sonja Grün
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany; JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Oldenburg IA, Hendricks WD, Handy G, Shamardani K, Bounds HA, Doiron B, Adesnik H. The logic of recurrent circuits in the primary visual cortex. Nat Neurosci 2024; 27:137-147. [PMID: 38172437 PMCID: PMC10774145 DOI: 10.1038/s41593-023-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity.
Collapse
Affiliation(s)
- Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory Handy
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| | - Kiarash Shamardani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Efficient coding theory of dynamic attentional modulation. PLoS Biol 2022; 20:e3001889. [PMID: 36542662 PMCID: PMC9831638 DOI: 10.1371/journal.pbio.3001889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2023] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Activity of sensory neurons is driven not only by external stimuli but also by feedback signals from higher brain areas. Attention is one particularly important internal signal whose presumed role is to modulate sensory representations such that they only encode information currently relevant to the organism at minimal cost. This hypothesis has, however, not yet been expressed in a normative computational framework. Here, by building on normative principles of probabilistic inference and efficient coding, we developed a model of dynamic population coding in the visual cortex. By continuously adapting the sensory code to changing demands of the perceptual observer, an attention-like modulation emerges. This modulation can dramatically reduce the amount of neural activity without deteriorating the accuracy of task-specific inferences. Our results suggest that a range of seemingly disparate cortical phenomena such as intrinsic gain modulation, attention-related tuning modulation, and response variability could be manifestations of the same underlying principles, which combine efficient sensory coding with optimal probabilistic inference in dynamic environments.
Collapse
|
6
|
Hao X, Liu Q, Chan J, Li N, Shi X, Gu Y. Dark exposure can partly restore the disrupted cortical reliability Binocular visual experience drives the maturation of response variability and reliability in the visual cortex. iScience 2022; 25:104984. [PMID: 36105593 PMCID: PMC9465340 DOI: 10.1016/j.isci.2022.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 10/25/2022] Open
|
7
|
Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions. PLoS Comput Biol 2022; 18:e1010256. [PMID: 35789328 PMCID: PMC9286274 DOI: 10.1371/journal.pcbi.1010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/15/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulus presentation is believed to quench neural response variability as measured by fano-factor (FF). However, the relative contributions of within-trial spike irregularity and trial-to-trial rate variability to FF fluctuations have remained elusive. Here, we introduce a principled approach for accurate estimation of spiking irregularity and rate variability in time for doubly stochastic point processes. Consistent with previous evidence, analysis showed stimulus-induced reduction in rate variability across multiple cortical and subcortical areas. However, unlike what was previously thought, spiking irregularity, was not constant in time but could be enhanced due to factors such as bursting abating the quench in the post-stimulus FF. Simulations confirmed plausibility of a time varying spiking irregularity arising from within and between pool correlations of excitatory and inhibitory neural inputs. By accurate parsing of neural variability, our approach reveals previously unnoticed changes in neural response variability and constrains candidate mechanisms that give rise to observed rate variability and spiking irregularity within brain regions. Mounting evidence suggest neural response variability to be important for understanding and constraining the underlying neural mechanisms in a given brain area. Here, by analyzing responses across multiple brain areas and by using a principled method for parsing variability components into rate variability and spiking irregularity, we show that unlike what was previously thought, event-related quench of variability is not a brain-wide phenomenon and that point process variability and nonrenewal bursting can enhance post-stimulus spiking irregularity across certain cortical and subcortical regions. We propose possible presynaptic mechanisms that may underlie the observed heterogeneities in spiking variability across the brain.
Collapse
|
8
|
Javadzadeh M, Hofer SB. Dynamic causal communication channels between neocortical areas. Neuron 2022; 110:2470-2483.e7. [PMID: 35690063 PMCID: PMC9616801 DOI: 10.1016/j.neuron.2022.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/26/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Processing of sensory information depends on the interactions between hierarchically connected neocortical regions, but it remains unclear how the activity in one area causally influences the activity dynamics in another and how rapidly such interactions change with time. Here, we show that the communication between the primary visual cortex (V1) and high-order visual area LM is context-dependent and surprisingly dynamic over time. By momentarily silencing one area while recording activity in the other, we find that both areas reliably affected changing subpopulations of target neurons within one hundred milliseconds while mice observed a visual stimulus. The influence of LM feedback on V1 responses became even more dynamic when the visual stimuli predicted a reward, causing fast changes in the geometry of V1 population activity and affecting stimulus coding in a context-dependent manner. Therefore, the functional interactions between cortical areas are not static but unfold through rapidly shifting communication subspaces whose dynamics depend on context when processing sensory information. Optogenetic perturbations reveal the causal structure of long-range cortical influences How visual areas influence each other changes dynamically over tens of milliseconds Feedback to V1 improves visual stimulus encoding required for behavior The dynamics of feedback influences depend on the behavioral context
Collapse
Affiliation(s)
- Mitra Javadzadeh
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
9
|
Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci 2022; 25:11-19. [PMID: 34980926 DOI: 10.1038/s41593-021-00980-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Neuroscientists today can measure activity from more neurons than ever before, and are facing the challenge of connecting these brain-wide neural recordings to computation and behavior. In the present review, we first describe emerging tools and technologies being used to probe large-scale brain activity and new approaches to characterize behavior in the context of such measurements. We next highlight insights obtained from large-scale neural recordings in diverse model systems, and argue that some of these pose a challenge to traditional theoretical frameworks. Finally, we elaborate on existing modeling frameworks to interpret these data, and argue that the interpretation of brain-wide neural recordings calls for new theoretical approaches that may depend on the desired level of understanding. These advances in both neural recordings and theory development will pave the way for critical advances in our understanding of the brain.
Collapse
Affiliation(s)
- Anne E Urai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands
| | | | | | - Anne K Churchland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Jacob MS, Roach BJ, Sargent KS, Mathalon DH, Ford JM. Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study. Neuroimage 2021; 245:118705. [PMID: 34798229 DOI: 10.1016/j.neuroimage.2021.118705] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Collapse
Affiliation(s)
- Michael S Jacob
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Kaia S Sargent
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| |
Collapse
|
11
|
Born RT, Bencomo GM. Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:272-285. [PMID: 33784667 PMCID: PMC8238803 DOI: 10.1159/000514859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
The retinal image is insufficient for determining what is "out there," because many different real-world geometries could produce any given retinal image. Thus, the visual system must infer which external cause is most likely, given both the sensory data and prior knowledge that is either innate or learned via interactions with the environment. We will describe a general framework of "hierarchical Bayesian inference" that we and others have used to explore the role of cortico-cortical feedback in the visual system, and we will further argue that this approach to "seeing" makes our visual systems prone to perceptual errors in a variety of different ways. In this deliberately provocative and biased perspective, we argue that the neuromodulator, dopamine, may be a crucial link between neural circuits performing Bayesian inference and the perceptual idiosyncrasies of people with schizophrenia.
Collapse
Affiliation(s)
- Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianluca M Bencomo
- Department of Computer Science, Whittier College, Whittier, California, USA
| |
Collapse
|
12
|
Wason TD. A model integrating multiple processes of synchronization and coherence for information instantiation within a cortical area. Biosystems 2021; 205:104403. [PMID: 33746019 DOI: 10.1016/j.biosystems.2021.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
What is the form of dynamic, e.g., sensory, information in the mammalian cortex? Information in the cortex is modeled as a coherence map of a mixed chimera state of synchronous, phasic, and disordered minicolumns. The theoretical model is built on neurophysiological evidence. Complex spatiotemporal information is instantiated through a system of interacting biological processes that generate a synchronized cortical area, a coherent aperture. Minicolumn elements are grouped in macrocolumns in an array analogous to a phased-array radar, modeled as an aperture, a "hole through which radiant energy flows." Coherence maps in a cortical area transform inputs from multiple sources into outputs to multiple targets, while reducing complexity and entropy. Coherent apertures can assume extremely large numbers of different information states as coherence maps, which can be communicated among apertures with corresponding very large bandwidths. The coherent aperture model incorporates considerable reported research, integrating five conceptually and mathematically independent processes: 1) a damped Kuramoto network model, 2) a pumped area field potential, 3) the gating of nearly coincident spikes, 4) the coherence of activity across cortical lamina, and 5) complex information formed through functions in macrocolumns. Biological processes and their interactions are described in equations and a functional circuit such that the mathematical pieces can be assembled the same way the neurophysiological ones are. The model can be conceptually convolved over the specifics of local cortical areas within and across species. A coherent aperture becomes a node in a graph of cortical areas with a corresponding distribution of information.
Collapse
Affiliation(s)
- Thomas D Wason
- North Carolina State University, Department of Biological Sciences, Meitzen Laboratory, Campus Box 7617, 128 David Clark Labs, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
13
|
Ujfalussy BB, Makara JK. Impact of functional synapse clusters on neuronal response selectivity. Nat Commun 2020; 11:1413. [PMID: 32179739 PMCID: PMC7075899 DOI: 10.1038/s41467-020-15147-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Clustering of functionally similar synapses in dendrites is thought to affect neuronal input-output transformation by triggering local nonlinearities. However, neither the in vivo impact of synaptic clusters on somatic membrane potential (sVm), nor the rules of cluster formation are elucidated. We develop a computational approach to measure the effect of functional synaptic clusters on sVm response of biophysical model CA1 and L2/3 pyramidal neurons to in vivo-like inputs. We demonstrate that small synaptic clusters appearing with random connectivity do not influence sVm. With structured connectivity, ~10-20 synapses/cluster are optimal for clustering-based tuning via state-dependent mechanisms, but larger selectivity is achieved by 2-fold potentiation of the same synapses. We further show that without nonlinear amplification of the effect of random clusters, action potential-based, global plasticity rules cannot generate functional clustering. Our results suggest that clusters likely form via local synaptic interactions, and have to be moderately large to impact sVm responses.
Collapse
Affiliation(s)
- Balázs B Ujfalussy
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, 1083, Budapest, Hungary.
| | - Judit K Makara
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, 1083, Budapest, Hungary
| |
Collapse
|
14
|
Shin H, Moore CI. Persistent Gamma Spiking in SI Nonsensory Fast Spiking Cells Predicts Perceptual Success. Neuron 2019; 103:1150-1163.e5. [PMID: 31327663 PMCID: PMC6763387 DOI: 10.1016/j.neuron.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023]
Abstract
Gamma oscillations (30-55 Hz) are hypothesized to temporally coordinate sensory encoding, enabling perception. However, fast spiking interneurons (FS), key gamma generators, can be highly sensory responsive, as is the gamma band local field potential (LFP). How can FS-mediated gamma act as an impartial temporal reference for sensory encoding, when the sensory drive itself presumably perturbs the pre-established rhythm? Combining tetrode recording in SI barrel cortex with controlled psychophysics, we found a unique FS subtype that was not sensory responsive and spiked regularly at gamma range intervals (gamma regular nonsensory FS [grnsFS]). Successful detection was predicted by a further increase in gamma regular spiking of grnsFS, persisting from before to after sensory onset. In contrast, broadband LFP power, including gamma, negatively predicted detection and did not cohere with gamma band spiking by grnsFS. These results suggest that a distinct FS subtype mediates perceptually relevant oscillations, independent of the LFP and sensory drive.
Collapse
Affiliation(s)
- Hyeyoung Shin
- Department of Neuroscience, Brown University, Providence, RI 02906, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA.
| | - Christopher I Moore
- Department of Neuroscience, Brown University, Providence, RI 02906, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
15
|
Hentschke H, Raz A, Krause BM, Murphy CA, Banks MI. Disruption of cortical network activity by the general anaesthetic isoflurane. Br J Anaesth 2019; 119:685-696. [PMID: 29121295 DOI: 10.1093/bja/aex199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 02/03/2023] Open
Abstract
Background Actions of general anaesthetics on activity in the cortico-thalamic network likely contribute to loss of consciousness and disconnection from the environment. Previously, we showed that the general anaesthetic isoflurane preferentially suppresses cortically evoked synaptic responses compared with thalamically evoked synaptic responses, but how this differential sensitivity translates into changes in network activity is unclear. Methods We investigated isoflurane disruption of spontaneous and stimulus-induced cortical network activity using multichannel recordings in murine auditory thalamo-cortical brain slices. Results Under control conditions, afferent stimulation elicited short latency, presumably monosynaptically driven, spiking responses, as well as long latency network bursts that propagated horizontally through the cortex. Isoflurane (0.05-0.6 mM) suppressed spiking activity overall, but had a far greater effect on network bursts than on early spiking responses. At isoflurane concentrations >0.3 mM, network bursts were almost entirely blocked, even with increased stimulation intensity and in response to paired (thalamo-cortical + cortical layer 1) stimulation, while early spiking responses were <50% blocked. Isoflurane increased the threshold for eliciting bursts, decreased their propagation speed and prevented layer 1 afferents from facilitating burst induction by thalamo-cortical afferents. Conclusions Disruption of horizontal activity spread and of layer 1 facilitation of thalamo-cortical responses likely contribute to the mechanism by which suppression of cortical feedback connections disrupts sensory awareness under anaesthesia.
Collapse
Affiliation(s)
- H Hentschke
- Department of Anesthesiology, Experimental Anesthesiology Section, University Hospital of Tübingen, Tübingen, Germany
| | - A Raz
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.,Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel
| | - B M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - C A Murphy
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.,Physiology Graduate Training Program, University of Wisconsin, Madison, WI, USA
| | - M I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
16
|
Huang C, Ruff DA, Pyle R, Rosenbaum R, Cohen MR, Doiron B. Circuit Models of Low-Dimensional Shared Variability in Cortical Networks. Neuron 2018; 101:337-348.e4. [PMID: 30581012 DOI: 10.1016/j.neuron.2018.11.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Trial-to-trial variability is a reflection of the circuitry and cellular physiology that make up a neuronal network. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional. Previous model cortical networks cannot explain this global variability, and rather assume it is from external sources. We show that if the spatial and temporal scales of inhibitory coupling match known physiology, networks of model spiking neurons internally generate low-dimensional shared variability that captures population activity recorded in vivo. Shifting spatial attention into the receptive field of visual neurons has been shown to differentially modulate shared variability within and between brain areas. A top-down modulation of inhibitory neurons in our network provides a parsimonious mechanism for this attentional modulation. Our work provides a critical link between observed cortical circuit structure and realistic shared neuronal variability and its modulation.
Collapse
Affiliation(s)
- Chengcheng Huang
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Douglas A Ruff
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Pyle
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN, USA
| | - Marlene R Cohen
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Abstract
Multiple mechanisms have been identified as relevant to plasticity, functional stability, and reliable processing across brain states. In the context of stability under "ever-changing conditions" (this Topic), the role of axons has been relatively under-investigated. The highly branched topologies of many axons, however, seem well designed to differentially recruit and regulate distributed postsynaptic groups, possibly in a state-dependent fashion. In this Perspective, I briefly discuss several examples of axon collateralization, and then some of the branch-specific features that might subserve differential recruitment and whole brain activation. An emerging principle is that the number of collaterals and number of target structures are not stereotyped. Rather, axons originating from one defined source typically send branches to diversified subsets of target areas. This could achieve heterogeneous inputs, with different degrees of synchronicity. Variability of neuronal responses has been suggested as inversely proportional to the degree of temporally correlated input. Increased input homogeneity, driven by sensory stimulation or behavioral conditions, is reported to reduce neuronal variability, with axon collateralization potentially having an important role.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
18
|
Rockland KS. What do we know about laminar connectivity? Neuroimage 2017; 197:772-784. [PMID: 28729159 DOI: 10.1016/j.neuroimage.2017.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
In this brief review, I attempt an overview of the main components of anatomical laminar-level connectivity. These are: extrinsic outputs, excitatory and inhibitory intrinsic connectivity, and intrinsic inputs. Supporting data are biased from the visual system of nonhuman primates (NHPs), but I have drawn as much as possible from a broader span in order to treat the important issue of area-specific variability. In a second part, I briefly discuss laminar connectivity in the context of network organization (feedforward/feedback cortical connections, and the major types of corticothalamic connections). I also point out anatomical issues in need of clarification, including more systematic, whole brain coverage of tracer injections; more data on anterogradely labeled terminations; more complete, area-specific quantitative data about projection neurons, and quantitative data on terminal density and convergence. Postsynaptic targets are largely unknown, but their identification is essential for understanding the finer analysis and principles of laminar patterns. Laminar resolution MRI offers a promising new tool for exploring laminar connectivity: it is potentially fast and macro-scale, and allows for repeated investigation under different stimulus conditions. Conversely, anatomical resolution, although detailed beyond the current level of MRI visualization, offers a rich trove for experimental design and interpretation of fMRI activation patterns.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy&Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| |
Collapse
|
19
|
Deneux T, Masquelier T, Bermudez MA, Masson GS, Deco G, Vanzetta I. Visual stimulation quenches global alpha range activity in awake primate V4: a case study. NEUROPHOTONICS 2017; 4:031222. [PMID: 28680907 PMCID: PMC5488336 DOI: 10.1117/1.nph.4.3.031222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence suggests that sensory stimulation not only changes the level of cortical activity with respect to baseline but also its structure. Despite having been reported in a multitude of conditions and preparations (for instance, as a quenching of intertrial variability, Churchland et al., 2010), such changes remain relatively poorly characterized. Here, we used optical imaging of voltage-sensitive dyes to explore, in V4 of an awake macaque, the spatiotemporal characteristics of both visually evoked and spontaneously ongoing neuronal activity and their difference. With respect to the spontaneous case, we detected a reduction in large-scale activity ([Formula: see text]) in the alpha range (5 to 12.5 Hz) during sensory inflow accompanied by a decrease in pairwise correlations. Moreover, the spatial patterns of correlation obtained during the different visual stimuli were on the average more similar one to another than they were to that obtained in the absence of stimulation. Finally, these observed changes in activity dynamics approached saturation already at very low stimulus contrasts, unlike the progressive, near-linear increase of the mean raw evoked responses over a wide range of contrast values, which could indicate a specific switching in the presence of a sensory inflow.
Collapse
Affiliation(s)
- Thomas Deneux
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
- Unit of Neuroscience Information and Complexity, CNRS, Gif-sur-Yvette, France
| | - Timothée Masquelier
- Universitat Pompeu Fabra, Department of Technology, Barcelona, Spain
- Institut de la Vision (CNRS-UPMC), Centre de Recherche Cerveau et Cognition (CNRS-UT3), Toulouse, France
| | - Maria A. Bermudez
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Guillaume S. Masson
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Gustavo Deco
- Universitat Pompeu Fabra, Department of Technology, Barcelona, Spain
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
20
|
de Vasconcelos NAP, Soares-Cunha C, Rodrigues AJ, Ribeiro S, Sousa N. Coupled variability in primary sensory areas and the hippocampus during spontaneous activity. Sci Rep 2017; 7:46077. [PMID: 28393914 PMCID: PMC5385523 DOI: 10.1038/srep46077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.
Collapse
Affiliation(s)
- Nivaldo A. P. de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, RN,59056-450, Brazil
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|