1
|
So KF. Commentary on: "Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation". Neural Regen Res 2025; 20:3040. [PMID: 39610109 PMCID: PMC11826448 DOI: 10.4103/nrr.nrr-d-24-01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
3
|
Majdolhosseini M, Kleiven S, Villa A. Molecular dynamics study of stiffness and rupture of axonal membranes. Brain Res Bull 2025; 223:111266. [PMID: 39993508 DOI: 10.1016/j.brainresbull.2025.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Diffuse axonal injury (DAI), characterized by widespread damage to axons throughout the brain, represents one of the most devastating and difficult-to-treat forms of traumatic brain injury. Different theories exist about the mechanism of DAI, among which one hypothesis states that membrane poration of the axons initiates DAI. To investigate the hypothesis, molecular models of axonal membranes, incorporating 25 different lipids distributed asymmetrically in the leaflets, were developed using a coarse-grain description and simulated using molecular dynamics techniques. Different protein concentrations were embedded inside the lipid bilayer to describe the different sub-cellular parts in myelinated and unmyelinated axons. The models were investigated in equilibration and under deformation to characterize the structural and mechanical properties of the membranes, and comparisons were made with other subcellular parts, particularly myelin. Employing a bottom-top approach, the results were coupled with a finite element model representing the axon at the cell level. The results indicate that pore formation in the node-of-Ranvier occurs at a lower rupture strain compared to other axolemma parts, whereas myelin poration exhibits the highest rupture strains among the investigated models. The observed rupture strain for the node-of-Ranvier aligns with experimental studies, indicating a threshold for injury at axonal strains exceeding 10-13 % depending on the strain rate. The results indicate that the hypothesis suggesting mechanoporation triggers axonal injury cannot be dismissed, as this phenomenon occurs within the threshold of axonal injury.
Collapse
Affiliation(s)
| | - Svein Kleiven
- Neuronic Engineering KTH Royal Institute of Technology, Stockholm 14152, Sweden
| | - Alessandra Villa
- PDC Center for High-Performance Computing KTH-Royal Institute of Technology, Stockholm 11428, Sweden.
| |
Collapse
|
4
|
Wang XL, Wang ZY, Chen XH, Cai Y, Hu B. Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury. Neurosci Bull 2025; 41:633-648. [PMID: 39645618 PMCID: PMC11978567 DOI: 10.1007/s12264-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 12/09/2024] Open
Abstract
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Collapse
Affiliation(s)
- Xin-Liang Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Han Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Cai
- First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Brodersen CR, Brodribb TJ, Hochberg U, Holbrook NM, McAdam SAM, Zailaa J, Huggett BA, Marmottant P. In situ cavitation bubble manometry reveals a lack of light-activated guard cell turgor modulation in bryophytes. Proc Natl Acad Sci U S A 2025; 122:e2419887122. [PMID: 40138347 PMCID: PMC12002306 DOI: 10.1073/pnas.2419887122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/23/2025] [Indexed: 03/29/2025] Open
Abstract
Diversification of plant hydraulic architecture and stomatal function coincides with radical changes in the Earth's atmosphere over the past 400 my. Due to shared stomatal anatomy with the earliest land plants, bryophyte stomatal behavior may provide insights into the evolution of stomatal function, but significant uncertainty remains due to technical limitations of measuring guard cell turgor pressure in situ. Here, we introduce a method for monitoring cell turgor pressure by nucleating microbubbles within the guard cells of intact plant tissue and then examining microbubble growth and dissolution dynamics. First, we show that maximum microbubble radius decreases with increasing pressure as the pressure of the surrounding fluid constrains its growth according to a modified version of the Epstein-Plesset equation. We then apply this method to monitor turgor pressure in dark- vs. light-acclimated guard cells across bryophyte taxa with stomata, where their role in gas-exchange remains ambiguous, and in vascular plants with well-documented light-dependent turgor modulation. Our findings show no light-activated change in turgor in bryophyte guard cells, with pressures not significantly different than neighboring epidermal cells. In contrast, vascular plants show distinct pressure modulation in response to light that drives reversible changes in stomatal aperture. Complete guard cell turgor loss had no effect on bryophyte stomatal aperture but resulted in partial or complete closure in vascular plants. These results suggest that despite conserved stomatal morphology, the sampled bryophytes lack dynamic control over guard cell turgor that is critical for sustaining photosynthesis and inhibiting desiccation.
Collapse
Affiliation(s)
| | - Tim J. Brodribb
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
| | - Uri Hochberg
- Agricultural Research Organization, Volcani Center, Institute of Soil, Water and Environmental Sciences, Neve Ya’ar research station, Rishon LeZion7505101, Israel
| | - N. Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Scott A. M. McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Joseph Zailaa
- School of the Environment, Yale University, New Haven, CT06511
| | | | - Philippe Marmottant
- Laboratoire de Spectrométrie Physique, UMR 5588, Université Grenoble I and CNRS, Martin d’Hères Cedex 1F-38402, France
| |
Collapse
|
6
|
Karnik A, Joshi A. SARM1: The Checkpoint of Axonal Degeneration in the Nervous System Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04835-3. [PMID: 40097763 DOI: 10.1007/s12035-025-04835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Axons are metabolically active neuronal segments with well-controlled axonal degeneration and regeneration. External stress or injury displaces this equilibrium toward degeneration leading to axonal dysfunction observed in the pathology of several diseases. The demand and supply matrix of energy at the synapses are maintained by the axonal transport. Nicotinamide adenine dinucleotide (NAD+) is a major energy-driving coenzyme of cells that controls mitochondrial, cytoplasmic, and other organellar energy cycles generating high amounts of adenosine triphosphate (ATP). NAD+ participates in various cellular cycles and is consumed by several enzymes. One of the key enzymes targeting NAD+ is Sterile alpha and TIR motif-containing protein 1 (SARM1) which gets activated in response to external noxious stimuli. SARM1 is an octamer consisting of multiple domains of which the TIR domain governs NAD+ hydrolysis which eventually leads to axonal deficits. Besides its localization in neurons, SARM1 is also present in astrocytes, microglia, and macrophages in which it regulates inflammatory responses associated with disease pathology. SARM1 localization in the outer mitochondrial membrane is responsible for its association with mitochondrial dynamics. SARM1-mediated mitochondrial dysfunction further drives the axonal degeneration associated with peripheral and central nervous system disorders. Several genetic and pharmacological studies highlight the role of SARM1 in axonal degeneration. SARM1 is thus becoming a popular target for preventing axonal degeneration. Several small molecules consisting of isoquinoline, isothiazole, pyridine, and tryptoline acrylamide moieties have been tested for their activity against SARM1 with a promising foundation for drug discovery in targeting SARM1. In our review, we highlight the role of SARM1 in axonal degeneration associated with several disease pathologies focusing on genetic and pharmacological evaluation.
Collapse
Affiliation(s)
- Aaditi Karnik
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India.
| |
Collapse
|
7
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Liu R, Zhou B. Harmine promotes axon regeneration through enhancing glucose metabolism. J Biol Chem 2025; 301:108254. [PMID: 39904483 PMCID: PMC11927705 DOI: 10.1016/j.jbc.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Axon regeneration requires a substantial mitochondrial energy supply. However, injured mature neurons often fail to regenerate due to their inability to meet these elevated energy demands. Our findings indicate that harmine compensates for the energy deficit following axonal injury by enhancing the coupling between glucose metabolism and mitochondrial homeostasis, thereby promoting axon regeneration. Notably, harmine facilitates mitochondrial biogenesis and enhances mitophagy, ensuring efficient mitochondrial turnover, and energy supply. Thus, harmine plays a crucial role in enhancing glucose metabolism to maintain mitochondrial function, demonstrating significant potential in treating mature neuronal axon injuries and sciatic nerve injuries.
Collapse
Affiliation(s)
- Ruixuan Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China.
| |
Collapse
|
9
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, La Torre A, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun 2025; 16:1789. [PMID: 39979261 PMCID: PMC11842812 DOI: 10.1038/s41467-025-57135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hannah C Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, P.R. China
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia.
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
10
|
Gómez-Deza J, Nebiyou M, Alkaslasi MR, Nadal-Nicolás FM, Somasundaram P, Slavutsky AL, Li W, Ward ME, Watkins TA, Le Pichon CE. DLK-dependent axonal mitochondrial fission drives degeneration after axotomy. Nat Commun 2024; 15:10806. [PMID: 39737939 PMCID: PMC11686342 DOI: 10.1038/s41467-024-54982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma. We demonstrate that this apoptotic wave is locally initiated in the axon by dual leucine zipper kinase (DLK). We find that mitochondrial fission and resultant cell death are entirely dependent on phosphorylation of dynamin related protein 1 (DRP1) downstream of DLK, revealing a mechanism by which DLK can drive apoptosis. Importantly, we show that CRISPR mediated Drp1 depletion protects mouse retinal ganglion neurons from degeneration after optic nerve crush. Our results provide a platform for studying degeneration of human neurons, pinpoint key early events in damage related neural death and provide potential focus for therapeutic intervention.
Collapse
Affiliation(s)
- Jorge Gómez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Hardy PB, Wang BY, Chan KM, Webber CA, Senger JLB. The use of electrical stimulation to enhance recovery following peripheral nerve injury. Muscle Nerve 2024; 70:1151-1162. [PMID: 39347555 DOI: 10.1002/mus.28262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Peripheral nerve injury is common and can have devastating consequences. In severe cases, functional recovery is often poor despite surgery. This is primarily due to the exceedingly slow rate of nerve regeneration at only 1-3 mm/day. The local environment in the distal nerve stump supportive of nerve regrowth deteriorates over time and the target end organs become atrophic. To overcome these challenges, investigations into treatments capable of accelerating nerve regrowth are of great clinical relevance and are an active area of research. One intervention that has shown great promise is perioperative electrical stimulation. Postoperative stimulation helps to expedite the Wallerian degeneration process and reduces delays caused by staggered regeneration at the site of nerve injury. By contrast, preoperative "conditioning" stimulation increases the rate of nerve regrowth along the nerve trunk. Over the past two decades, a rich body of literature has emerged that provides molecular insights into the mechanism by which electrical stimulation impacts nerve regeneration. The end result is upregulation of regeneration-associated genes in the neuronal body and accelerated transport to the axon front for regrowth. The efficacy of brief electrical stimulation on patients with peripheral nerve injuries was demonstrated in a number of randomized controlled trials on compressive, transection and traction injuries. As approved equipment to deliver this treatment is becoming available, it may be feasible to deploy this novel treatment in a wide range of clinical settings.
Collapse
Affiliation(s)
- Paige B Hardy
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bonnie Y Wang
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jenna-Lynn B Senger
- Division of Plastic & Reconstructive Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Lou H, Yao J, Zhang Y, Wu X, Sun L, Wang Y, Cong D. Potential effect of acupuncture on mitochondrial biogenesis, energy metabolism and oxidation stress in MCAO rat via PGC-1α/NRF1/TFAM pathway. J Stroke Cerebrovasc Dis 2024; 33:107636. [PMID: 38346661 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 09/08/2024] Open
Abstract
PURPOSE To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Lou
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Junjie Yao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun, Jilin Province 130117, PR China
| | - Yuxin Zhang
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Xingquan Wu
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Liwei Sun
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Yufeng Wang
- Department of Science and Technology, Changchun University of Chinese Medicine,1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China.
| |
Collapse
|
13
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
González-Llera L, Arana ÁJ, Sánchez L, Alvarez-Lorenzo C, Barreiro-Iglesias A. Isothermal calorimetry reveals that successful regeneration after a spinal cord injury in larval zebrafish is associated with an increase in energy expenditure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149498. [PMID: 39074572 DOI: 10.1016/j.bbabio.2024.149498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Laura González-Llera
- Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain; Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain; Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Pietramale AN, Bame X, Doty ME, Hill RA. Mitochondria are absent from microglial processes performing surveillance, chemotaxis, and phagocytic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618505. [PMID: 39463986 PMCID: PMC11507814 DOI: 10.1101/2024.10.15.618505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void. Microglial processes that engage in minute-to-minute surveillance typically do not have mitochondria. Moreover, unlike process surveillance, mitochondrial motility does not change with animal anesthesia. Likewise, the processes that acutely chemoattract to a lesion site or initially engage with a neuron undergoing programmed cell death do not contain mitochondria. Rather, microglia mitochondria have a delayed arrival into the responding cell processes. Thus, there is subcellular heterogeneity of mitochondrial partitioning and asymmetry between mitochondrial localization and cell process motility or acute damage responses.
Collapse
Affiliation(s)
| | - Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Megan E. Doty
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| |
Collapse
|
16
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
17
|
Gao G, Sun X, Xu J, Yu J, Wang Y. miR-19-3p/GRSF1/COX1 axis attenuates early brain injury via maintaining mitochondrial function after subarachnoid haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003099. [PMID: 39266212 DOI: 10.1136/svn-2024-003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein, which is eventually localised to mitochondria and promotes the translation of cytochrome C oxidase 1 (COX1) mRNA. However, the role of the miR-19-3p/GRSF1/COX1 axis has not been investigated in an experimental subarachnoid haemorrhage (SAH) model. Thus, we investigated the role of the miR-19-3p/GRSF1/COX1 axis in a SAH-induced early brain injury (EBI) course. METHODS Primary neurons were treated with oxyhaemoglobin (OxyHb) to simulate in vitro SAH. The rat SAH model was established by injecting autologous arterial blood into the optic chiasma cisterna. The GRSF1 level was downregulated or upregulated by treating the rats and neurons with lentivirus-GRSF1 shRNA (Lenti-GRSF1 shRNA) or lentivirus-GRSF1 (Lenti-GRSF1). RESULTS The miR-19-3p level was upregulated and the protein levels of GRSF1 and COX1 were both downregulated in SAH brain tissue. GRSF1 silence decreased and GRSF1 overexpression increased the protein levels of GRSF1 and COX1 in primary neurons and brain tissue, respectively. Lenti-GRSF1 shRNA aggravated, but Lenti-GRSF1 alleviated, the indicators of neuronal injury and neurological impairment in both in vitro and in vivo SAH conditions. In addition, miR-19-3p mimic reduced the protein levels of GRSF1 and COX1 in cultured neurons while miR-19-3p inhibitor increased them. More importantly, Lenti-GRSF1 significantly relieved mitochondrial damage of neurons exposed to OxyHb or induced by SAH and was beneficial to maintaining mitochondrial integrity. Lenti-GRSF1 shRNA treatment, conversely, aggravated mitochondrial damage in neurons. CONCLUSION The miR-19-3p/GRSF1/COX1 axis may serve as an underlying target for inhibiting SAH-induced EBI by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Sun
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
18
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
19
|
Gómez-Deza J, Nebiyou M, Alkaslasi MR, Nadal-Nicolás FM, Somasundaran P, Slavutsky AL, Ward ME, Li W, Watkins TA, Le Pichon CE. DLK-dependent axonal mitochondrial fission drives degeneration following axotomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526132. [PMID: 36778383 PMCID: PMC9915495 DOI: 10.1101/2023.01.30.526132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we developed a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma. We demonstrated that this apoptotic wave is locally initiated in the axon by dual leucine zipper kinase (DLK). We found that mitochondrial fission and resultant cell death are entirely dependent on phosphorylation of dynamin related protein 1 (DRP1) downstream of DLK, revealing a new mechanism by which DLK can drive apoptosis. Importantly, we show that CRISPR mediated Drp1 depletion protected mouse retinal ganglion neurons from degeneration after optic nerve crush. Our results provide a powerful platform for studying degeneration of human neurons, pinpoint key early events in damage related neural death and new focus for therapeutic intervention.
Collapse
Affiliation(s)
- Jorge Gómez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | | | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Department of Neurology, University of California at San Francisco
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
Gisevius B, Duscha A, Poschmann G, Stühler K, Motte J, Fisse AL, Augustyniak S, Rehm A, Renk P, Böse C, Hubert D, Peters K, Jagst M, Gömer A, Todt D, Bader V, Tokic M, Hirschberg S, Krogias C, Trampe N, Coutourier C, Winnesberg C, Steinmann E, Winklhofer K, Gold R, Haghikia A. Propionic acid promotes neurite recovery in damaged multiple sclerosis neurons. Brain Commun 2024; 6:fcae182. [PMID: 38894951 PMCID: PMC11184351 DOI: 10.1093/braincomms/fcae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.
Collapse
Affiliation(s)
- Barbara Gisevius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander Duscha
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Sanja Augustyniak
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Adriana Rehm
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Pia Renk
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Celina Böse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Diana Hubert
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Kathrin Peters
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michelle Jagst
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Marianne Tokic
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nadine Trampe
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Charlotta Coutourier
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carmen Winnesberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Konstanze Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
21
|
Xue Y, Xu P, Hu Y, Liu S, Yan R, Liu S, Li Y, Liu J, Fu T, Li Z. Stress systems exacerbate the inflammatory response after corneal abrasion in sleep-deprived mice via the IL-17 signaling pathway. Mucosal Immunol 2024; 17:323-345. [PMID: 38428739 DOI: 10.1016/j.mucimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Sleep deprivation (SD) has a wide range of adverse health effects. However, the mechanisms by which SD influences corneal pathophysiology and its post-wound healing remain unclear. This study aimed to examine the basic physiological characteristics of the cornea in mice subjected to SD and determine the pathophysiological response to injury after corneal abrasion. Using a multi-platform water environment method as an SD model, we found that SD leads to disturbances of corneal proliferative, sensory, and immune homeostasis as well as excessive inflammatory response and delayed repair after corneal abrasion by inducing hyperactivation of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis. Pathophysiological changes in the cornea mainly occurred through the activation of the IL-17 signaling pathway. Blocking both adrenergic and glucocorticoid synthesis and locally neutralizing IL-17A significantly improved corneal homeostasis and the excessive inflammatory response and delay in wound repair following corneal injury in SD-treated mice. These results indicate that optimal sleep quality is essential for the physiological homeostasis of the cornea and its well-established repair process after injury. Additionally, these observations provide potential therapeutic targets to ameliorate SD-induced delays in corneal wound repair by inhibiting or blocking the activation of the stress system and its associated IL-17 signaling pathway.
Collapse
Affiliation(s)
- Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Pathology, Nanyang Second General Hospital, Nanyang City, Henan, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shutong Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Kvistad CE, Kråkenes T, Gavasso S, Bø L. Neural regeneration in the human central nervous system-from understanding the underlying mechanisms to developing treatments. Where do we stand today? Front Neurol 2024; 15:1398089. [PMID: 38803647 PMCID: PMC11129638 DOI: 10.3389/fneur.2024.1398089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Mature neurons in the human central nervous system (CNS) fail to regenerate after injuries. This is a common denominator across different aetiologies, including multiple sclerosis, spinal cord injury and ischemic stroke. The lack of regeneration leads to permanent functional deficits with a substantial impact on patient quality of life, representing a significant socioeconomic burden worldwide. Great efforts have been made to decipher the responsible mechanisms and we now know that potent intra- and extracellular barriers prevent axonal repair. This knowledge has resulted in numerous clinical trials, aiming to promote neuroregeneration through different approaches. Here, we summarize the current understanding of the causes to the poor regeneration within the human CNS. We also review the results of the treatment attempts that have been translated into clinical trials so far.
Collapse
Affiliation(s)
| | - Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
24
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, Torre AL, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587832. [PMID: 38617277 PMCID: PMC11014509 DOI: 10.1101/2024.04.02.587832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hannah C. Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA; USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA; USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA; USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Cao X, Zhang Y, Shi Y, Li Y, Gao L, Wang X, Sun L. Identification of critical mitochondrial hub gene for facial nerve regeneration. Biochem Cell Biol 2024; 102:179-193. [PMID: 38086039 DOI: 10.1139/bcb-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Mitochondria play a critical role in nerve regeneration, yet the impact of gene expression changes related to mitochondria in facial nerve regeneration remains unknown. To address this knowledge gap, we analyzed the expression profile of the facial motor nucleus (FMN) using data obtained from the Gene Expression Omnibus (GEO) database (GSE162977). By comparing different time points in the data, we identified differentially expressed genes (DEGs). Additionally, we collected mitochondria-related genes from the Gene Ontology (GO) database and intersected them with the DEGs, resulting in the identification of mitochondria-related DEGs (MIT-DEGs). To gain further insights, we performed functional enrichment and pathway analysis of the MIT-DEGs. To explore the interactions among these MIT-DEGs, we constructed a protein-protein interaction (PPI) network using the STRING database and identified hub genes using the Degree algorithm of Cytoscape software. To validate the relevance of these genes to nerve regeneration, we established a rat facial nerve injury (FNI) model and conducted a series of experiments. Through these experiments, we confirmed three MIT-DEGs (Myc, Lyn, and Cdk1) associated with facial nerve regeneration. Our findings provide valuable insights into the transcriptional changes of mitochondria-related genes in the FMN following FNI, which can contribute to the development of new treatment strategies for FNI.
Collapse
Affiliation(s)
- Xiaofang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Li Gao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
27
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
28
|
Lukomska A, Theune WC, Frost MP, Xing J, Kearney A, Trakhtenberg EF. Upregulation of developmentally-downregulated miR-1247-5p promotes neuroprotection and axon regeneration in vivo. Neurosci Lett 2024; 823:137662. [PMID: 38286398 PMCID: PMC10923146 DOI: 10.1016/j.neulet.2024.137662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Anja Kearney
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Onraet T, Zuryn S. C. elegans as a model to study mitochondrial biology and disease. Semin Cell Dev Biol 2024; 154:48-58. [PMID: 37149409 DOI: 10.1016/j.semcdb.2023.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Mitochondria perform a myriad of essential functions that ensure organismal homeostasis, including maintaining bioenergetic capacity, sensing and signalling the presence of pathogenic threats, and determining cell fate. Their function is highly dependent on mitochondrial quality control and the appropriate regulation of mitochondrial size, shape, and distribution during an entire lifetime, as well as their inheritance across generations. The roundworm Caenorhabditis elegans has emerged as an ideal model organism through which to study mitochondria. The remarkable conservation of mitochondrial biology has allowed C. elegans researchers to investigate complex processes that are challenging to study in higher organisms. In this review, we explore the key recent contributions of C. elegans to mitochondrial biology through the lens of mitochondrial dynamics, organellar removal, and mitochondrial inheritance, as well as their involvement in immune responses, various types of stress, and transgenerational signalling.
Collapse
Affiliation(s)
- Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
30
|
Yadav DK, Chang AC, Grooms NWF, Chung SH, Gabel CV. O-GlcNAc signaling increases neuron regeneration through one-carbon metabolism in Caenorhabditis elegans. eLife 2024; 13:e86478. [PMID: 38334260 PMCID: PMC10857789 DOI: 10.7554/elife.86478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.
Collapse
Affiliation(s)
- Dilip Kumar Yadav
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
| | - Andrew C Chang
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
| | - Noa WF Grooms
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Samuel H Chung
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Christopher V Gabel
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine, Boston UniversityBostonUnited States
- Neurophotonics Center, Boston UniversityBostonUnited States
| |
Collapse
|
31
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
32
|
Jiang X, Wang W, Tang J, Han M, Xu Y, Zhang L, Wu J, Huang Y, Ding Z, Sun H, Xi K, Gu Y, Chen L. Ligand-Screened Cerium-Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306780. [PMID: 38037294 PMCID: PMC10853750 DOI: 10.1002/advs.202306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1β signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.
Collapse
Affiliation(s)
- Xinzhao Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jincheng Tang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Meng Han
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
- Department of Spinal SurgeryXuzhou Central HospitalXuzhou221000China
| | - Yichang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Lichen Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jie Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yiyang Huang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Zhouye Ding
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Huiwen Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Kun Xi
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yong Gu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Liang Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| |
Collapse
|
33
|
Li D, Liu H, Li C, Guan Y, Xiong X, He R, Jia Z, Liang L, Zhao J, Miao X, Wang Y, Peng J. Exogenous Mitochondrial Transplantation Facilitates the Recovery of Autologous Nerve Grafting in Repairing Nerve Defects. Cell Transplant 2024; 33:9636897241291278. [PMID: 39471108 PMCID: PMC11528789 DOI: 10.1177/09636897241291278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Autologous nerve transplantation (ANT) remains the gold standard for treating nerve defects. However, its efficacy in nerve repair still requires improvement. Mitochondrial dysfunction resulting from nerve injury may be a significant factor limiting nerve function restoration. This study investigated the impact of supplementing exogenous mitochondria (EM) in ANT and explored its effect on the efficacy of ANT in nerve repair. SD rats were used to prepare a model of a 10 mm sciatic nerve defect repaired by ANT (Auto group) and a model of ANT supplemented with EM (Mito group). At 12 weeks post-operation, functional, neurophysiological, and histological evaluations of the target organ revealed that the Mito group exhibited significantly better outcomes compared with the Auto group, with statistically significant differences (P < 0.05). In vitro experiments demonstrated that EM could be endocytosed by Schwann cells (SCs) and dorsal root ganglion neurons (DRGs) when co-cultured. After endocytosis by SCs, immunofluorescence staining of autophagy marker LC3II and mitochondrial marker Tomm20, as well as adenoviral fluorescence labeling of lysosomes and mitochondria, revealed that EM could promote autophagy in SCs. CCK8 and EDU assays also indicated that EM significantly promoted SCs proliferation and viability. After endocytosis by DRGs, EM could accelerate axonal growth rate. A sciatic nerve defect repair model prepared using Thy1-YFP-16 mice also revealed that EM could accelerate axonal growth in vivo, with statistically significant results (P < 0.05). This study suggests that EM enhances autophagy in SCs, promotes SCs proliferation and viability, and increases the axonal growth rate, thereby improving the efficacy of ANT. This research provides a novel therapeutic strategy for enhancing the efficacy of ANT in nerve repair.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Orthopedics, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haolin Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Chaochao Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xing Xiong
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Ruichao He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Lijing Liang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Jinjuan Zhao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Xinyu Miao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| |
Collapse
|
34
|
Dong X, Zhang H, Duan P, Liu K, Yu Y, Wei W, Wang W, Liu Y, Cheng Q, Liang X, Huo Y, Yan L, Yu A, Dai H. An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment. SCIENCE ADVANCES 2023; 9:eadi1078. [PMID: 38117891 PMCID: PMC10732521 DOI: 10.1126/sciadv.adi1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H2S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H2S delivery system consists of an H2S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H2S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.
Collapse
Affiliation(s)
- Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Weixing Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuhang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
35
|
Celen MC, Akkoca A, Tuncer S, Dalkilic N, Ilhan B. Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Biomedicines 2023; 11:3306. [PMID: 38137528 PMCID: PMC10741406 DOI: 10.3390/biomedicines11123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Peripheral nerve injuries often result in long-lasting functional deficits, prompting the need for effective interventions. MitoTEMPO (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride) is a mitochondria-targeted antioxidant that has shown protective and therapeutic effects against pathologies associated with reactive oxygen species. This study explores the utilization of MitoTEMPO as a therapeutic and protective agent for sciatic nerve crush injuries. By employing advanced mathematical approaches, the study seeks to comprehensively analyze nerve conduction parameters, nerve excitability, and the distribution of nerve conduction velocities to gauge the potential. Forty Wistar-Albino rats were randomly divided into following groups: (I) SHAM-animals subjected to sham operation and treated intraperitoneally (i.p.) with vehicle (bidistilled water) for 14 days; (II) CI (crush injury)-animals subjected to CI and treated with vehicle 14 days; (III) MiP-animals subjected to 7 days i.p. MitoTEMPO treatment before CI (0.7 mg/kg/day dissolved in vehicle) and, only vehicle for 7 days after CI, protective MitoTEMPO; and (IV) MiT-animals i.p. treated with only vehicle for 7 days before CI and 7 days with MitoTEMPO (0.7 mg/kg/day dissolved in vehicle) after CI, therapeutic MitoTEMPO. Nerve excitability parameters were measured, including rheobase and chronaxie, along with compound action potential (CAP) recordings. Advanced mathematical analyses were applied to CAP recordings to determine nerve conduction velocities and distribution patterns. The study revealed significant differences in nerve excitability parameters between groups. Nerve conduction velocity was notably reduced in the MiP and CI groups, whereas CAP area values were diminished in the MiP and CI groups compared to the MiT group. Furthermore, CAP velocity was lower in the MiP and CI groups, and maximum depolarization values were markedly lower in the MiP and CI groups compared to the SHAM group. The distribution of nerve conduction velocities indicated alterations in the composition of nerve fiber groups following crush injuries. In conclusion, postoperative MitoTEMPO administration demonstrated promising results in mitigating the detrimental effects of nerve crush injuries.
Collapse
Affiliation(s)
- Murat Cenk Celen
- Department of Biophysics, Faculty of Medicine, Ankara Medipol University, 06570 Ankara, Türkiye
| | - Ahmet Akkoca
- Department of Occupational Health and Safety, Taskent Vocational School, Selcuk University, 42960 Konya, Türkiye
| | - Seckin Tuncer
- Department of Biophysics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye
| | - Nizamettin Dalkilic
- Department of Biophysics, Faculty of Medicine, Baskent University, 06490 Ankara, Türkiye
| | - Barkin Ilhan
- Department of Biophysics, Meram School of Medicine, Necmettin Erbakan University, 42090 Konya, Türkiye
| |
Collapse
|
36
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
37
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
38
|
Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin Inactivation Can Enhance Axonal Mitochondrial Transport to Improve Spinal Cord Injury. Mol Neurobiol 2023; 60:6556-6565. [PMID: 37458986 DOI: 10.1007/s12035-023-03494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/08/2023] [Indexed: 09/28/2023]
Abstract
Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
39
|
Ruan Y, Cheng J, Dai J, Ma Z, Luo S, Yan R, Wang L, Zhou J, Yu B, Tong X, Shen H, Zhou L, Yuan TF, Han Q. Chronic stress hinders sensory axon regeneration via impairing mitochondrial cristae and OXPHOS. SCIENCE ADVANCES 2023; 9:eadh0183. [PMID: 37801508 PMCID: PMC10558127 DOI: 10.1126/sciadv.adh0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Spinal cord injury (SCI) often leads to physical limitations, persistent pain, and major lifestyle shifts, enhancing the likelihood of prolonged psychological stress and associated disorders such as anxiety and depression. The mechanisms linking stress with regeneration remain elusive, despite understanding the detrimental impact of chronic stress on SCI recovery. In this study, we investigated the effect of chronic stress on primary sensory axon regeneration using a preconditioning lesions mouse model. Our data revealed that chronic stress-induced mitochondrial cristae loss and a decrease in oxidative phosphorylation (OXPHOS) within primary sensory neurons, impeding central axon regrowth. Corticosterone, a stress hormone, emerged as a pivotal player in this process, affecting satellite glial cells by reducing Kir4.1 expression. This led to increased neuronal hyperactivity and reactive oxygen species levels, which, in turn, deformed mitochondrial cristae and impaired OXPHOS, crucial for axonal regeneration. Our study underscores the need to manage psychological stress in patients with SCI for effective sensory-motor rehabilitation.
Collapse
Affiliation(s)
- Yu Ruan
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jin Cheng
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jiafeng Dai
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhengwen Ma
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiyu Luo
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Run Yan
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Lizhao Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jinrui Zhou
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoping Tong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Libing Zhou
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Ti-Fei Yuan
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qi Han
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
40
|
Kohle F, Ackfeld R, Klein I, Svačina MKR, Schneider C, van Beers T, Grandoch A, Fink GR, Lehmann HC, Barham M. 2,4-Dinitrophenol does not exert neuro-regenerative potential in experimental autoimmune neuritis. Neurosci Lett 2023; 814:137456. [PMID: 37648059 DOI: 10.1016/j.neulet.2023.137456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE We evaluated the potential neuro-regenerative effects of the mitochondrial uncoupler 2,4-Dinitrophenol in experimental autoimmune neuritis, an animal model for an acute autoimmune neuropathy. METHODS Experimental autoimmune neuritis was induced in Lewis rats. Different concentrations of 2,4-Dinitrophenol (1 mg/kg, 0.1 mg/kg and 0.01 mg/kg) were applied during the recovery phase of the neuritis (at days 18, 22 and 26) and compared to the vehicle. Any effects were assessed through functional, electrophysiological, and morphological analysis via electron microscopy of all groups at day 30. Additional immune-histochemical analysis of inflammation markers and remyelination of the sciatic nerves were performed for the dosage of 1 mg/kg and control. RESULTS No enhancement of functional or electrophysiological recovery was observed in all 2,4-Dinitrophenol-treated groups. Cellular inflammation markers of T cells (CD3+) were comparable to control, and an increase of macrophages (IbA1+) invasion in the sciatic nerves was observed. Treatment with 2,4-Dinitrophenol reduced axonal swelling in myelinated and unmyelinated fibers with an increased production of brain-derived neurotrophic factor. CONCLUSION Our findings do not support the hypothesis that repurposing of the mitochondrial uncoupler 2,4-Dinitrophenol exerts functionally relevant neuro-regenerative effects in autoimmune neuritis.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Robin Ackfeld
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Martin K R Svačina
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Christian Schneider
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Tim van Beers
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine, University Hospital Cologne and University of Cologne, Cologne, Germany
| | - Andrea Grandoch
- Department for Oral and Craniomaxillofacial and Plastic Surgery, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Helmar C Lehmann
- Department of Neurology, Hospital Leverkusen, Leverkusen, Germany
| | - Mohammed Barham
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Guan PP, Ge TQ, Wang P. As a Potential Therapeutic Target, C1q Induces Synapse Loss Via Inflammasome-activating Apoptotic and Mitochondria Impairment Mechanisms in Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:267-284. [PMID: 37386257 DOI: 10.1007/s11481-023-10076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
C1q, the initiator of the classical pathway of the complement system, is activated during Alzheimer's disease (AD) development and progression and is especially associated with the production and deposition of β-amyloid protein (Aβ) and phosphorylated tau in β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Activation of C1q is responsible for induction of synapse loss, leading to neurodegeneration in AD. Mechanistically, C1q could activate glial cells, which results in the loss of synapses via regulation of synapse pruning and phagocytosis in AD. In addition, C1q induces neuroinflammation by inducing proinflammatory cytokine secretion, which is partially mediated by inflammasome activation. Activation of inflammasomes might mediate the effects of C1q on induction of synapse apoptosis. On the other hand, activation of C1q impairs mitochondria, which hinders the renovation and regeneration of synapses. All these actions of C1q contribute to the loss of synapses during neurodegeneration in AD. Therefore, pharmacological, or genetic interventions targeting C1q may provide potential therapeutic strategies for combating AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Tong-Qi Ge
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China.
| |
Collapse
|
42
|
Tam HH, Zhu D, Ho SSK, Vong HW, Wong VKW, Mok SWF, Wong IN. Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein. Front Cell Neurosci 2023; 17:1193362. [PMID: 37534043 PMCID: PMC10393283 DOI: 10.3389/fncel.2023.1193362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.
Collapse
Affiliation(s)
- Hoi Hei Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Dongxing Zhu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Samuel Sze King Ho
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Heng Wai Vong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Simon Wing-Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
43
|
Van Dyck A, Masin L, Bergmans S, Schevenels G, Beckers A, Vanhollebeke B, Moons L. A new microfluidic model to study dendritic remodeling and mitochondrial dynamics during axonal regeneration of adult zebrafish retinal neurons. Front Mol Neurosci 2023; 16:1196504. [PMID: 37396787 PMCID: PMC10307971 DOI: 10.3389/fnmol.2023.1196504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Unlike mammals, adult zebrafish are able to fully regenerate axons and functionally recover from neuronal damage in the mature central nervous system (CNS). Decades of research have tried to identify the mechanisms behind their spontaneous regenerative capacity, but the exact underlying pathways and molecular drivers remain to be fully elucidated. By studying optic nerve injury-induced axonal regrowth of adult zebrafish retinal ganglion cells (RGCs), we previously reported transient dendritic shrinkage and changes in the distribution and morphology of mitochondria in the different neuronal compartments throughout the regenerative process. These data suggest that dendrite remodeling and temporary changes in mitochondrial dynamics contribute to effective axonal and dendritic repair upon optic nerve injury. To further elucidate these interactions, we here present a novel adult zebrafish microfluidic model in which we can demonstrate compartment-specific alterations in resource allocation in real-time at single neuron level. First, we developed a pioneering method that enables to isolate and culture adult zebrafish retinal neurons in a microfluidic setup. Notably, with this protocol, we report on a long-term adult primary neuronal culture with a high number of surviving and spontaneously outgrowing mature neurons, which was thus far only very limitedly described in literature. By performing time-lapse live cell imaging and kymographic analyses in this setup, we can explore changes in dendritic remodeling and mitochondrial motility during spontaneous axonal regeneration. This innovative model system will enable to discover how redirecting intraneuronal energy resources supports successful regeneration in the adult zebrafish CNS, and might facilitate the discovery of new therapeutic targets to promote neuronal repair in humans.
Collapse
Affiliation(s)
- Annelies Van Dyck
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giel Schevenels
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
45
|
Fague L, Marsh-Armstrong N. Dual leucine zipper kinase is necessary for retinal ganglion cell axonal regeneration in Xenopus laevis. PNAS NEXUS 2023; 2:pgad109. [PMID: 37152673 PMCID: PMC10162689 DOI: 10.1093/pnasnexus/pgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
Retinal ganglion cell (RGC) axons of the African clawed frog, Xenopus laevis, unlike those of mammals, are capable of regeneration and functional reinnervation of central brain targets following injury. Here, we describe a tadpole optic nerve crush (ONC) procedure and assessments of brain reinnervation based on live imaging of RGC-specific transgenes which, when paired with CRISPR/Cas9 injections at the one-cell stage, can be used to assess the function of regeneration-associated genes in vivo in F0 animals. Using this assay, we find that map3k12, also known as dual leucine zipper kinase (Dlk), is necessary for RGC axonal regeneration and acts in a dose-dependent manner. Loss of Dlk does not affect RGC innervation of the brain during development or visually driven behavior but does block both axonal regeneration and functional vision restoration after ONC. Dlk loss does not alter the acute changes in mitochondrial movement that occur within RGC axons hours after ONC but does completely block the phosphorylation and nuclear translocation of the transcription factor Jun within RGCs days after ONC; yet, Jun is dispensable for reinnervation. These results demonstrate that in a species fully capable of regenerating its RGC axons, Dlk is essential for the axonal injury signal to reach the nucleus but may affect regeneration through a different pathway than by which it signals in mammalian RGCs.
Collapse
Affiliation(s)
- Lindsay Fague
- Department of Ophthalmology and Vision Science, UC Davis Eye Center, University of California, Davis, 1275 Med Science Drive Rm. 3451, Davis, CA 95616, USA
| | | |
Collapse
|
46
|
Liu X, Zhao Y, Zou W. Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:12. [PMID: 37005942 PMCID: PMC10067779 DOI: 10.1186/s13619-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/01/2022] [Indexed: 04/04/2023]
Abstract
The difficulties of injured and degenerated neurons to regenerate neurites and regain functions are more significant than in other body tissues, making neurodegenerative and related diseases hard to cure. Uncovering the secrets of neural regeneration and how this process may be inhibited after injury will provide insights into novel management and potential treatments for these diseases. Caenorhabditis elegans and Drosophila melanogaster are two of the most widely used and well-established model organisms endowed with advantages in genetic manipulation and live imaging to explore this fundamental question about neural regeneration. Here, we review the classical models and techniques, and the involvement and cooperation of subcellular structures during neurite regeneration using these two organisms. Finally, we list several important open questions that we look forward to inspiring future research.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University and University of Edinburgh, Jiaxing, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Zhao P, Mondal S, Martin C, DuPlissis A, Chizari S, Ma KY, Maiya R, Messing RO, Jiang N, Ben-Yakar A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat Methods 2023; 20:590-599. [PMID: 36928074 DOI: 10.1038/s41592-023-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/26/2023] [Indexed: 03/18/2023]
Abstract
Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.
Collapse
Affiliation(s)
- Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chris Martin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew DuPlissis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Chizari
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
48
|
Rumpf S, Sanal N, Marzano M. Energy metabolic pathways in neuronal development and function. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad004. [PMID: 38596236 PMCID: PMC10913822 DOI: 10.1093/oons/kvad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2024]
Abstract
Neuronal development and function are known to be among the most energy-demanding functions of the body. Constant energetic support is therefore crucial at all stages of a neuron's life. The two main adenosine triphosphate (ATP)-producing pathways in cells are glycolysis and oxidative phosphorylation. Glycolysis has a relatively low yield but provides fast ATP and enables the metabolic versatility needed in dividing neuronal stem cells. Oxidative phosphorylation, on the other hand, is highly efficient and therefore thought to provide most or all ATP in differentiated neurons. However, it has recently become clear that due to their distinct properties, both pathways are required to fully satisfy neuronal energy demands during development and function. Here, we provide an overview of how glycolysis and oxidative phosphorylation are used in neurons during development and function.
Collapse
Affiliation(s)
- Sebastian Rumpf
- Correspondence address. Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany. E-mail:
| | - Neeraja Sanal
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Marco Marzano
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| |
Collapse
|
49
|
Takenaka T, Ohnishi Y, Yamamoto M, Setoyama D, Kishima H. Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. eNeuro 2023; 10:ENEURO.0353-22.2023. [PMID: 36894321 PMCID: PMC10035771 DOI: 10.1523/eneuro.0353-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.
Collapse
Affiliation(s)
- Tomofumi Takenaka
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
- Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, 554-0012, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruhiko Kishima
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
Yokota S, Shah SH, Huie EL, Wen RR, Luo Z, Goldberg JL. Kif5a Regulates Mitochondrial Transport in Developing Retinal Ganglion Cells In Vitro. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 36862119 PMCID: PMC9983700 DOI: 10.1167/iovs.64.3.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose Axon transport of organelles and neurotrophic factors is necessary for maintaining cellular function and survival of retinal ganglion cells (RGCs). However, it is not clear how trafficking of mitochondria, essential for RGC growth and maturation, changes during RGC development. The purpose of this study was to understand the dynamics and regulation of mitochondrial transport during RGC maturation using acutely purified RGCs as a model system. Methods Primary RGCs were immunopanned from rats of either sex during three stages of development. MitoTracker dye and live-cell imaging were used to quantify mitochondrial motility. Analysis of single-cell RNA sequencing was used to identify Kinesin family member 5A (Kif5a) as a relevant motor candidate for mitochondrial transport. Kif5a expression was manipulated with either short hairpin RNA (shRNA) or exogenous expression adeno-associated virus viral vectors. Results Anterograde and retrograde mitochondrial trafficking and motility decreased through RGC development. Similarly, the expression of Kif5a, a motor protein that transports mitochondria, also decreased during development. Kif5a knockdown decreased anterograde mitochondrial transport, while Kif5a expression increased general mitochondrial motility and anterograde mitochondrial transport. Conclusions Our results suggested that Kif5a directly regulates mitochondrial axonal transport in developing RGCs. Future work exploring the role of Kif5a in vivo in RGCs is indicated.
Collapse
Affiliation(s)
- Satoshi Yokota
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Sahil H Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Emma Lee Huie
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Runxia Rain Wen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| |
Collapse
|