1
|
Hu H, Wang D, Chen Y, Gao L. Morphological segmentation with tiling light sheet microscopy to quantitatively analyze the three-dimensional structures of spinal motoneurons. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:17. [PMID: 40360768 PMCID: PMC12075063 DOI: 10.1186/s13619-025-00231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Spinal motoneurons control muscle fibers contraction and drive all motor behaviors in vertebrates. Although spinal motoneurons share the fundamental role of innervating muscle fibers, they exhibit remarkable diversity that reflects their specific identities. Defining the morphological changes during postnatal development is critical for elucidating this diversity. However, our understanding of the three-dimensional (3D) morphology of spinal motoneurons at these stages remains limited, largely due to the lack of high-throughput imaging tools. Using tiling light sheet microscopy combined with tissue clearing methods, we imaged motoneurons of the lateral and median motor column in the cervical and lumbar cord during postnatal development. By analyzing their soma size, we found that motoneurons innervating the upper limbs differentiate into two subpopulations with distinct soma size by postnatal day 14 (P14), while differentiation of motoneurons innervating the lower limbs is delayed. Furthermore, coupling adenovirus labeling with 3D volumetric reconstruction, we traced and measured the number and lengths of dendrites of flexor and extensor motoneurons in the lumbar cord, finding that the number of dendrites initially increases and subsequently declines as dendritic order rises. Together, these findings provide a quantitative analysis of the 3D morphological changes underlying spinal motoneuron diversity.
Collapse
Affiliation(s)
- Huijie Hu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Dongyue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Liang Gao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
2
|
Lawrence JEG, Roberts K, Tuck E, Li T, Mamanova L, Balogh P, Usher I, Piapi A, Mazin P, Anderson ND, Bolt L, Richardson L, Prigmore E, He X, Barker RA, Flanagan A, Young MD, Teichmann SA, Bayraktar O, Behjati S. HOX gene expression in the developing human spine. Nat Commun 2024; 15:10023. [PMID: 39567486 PMCID: PMC11579336 DOI: 10.1038/s41467-024-54187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Positional coding along the anterior-posterior axis is regulated by HOX genes, whose 3' to 5' expression correlates with location along this axis. The precise utilisation of HOX genes in different human cell types is not fully understood. Here, we use single-cell and spatial-transcriptomics, along with in-situ sequencing, to create a developmental atlas of the human fetal spine. We analyse HOX gene expression across cell types during development, finding that neural-crest derivatives unexpectedly retain the anatomical HOX code of their origin while also adopting the code of their destination. This trend is confirmed across multiple organs. In the axial plane of the spinal cord, we find distinct patterns in the ventral and dorsal domains, providing insights into motor pool organisation and loss of collinearity in HOXB genes. Our findings shed new light on HOX gene expression in the developing spine, highlighting a HOX gene 'source code' in neural-crest cell derivatives.
Collapse
Affiliation(s)
- John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Box 37, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Inga Usher
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Alice Piapi
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Xiaoling He
- Department of Clinical Neurosciences, University of Cambridge, CB2 0QQ, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, CB2 0QQ, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Adrienne Flanagan
- Research, Department of Pathology, University College London (UCL) Cancer Institute, London, WC1E 6DD, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
3
|
Arballo J, Rutkowsky JM, Haskell MJ, De Las Alas K, Engle-Stone R, Du X, Ramsey JJ, Ji P. Pre- and Postnatal Vitamin A Deficiency Impairs Motor Skills without a Consistent Effect on Trace Mineral Status in Young Mice. Int J Mol Sci 2024; 25:10806. [PMID: 39409135 PMCID: PMC11477164 DOI: 10.3390/ijms251910806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pregnant women and children are vulnerable to vitamin A deficiency (VAD), which is often compounded by concurrent deficiencies in other micronutrients, particularly iron and zinc, in developing countries. The study investigated the effects of early-life VAD on motor and cognitive development and trace mineral status in a mouse model. C57BL/6J dams were fed either a vitamin A-adequate (VR) or -deficient (VD) diet across two consecutive gestations and lactations. Offspring from both gestations (G1 and G2) continued the same diets until 6 or 9 weeks of age. Behavioral assays were conducted to evaluate motor coordination, grip strength, spatial cognition, and anxiety. Hepatic trace minerals were analyzed. A VD diet depleted hepatic retinoids and reduced plasma retinol across all ages and gestations. Retracted rear legs and abnormal gait were the most common clinical manifestations observed in VD offspring from both gestations at 9 weeks. Poor performance on the Rotarod test further confirmed their motor dysfunction. VAD didn't affect hemoglobin levels and had no consistent effect on hepatic trace mineral concentrations. These findings highlight the critical role of vitamin A in motor development. There was no clear evidence that VAD alters the risk of iron deficiency anemia or trace minerals.
Collapse
Affiliation(s)
- Joseph Arballo
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| | - Jennifer M. Rutkowsky
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA; (J.M.R.); (J.J.R.)
| | - Marjorie J. Haskell
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| | - Kyla De Las Alas
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| | - Jon J. Ramsey
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA; (J.M.R.); (J.J.R.)
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.A.); (M.J.H.); (K.D.L.A.); (R.E.-S.); (X.D.)
| |
Collapse
|
4
|
Vijatovic D, Toma FA, Harrington ZPM, Sommer C, Hauschild R, Trevisan AJ, Chapman P, Julseth MJ, Brenner-Morton S, Gabitto MI, Dasen JS, Bikoff JB, Sweeney LB. Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614050. [PMID: 39345366 PMCID: PMC11430061 DOI: 10.1101/2024.09.20.614050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
Collapse
Affiliation(s)
- David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mara J. Julseth
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Jeremy S. Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lora B. Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
5
|
Petruska JC. Identification and characterization of a potentially novel dorsal cutaneous muscle in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577894. [PMID: 38352413 PMCID: PMC10862791 DOI: 10.1101/2024.01.30.577894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In the course of performing a detailed dissection of adult rat to map the cutaneous nerves of cervical, thoracic, and lumbar levels a small and unexpected structure was isolated. It appeared to be a cutaneous striated muscle and was observed in both male and female rats and in mice but absent from cats and humans. With the skin reflected laterally from midline, the muscle lies closely apposed to the lateral border of the Thoracic Trapezius (Spinotrapezius) muscle and is easily missed in standard gross dissections. Focussed prosections were performed to identify the origin, insertion, and course of gross innervation. Identification of each of these elements showed them to be distinct from the nearby Trapezius and Cutaneous Trunci (Cutaneous Maximus in mouse) muscles. The striated muscle nature of the structure was validated with whole-mount microscopy. Consulting a range of published rodent anatomical atlases and gross anatomical experts revealed no prior descriptions. This preliminary report is an opportunity for the anatomical and research communities to provide input to either confirm the novelty of this muscle or refer to prior published descriptions in rodents or other species while the muscle, its innervation, and function are further characterized. Presuming this muscle is indeed novel, the name "Cutaneous Scapularis muscle" is proposed in accord with general principles of the anatomical field.
Collapse
Affiliation(s)
- Jeffrey C Petruska
- University of Louisville, Department of Anatomical Sciences and Neurobiology, Kentucky Spinal Cord Injury Research Center, Louisville, KY USA 40202
| |
Collapse
|
6
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Tan S, Faull RLM, Curtis MA. The tracts, cytoarchitecture, and neurochemistry of the spinal cord. Anat Rec (Hoboken) 2023; 306:777-819. [PMID: 36099279 DOI: 10.1002/ar.25079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Abstract
The human spinal cord can be described using a range of nomenclatures with each providing insight into its structure and function. Here we have comprehensively reviewed the key literature detailing the general structure, configuration of tracts, the cytoarchitecture of Rexed's laminae, and the neurochemistry at the spinal segmental level. The purpose of this review is to detail current anatomical understanding of how the spinal cord is structured and to aid researchers in identifying gaps in the literature that need to be studied to improve our knowledge of the spinal cord which in turn will improve the potential of therapeutic intervention for disorders of the spinal cord.
Collapse
Affiliation(s)
- Sheryl Tan
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Limone F, Guerra San Juan I, Mitchell JM, Smith JLM, Raghunathan K, Meyer D, Ghosh SD, Couto A, Klim JR, Joseph BJ, Gold J, Mello CJ, Nemesh J, Smith BM, Verhage M, McCarroll SA, Pietiläinen O, Nehme R, Eggan K. Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Rep 2023; 42:111896. [PMID: 36596304 PMCID: PMC10117176 DOI: 10.1016/j.celrep.2022.111896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Leiden University Medical Center, LUMC, 2333 ZA Leiden, the Netherlands.
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jana M Mitchell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Janell L M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Meyer
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Dia Ghosh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Departments of Pathology and Cell Biology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - John Gold
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Curtis J Mello
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Steven A McCarroll
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietiläinen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ralda Nehme
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Berki B, Sacher F, Fages A, Tschopp P, Luxey M. A method to investigate muscle target-specific transcriptional signatures of single motor neurons. Dev Dyn 2023; 252:208-219. [PMID: 35705847 PMCID: PMC10084336 DOI: 10.1002/dvdy.507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Motor neurons in the vertebrate spinal cord have long served as a paradigm to study the transcriptional logic of cell type specification and differentiation. At limb levels, pool-specific transcriptional signatures first restrict innervation to only one particular muscle in the periphery, and get refined, once muscle connection has been established. Accordingly, to study the transcriptional dynamics and specificity of the system, a method for establishing muscle target-specific motor neuron transcriptomes would be required. RESULTS To investigate target-specific transcriptional signatures of single motor neurons, here we combine ex-ovo retrograde axonal labeling in mid-gestation chicken embryos with manual isolation of individual fluorescent cells and Smart-seq2 single-cell RNA-sequencing. We validate our method by injecting the dorsal extensor metacarpi radialis and ventral flexor digiti quarti wing muscles and harvesting a total of 50 fluorescently labeled cells, in which we detect up to 12,000 transcribed genes. Additionally, we present visual cues and cDNA metrics predictive of sequencing success. CONCLUSIONS Our method provides a unique approach to study muscle target-specific motor neuron transcriptomes at a single-cell resolution. We anticipate that our method will provide key insights into the transcriptional logic underlying motor neuron pool specialization and proper neuromuscular circuit assembly and refinement.
Collapse
Affiliation(s)
- Bianka Berki
- DUW Zoology, University of Basel, Basel, Switzerland
| | - Fabio Sacher
- DUW Zoology, University of Basel, Basel, Switzerland
| | - Antoine Fages
- DUW Zoology, University of Basel, Basel, Switzerland
| | | | - Maëva Luxey
- DUW Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Iyer NR, Shin J, Cuskey S, Tian Y, Nicol NR, Doersch TE, Seipel F, McCalla SG, Roy S, Ashton RS. Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns. SCIENCE ADVANCES 2022; 8:eabn7430. [PMID: 36179024 PMCID: PMC9524835 DOI: 10.1126/sciadv.abn7430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie Cuskey
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yucheng Tian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah R. Nicol
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tessa E. Doersch
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank Seipel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Patel T, Hammelman J, Aziz S, Jang S, Closser M, Michaels TL, Blum JA, Gifford DK, Wichterle H. Transcriptional dynamics of murine motor neuron maturation in vivo and in vitro. Nat Commun 2022; 13:5427. [PMID: 36109497 PMCID: PMC9477853 DOI: 10.1038/s41467-022-33022-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Neurons born in the embryo can undergo a protracted period of maturation lasting well into postnatal life. How gene expression changes are regulated during maturation and whether they can be recapitulated in cultured neurons remains poorly understood. Here, we show that mouse motor neurons exhibit pervasive changes in gene expression and accessibility of associated regulatory regions from embryonic till juvenile age. While motifs of selector transcription factors, ISL1 and LHX3, are enriched in nascent regulatory regions, motifs of NFI factors, activity-dependent factors, and hormone receptors become more prominent in maturation-dependent enhancers. Notably, stem cell-derived motor neurons recapitulate ~40% of the maturation expression program in vitro, with neural activity playing only a modest role as a late-stage modulator. Thus, the genetic maturation program consists of a core hardwired subprogram that is correctly executed in vitro and an extrinsically-controlled subprogram that is dependent on the in vivo context of the maturing organism.
Collapse
Affiliation(s)
- Tulsi Patel
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, 02139, USA
| | - Siaresh Aziz
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sumin Jang
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael Closser
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Theodore L Michaels
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, 02139, USA
| | - Hynek Wichterle
- Departments of Pathology & Cell Biology, Neuroscience, and Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Blum JA, Gitler AD. Singling out motor neurons in the age of single-cell transcriptomics. Trends Genet 2022; 38:904-919. [PMID: 35487823 PMCID: PMC9378604 DOI: 10.1016/j.tig.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Catela C, Chen Y, Weng Y, Wen K, Kratsios P. Control of spinal motor neuron terminal differentiation through sustained Hoxc8 gene activity. eLife 2022; 11:70766. [PMID: 35315772 PMCID: PMC8940177 DOI: 10.7554/elife.70766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal motor neurons (MNs) constitute cellular substrates for several movement disorders. Although their early development has received much attention, how spinal MNs become and remain terminally differentiated is poorly understood. Here, we determined the transcriptome of mouse MNs located at the brachial domain of the spinal cord at embryonic and postnatal stages. We identified novel transcription factors (TFs) and terminal differentiation genes (e.g. ion channels, neurotransmitter receptors, adhesion molecules) with continuous expression in MNs. Interestingly, genes encoding homeodomain TFs (e.g. HOX, LIM), previously implicated in early MN development, continue to be expressed postnatally, suggesting later functions. To test this idea, we inactivated Hoxc8 at successive stages of mouse MN development and observed motor deficits. Our in vivo findings suggest that Hoxc8 is not only required to establish, but also maintain expression of several MN terminal differentiation markers. Data from in vitro generated MNs indicate Hoxc8 acts directly and is sufficient to induce expression of terminal differentiation genes. Our findings dovetail recent observations in Caenorhabditis elegans MNs, pointing toward an evolutionarily conserved role for Hox in neuronal terminal differentiation.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States.,University of Chicago Neuroscience Institute, Chicago, United States
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, United States.,University of Chicago Neuroscience Institute, Chicago, United States
| | - Yifei Weng
- Department of Neurobiology, University of Chicago, Chicago, United States.,University of Chicago Neuroscience Institute, Chicago, United States
| | - Kailong Wen
- Department of Neurobiology, University of Chicago, Chicago, United States.,University of Chicago Neuroscience Institute, Chicago, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,University of Chicago Neuroscience Institute, Chicago, United States
| |
Collapse
|
14
|
Wang W, Cho H, Lee JW, Lee SK. The histone demethylase Kdm6b regulates subtype diversification of mouse spinal motor neurons during development. Nat Commun 2022; 13:958. [PMID: 35177643 PMCID: PMC8854633 DOI: 10.1038/s41467-022-28636-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
How a single neuronal population diversifies into subtypes with distinct synaptic targets is a fundamental topic in neuroscience whose underlying mechanisms are unclear. Here, we show that the histone H3-lysine 27 demethylase Kdm6b regulates the diversification of motor neurons to distinct subtypes innervating different muscle targets during spinal cord development. In mouse embryonic motor neurons, Kdm6b promotes the medial motor column (MMC) and hypaxial motor column (HMC) fates while inhibiting the lateral motor column (LMC) and preganglionic motor column (PGC) identities. Our single-cell RNA-sequencing analyses reveal the heterogeneity of PGC, LMC, and MMC motor neurons. Further, our single-cell RNA-sequencing data, combined with mouse model studies, demonstrates that Kdm6b acquires cell fate specificity together with the transcription factor complex Isl1-Lhx3. Our study provides mechanistic insight into the gene regulatory network regulating neuronal cell-type diversification and defines a regulatory role of Kdm6b in the generation of motor neuron subtypes in the mouse spinal cord.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Hyeyoung Cho
- Computational Biology Program, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jae W Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
15
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
16
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Dukic S, McMackin R, Costello E, Metzger M, Buxo T, Fasano A, Chipika R, Pinto-Grau M, Schuster C, Hammond M, Heverin M, Coffey A, Broderick M, Iyer PM, Mohr K, Gavin B, McLaughlin R, Pender N, Bede P, Muthuraman M, van den Berg L, Hardiman O, Nasseroleslami B. Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain 2021; 145:621-631. [PMID: 34791079 PMCID: PMC9014749 DOI: 10.1093/brain/awab322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
Amyotrophic lateral sclerosis is a devastating disease characterized primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. Amyotrophic lateral sclerosis is both clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria) and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis. Recently, we have shown that resting-state EEG can reliably and quantitatively capture abnormal patterns of motor and cognitive network disruption in amyotrophic lateral sclerosis. These network disruptions have been identified across multiple frequency bands, and using measures of neural activity (spectral power) and connectivity (comodulation of activity by amplitude envelope correlation and synchrony by imaginary coherence) on source-localized brain oscillations from high-density EEG. Using data-driven methods (similarity network fusion and spectral clustering), we have now undertaken a clustering analysis to identify disease subphenotypes and to determine whether different patterns of disruption are predictive of disease outcome. We show that amyotrophic lateral sclerosis patients (n = 95) can be subgrouped into four phenotypes with distinct neurophysiological profiles. These clusters are characterized by varying degrees of disruption in the somatomotor (α-band synchrony), frontotemporal (β-band neural activity and γl-band synchrony) and frontoparietal (γl-band comodulation) networks, which reliably correlate with distinct clinical profiles and different disease trajectories. Using an in-depth stability analysis, we show that these clusters are statistically reproducible and robust, remain stable after reassessment using a follow-up EEG session, and continue to predict the clinical trajectory and disease outcome. Our data demonstrate that novel phenotyping using neuroelectric signal analysis can distinguish disease subtypes based exclusively on different patterns of network disturbances. These patterns may reflect underlying disease neurobiology. The identification of amyotrophic lateral sclerosis subtypes based on profiles of differential impairment in neuronal networks has clear potential in future stratification for clinical trials. Advanced network profiling in amyotrophic lateral sclerosis can also underpin new therapeutic strategies that are based on principles of neurobiology and designed to modulate network disruption.
Collapse
Affiliation(s)
- Stefan Dukic
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland.,Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Marjorie Metzger
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Antonio Fasano
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Rangariroyashe Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Christina Schuster
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Michaela Hammond
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Amina Coffey
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Michael Broderick
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Kieran Mohr
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Brighid Gavin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Russell McLaughlin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Leonard van den Berg
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| |
Collapse
|
18
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
19
|
Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021; 12:5722. [PMID: 34588430 PMCID: PMC8481483 DOI: 10.1038/s41467-021-25125-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Collapse
Affiliation(s)
- Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ryan B Patterson Cross
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stephanie C Koch
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Alkaslasi MR, Piccus ZE, Hareendran S, Silberberg H, Chen L, Zhang Y, Petros TJ, Le Pichon CE. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 2021; 12:2471. [PMID: 33931636 PMCID: PMC8087807 DOI: 10.1038/s41467-021-22691-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
In vertebrates, motor control relies on cholinergic neurons in the spinal cord that have been extensively studied over the past hundred years, yet the full heterogeneity of these neurons and their different functional roles in the adult remain to be defined. Here, we develop a targeted single nuclear RNA sequencing approach and use it to identify an array of cholinergic interneurons, visceral and skeletal motor neurons. Our data expose markers for distinguishing these classes of cholinergic neurons and their rich diversity. Specifically, visceral motor neurons, which provide autonomic control, can be divided into more than a dozen transcriptomic classes with anatomically restricted localization along the spinal cord. The complexity of the skeletal motor neurons is also reflected in our analysis with alpha, gamma, and a third subtype, possibly corresponding to the elusive beta motor neurons, clearly distinguished. In combination, our data provide a comprehensive transcriptomic description of this important population of neurons that control many aspects of physiology and movement and encompass the cellular substrates for debilitating degenerative disorders.
Collapse
Affiliation(s)
- Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Zoe E Piccus
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Sangeetha Hareendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Li Chen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, Hoang PT, Gautier O, Kaltschmidt JA, Greenleaf WJ, Gitler AD. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 2021; 24:572-583. [PMID: 33589834 PMCID: PMC8016743 DOI: 10.1038/s41593-020-00795-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
The spinal cord is a fascinating structure that is responsible for coordinating movement in vertebrates. Spinal motor neurons control muscle activity by transmitting signals from the spinal cord to diverse peripheral targets. In this study, we profiled 43,890 single-nucleus transcriptomes from the adult mouse spinal cord using fluorescence-activated nuclei sorting to enrich for motor neuron nuclei. We identified 16 sympathetic motor neuron clusters, which are distinguishable by spatial localization and expression of neuromodulatory signaling genes. We found surprising skeletal motor neuron heterogeneity in the adult spinal cord, including transcriptional differences that correlate with electrophysiologically and spatially distinct motor pools. We also provide evidence for a novel transcriptional subpopulation of skeletal motor neuron (γ*). Collectively, these data provide a single-cell transcriptional atlas ( http://spinalcordatlas.org ) for investigating the organizing molecular logic of adult motor neuron diversity, as well as the cellular and molecular basis of motor neuron function in health and disease.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Shadrach
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin A Guttenplan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Arwa Kathiria
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuong T Hoang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Mouilleau V, Vaslin C, Robert R, Gribaudo S, Nicolas N, Jarrige M, Terray A, Lesueur L, Mathis MW, Croft G, Daynac M, Rouiller-Fabre V, Wichterle H, Ribes V, Martinat C, Nedelec S. Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification. Development 2021; 148:148/6/dev194514. [PMID: 33782043 DOI: 10.1242/dev.194514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Vincent Mouilleau
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.,I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Célia Vaslin
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Simona Gribaudo
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Nour Nicolas
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Margot Jarrige
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Angélique Terray
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Léa Lesueur
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Mackenzie W Mathis
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Gist Croft
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Daynac
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France
| | - Cécile Martinat
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France .,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| |
Collapse
|
23
|
Wind M, Gogolou A, Manipur I, Granata I, Butler L, Andrews PW, Barbaric I, Ning K, Guarracino MR, Placzek M, Tsakiridis A. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. Development 2021; 148:dev194415. [PMID: 33658223 PMCID: PMC8015249 DOI: 10.1242/dev.194415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFβ-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.
Collapse
Affiliation(s)
- Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ichcha Manipur
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Larissa Butler
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Ning
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
An Atoh1 CRE Knock-In Mouse Labels Motor Neurons Involved in Fine Motor Control. eNeuro 2021; 8:ENEURO.0221-20.2021. [PMID: 33468540 PMCID: PMC7901153 DOI: 10.1523/eneuro.0221-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Motor neurons (MNs) innervating the digit muscles of the intrinsic hand (IH) and intrinsic foot (IF) control fine motor movements. The ability to reproducibly label specifically IH and IF MNs in mice would be a beneficial tool for studies focused on fine motor control. To this end, we find that a CRE knock-in mouse line of Atoh1, a developmentally expressed basic helix-loop-helix (bHLH) transcription factor, reliably expresses CRE-dependent reporter genes in ∼60% of the IH and IF MNs. We determine that CRE-dependent expression in IH and IF MNs is ectopic because an Atoh1 mouse line driving FLPo recombinase does not label these MNs although other Atoh1-lineage neurons in the intermediate spinal cord are reliably identified. Furthermore, the CRE-dependent reporter expression is enriched in the IH and IF MN pools with much sparser labeling of other limb-innervating MN pools such as the tibialis anterior (TA), gastrocnemius (GS), quadricep (Q), and adductor (Ad). Lastly, we find that ectopic reporter expression begins postnatally and labels a mixture of α and γ-MNs. Altogether, the Atoh1 CRE knock-in mouse strain might be a useful tool to explore the function and connectivity of MNs involved in fine motor control when combined with other genetic or viral strategies that can restrict labeling specifically to the IH and IF MNs. Accordingly, we provide an example of sparse labeling of IH and IF MNs using an intersectional genetic approach.
Collapse
|
25
|
Zhou L, Zhou M, Tan H, Xiao M. Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104547. [PMID: 32359539 DOI: 10.1016/j.pestbp.2020.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Pesticide residue is a common problem worldwide. Cypermethrin is a type II pyrethroid pesticide that has been widely used in recent years. It has become a widespread residual pesticide in the environment and agricultural products. The neurotoxicity of cypermethrin remains a matter of concern. However, few studies have evaluated its toxicity on cerebral cortical neurons. As the center of the nervous system, the cerebral cortex is involved in a series of biological processes, such as learning, memory, emotions, and movement. The Nrf2/ARE signaling pathway has been considered to play a protective role in several central nervous system (CNS) diseases. We investigated whether this pathway plays a protective role in cypermethrin-induced apoptosis of the cortical neurons. We established a cypermethrin-induced apoptosis model in the cortical neurons using different cypermethrin doses and different incubation periods. The changes in Nrf2 protein and mRNA expression and its downstream genes HO-1 and NQO1 were detected by quantitative real-time PCR and Western blotting to study the role of the Nrf2/ARE pathway in cypermethrin-induced apoptosis of the cortical neurons. The results showed that the Nrf2/ARE signaling pathway has a protective effect in cypermethrin-induced apoptosis of the cortical neurons. However, this protective effect of the Nrf2/ARE pathway is very limited and is dependent on the exposure dose and exposure period of cypermethrin.
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Mengqing Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Handan Tan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Mengxi Xiao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
26
|
Feng W, Li Y, Dao P, Aburas J, Islam P, Elbaz B, Kolarzyk A, Brown AE, Kratsios P. A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life. eLife 2020; 9:50065. [PMID: 31902393 PMCID: PMC6944445 DOI: 10.7554/elife.50065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
To become and remain functional, individual neuron types must select during development and maintain throughout life their distinct terminal identity features, such as expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but also antagonizes LIN-39’s ability to activate terminal features of alternative neuronal identities. Loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic MN-specific, terminal features become activated and locomotion defects occur. The strategy of a terminal selector preventing a transcriptional switch may constitute a general principle for safeguarding neuronal identity throughout life.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - Anna Kolarzyk
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
27
|
Zhou L, Chang J, Zhou M, Xiao M, Tan H. [Cypermethrin induces cell injury in primary cortical neurons of C57BL/6 mice by inhibiting Nrf2/ARE signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1469-1475. [PMID: 31907151 DOI: 10.12122/j.issn.1673-4254.2019.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the role of Nrf2/ARE signaling pathway in cypermethrin-induced oxidative stress and apoptosis of cerebral cortex neurons in C57BL/6 mice. METHODS The cortical neurons of C57BL/6 mice were cultured and identified, and a cypermethrin-induced cell injury model was established by treating the cells with 0, 25, 50 and 100 μmol/L of cypermethrin for 48 h. CCK-8 assay was used to analyze the effects of cypermethrin on the cell viability, and the fluorescence probe DCFH-DA was used for detecting intracellular reactive oxygen species (ROS); flow cytometry was performed for determining the apoptosis rate of the cells. The mRNA and protein expression levels of Nrf2 and its downstream genes HO-1 and NQO1 were detected using qPCR and Western blotting. RESULTS Exposure to cypermethrin at different doses inhibited the viability of the cultured cortical neurons. With the increase of cypermethrin dose, the viability of the neurons decreased progressively, the intracellular ROS and the cell apoptosis rate increased, and the neuronal injury worsened. At the dose of 50 and 100 μmol/L, cypermethrin significantly down-regulated the expressions of HO-1, NQO1 and Nrf2 at both the mRNA and protein levels in the cells (P < 0.01). CONCLUSIONS Cypermethrin exposure shows a dose-dependent neurotoxicity by inhibiting Nrf2/ARE signaling pathway, down-regulating the expression of Nrf2 and its downstream genes HO-1, NQO1 mRNA and protein, and inducing oxidative damage and apoptosis in primary mouse cortical neurons, .
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China, 233030
| | - Jianrong Chang
- Scientific Research Center, Bengbu Medical College, Bengbu, Anhui, China, 233030
| | - Mengqing Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China, 233030
| | - Mengxi Xiao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China, 233030
| | - Handan Tan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China, 233030
| |
Collapse
|
28
|
Sagner A, Briscoe J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 2019; 146:146/22/dev182154. [DOI: 10.1242/dev.182154] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The vertebrate spinal cord comprises multiple functionally distinct neuronal cell types arranged in characteristic positions. During development, these different types of neurons differentiate from transcriptionally distinct neural progenitors that are arrayed in discrete domains along the dorsal-ventral and anterior-posterior axes of the embryonic spinal cord. This organization arises in response to morphogen gradients acting upstream of a gene regulatory network, the architecture of which determines the spatial and temporal pattern of gene expression. In recent years, substantial progress has been made in deciphering the regulatory network that underlies the specification of distinct progenitor and neuronal cell identities. In this Review, we outline how distinct neuronal cell identities are established in response to spatial and temporal patterning systems, and outline novel experimental approaches to study the emergence and function of neuronal diversity in the spinal cord.
Collapse
|
29
|
Chen TH, Chen JA. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019; 8:e50848. [PMID: 31738166 PMCID: PMC6861003 DOI: 10.7554/elife.50848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Department of Pediatrics, Division of Pediatric EmergencyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
30
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Guidance of motor axons: where do we stand? CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ogura T, Sakaguchi H, Miyamoto S, Takahashi J. Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development 2018; 145:145/16/dev162214. [PMID: 30061169 PMCID: PMC6124545 DOI: 10.1242/dev.162214] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
Abstract
The spinal cord contains more than 20 distinct subclasses of neurons that form well-organized neural circuits capable of sensing the environment and generating motor behavior. Although recent studies have described the efficient in vitro generation of spinal motor neurons, the induction of the spinal cord as a whole tissue has not been achieved. In the present study, we demonstrate three-dimensional (3D) induction of dorsal spinal cord-like tissues from human pluripotent stem cells. Our 3D spinal cord induction (3-DiSC) condition recapitulates patterning of the developing dorsal spinal cord and enables the generation of four types of dorsal interneuron marker-positive cell populations. By activating Shh signaling, intermediate and ventral spinal cord-like tissues are successfully induced. After dissociation of these tissues, somatosensory neurons and spinal motor neurons are detected and express neurotransmitters in an in vivo manner. Our approach provides a useful experimental tool for the analysis of human spinal cord development and will contribute to research on the formation and organization of the spinal cord, and its application to regenerative medicine.
Collapse
Affiliation(s)
- Takenori Ogura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| | - Hideya Sakaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan .,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| |
Collapse
|
33
|
D'Elia KP, Dasen JS. Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Dev 2018; 13:10. [PMID: 29855378 PMCID: PMC5984435 DOI: 10.1186/s13064-018-0108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Boije H, Kullander K. Origin and circuitry of spinal locomotor interneurons generating different speeds. Curr Opin Neurobiol 2018; 53:16-21. [PMID: 29733915 DOI: 10.1016/j.conb.2018.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
The spinal circuitry governing the undulatory movements of swimming vertebrates consist of excitatory and commissural inhibitory interneurons and motor neurons. This locomotor network generates the rhythmic output, coordinate left/right alternation, and permit communication across segments. Through evolution, more complex movement patterns have emerged, made possible by sub-specialization of neural populations within the spinal cord. Walking tetrapods use a similar basic circuitry, but have added layers of complexity for the coordination of intralimbic flexor and extensor muscles as well as interlimbic coordination between the body halves and fore/hindlimbs. Although the basics of these circuits are known there is a gap in our knowledge regarding how different speeds and gaits are coordinated. Analysing subpopulations among described neuronal populations may bring insight into how changes in locomotor output are orchestrated by a hard-wired network.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden.
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden.
| |
Collapse
|
35
|
Cave C, Sockanathan S. Transcription factor mechanisms guiding motor neuron differentiation and diversification. Curr Opin Neurobiol 2018; 53:1-7. [PMID: 29694927 DOI: 10.1016/j.conb.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The embryonic generation of motor neurons is a complex process involving progenitor patterning, fate specification, differentiation, and maturation. Throughout this progression, the differential expression of transcription factors has served as our road map for the eventual cell fate of nascent motor neurons. Recent findings from in vivo and in vitro models of motor neuron development have expanded our understanding of how transcription factors govern motor neuron identity and their individual regulatory mechanisms. With the advent of next generation sequencing approaches, researchers now have unprecedented access to the gene regulatory dynamics involved in motor neuron development and are uncovering new connections linking neurodevelopment and neurodegenerative disease.
Collapse
Affiliation(s)
- Clinton Cave
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N Wolfe Street, PCTB 1004, Baltimore, MD 21205, United States
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N Wolfe Street, PCTB 1004, Baltimore, MD 21205, United States.
| |
Collapse
|
36
|
Sweeney LB, Bikoff JB, Gabitto MI, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM. Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 2018; 97:341-355.e3. [PMID: 29307712 PMCID: PMC5880537 DOI: 10.1016/j.neuron.2017.12.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
Collapse
Affiliation(s)
- Lora B Sweeney
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jay B Bikoff
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mariano I Gabitto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jerry H Yang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Esteban G Tabak
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
37
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
38
|
A Hox complex activates and potentiates the Epidermal Growth Factor signaling pathway to specify Drosophila oenocytes. PLoS Genet 2017; 13:e1006910. [PMID: 28715417 PMCID: PMC5536354 DOI: 10.1371/journal.pgen.1006910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/31/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
Hox transcription factors specify distinct cell types along the anterior-posterior axis of metazoans by regulating target genes that modulate signaling pathways. A well-established example is the induction of Epidermal Growth Factor (EGF) signaling by an Abdominal-A (Abd-A) Hox complex during the specification of Drosophila hepatocyte-like cells (oenocytes). Previous studies revealed that Abd-A is non-cell autonomously required to promote oenocyte fate by directly activating a gene (rhomboid) that triggers EGF secretion from sensory organ precursor (SOP) cells. Neighboring cells that receive the EGF signal initiate a largely unknown pathway to promote oenocyte fate. Here, we show that Abd-A also plays a cell autonomous role in inducing oenocyte fate by activating the expression of the Pointed-P1 (PntP1) ETS transcription factor downstream of EGF signaling. Genetic studies demonstrate that both PntP1 and PntP2 are required for oenocyte specification. Moreover, we found that PntP1 contains a conserved enhancer (PntP1OE) that is activated in oenocyte precursor cells by EGF signaling via direct regulation by the Pnt transcription factors as well as a transcription factor complex consisting of Abd-A, Extradenticle, and Homothorax. Our findings demonstrate that the same Abd-A Hox complex required for sending the EGF signal from SOP cells, enhances the competency of receiving cells to select oenocyte cell fate by up-regulating PntP1. Since PntP1 is a downstream effector of EGF signaling, these findings provide insight into how a Hox factor can both trigger and potentiate the EGF signal to promote an essential cell fate along the body plan.
Collapse
|
39
|
Kratsios P, Kerk SY, Catela C, Liang J, Vidal B, Bayer EA, Feng W, De La Cruz ED, Croci L, Consalez GG, Mizumoto K, Hobert O. An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. eLife 2017; 6. [PMID: 28677525 PMCID: PMC5498135 DOI: 10.7554/elife.25751] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Sze Yen Kerk
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Joseph Liang
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Estanisla Daniel De La Cruz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
40
|
Digit development. Nat Rev Neurosci 2017. [DOI: 10.1038/nrn.2017.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|