1
|
Murrieta AC, Mendoza-Espinosa P, Velasco-Bolom JL, Contreras-Torres FF. Identification and structural characterization of CB1 receptor antagonists: A comprehensive virtual screening and molecular dynamics study of arachidin-2. Biophys Chem 2025; 318:107385. [PMID: 39721421 DOI: 10.1016/j.bpc.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state. A comprehensive pipeline, integrating ligand-based similarity search, 2D fingerprint-based reverse virtual screening and molecular dynamics (MD) simulations, identified compounds with core scaffolds commonly found in bioactive natural products, such as stilbenoids and polyphenolic compounds. Arachidin-2 (AR2) and a polyphenolic derivative were subjected to extended MD simulations, revealing their ability to stabilize the inactive CB1 state across key helices. The distinct stability differences observed in the helices HI, HIV, and HVI of the active CB1 state further highlighted ligand-specific conformational dynamics. A comparative analysis with co-crystallized synthetic ligands AM6538 and AM841 demonstrated the distinct binding behaviors of natural and synthetic ligands. AR2 showed more favorable binding to the inactive form (-22.0 kcal/mol) than to the active state. Similarly, the polyphenolic compound exhibited a greater binding difference (∼6 kcal/mol) between the inactive and active states. Notably, AM6538 and AM841 demonstrated the strongest binding (∼30 kcal/mol) to the inactive and active state, respectively. Key residues stabilizing the identified compounds in CB1-inactive state included PHE102, GLY166, PHE170, VAL196, LEU359, SER383, and CIS386. These findings underscore the utility of computational methods in the discovery and development of novel CB1 modulators for potential biomedical applications.
Collapse
Affiliation(s)
- Ana C Murrieta
- Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico
| | - Paola Mendoza-Espinosa
- Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico
| | - José Luis Velasco-Bolom
- Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico
| | - Flavio F Contreras-Torres
- Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico.
| |
Collapse
|
2
|
Martin-Garcia E, Domingo-Rodriguez L, Lutz B, Maldonado R, Ruiz de Azua I. Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior. Mol Metab 2025; 92:102096. [PMID: 39788291 PMCID: PMC11787564 DOI: 10.1016/j.molmet.2025.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. These innate mechanisms becom detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. This study aims at elucidating the role of the endocannabinoid system in energy accumulation and hedonic feeding. METHODS We applied a genetic strategy to reconstitute cannabinoid type-1 receptor (CB1) expression at functional levels specifically in CaMKII+ neurons (CaMKII-CB1-RS) and adipocytes (Ati-CB1-RS), respectively, in a CB1 deficient background. RESULTS Rescued CB1 expression in CaMKII+ neurons, but not in adipocytes, promotes feeding behavior, leading to fasting-induced hyperphagia, increased motivation, and impulsivity to palatable food seeking. In a diet-induced obesity model, CB1 re-expression in CaMKII+ neurons, but not in adipocytes, compared to complete CB1 deficiency, was sufficient to largely restore weight gain, food intake without any effect on glucose intolerance associated with high-fat diet consumption. In a model of glucocorticoid-mediated metabolic syndrome, CaMKII-CB1-RS mice showed all metabolic alterations linked to the human metabolic syndrome except of glucose intolerance. In a binge-eating model mimicking human pathological feeding, CaMKII-CB1-RS mice showed increased seeking and compulsive behavior to palatable food, suggesting crucial roles in foraging and an enhanced susceptibility to addictive-like eating behaviors. Importantly, other contingent behaviors, including increased cognitive flexibility and reduced anxiety-like behaviors, but not depressive-like behaviors, were also observed. CONCLUSIONS CB1 in CaMKII+ neurons is instrumental in feeding behavior and energy storage under physiological conditions. The exposure to risk factors (hypercaloric diet, glucocorticoid dysregulation) leads to obesity, metabolic syndrome, binge-eating and food addiction.
Collapse
Affiliation(s)
- Elena Martin-Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain
| | - Beat Lutz
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Zhang M, Wang Q, Wang Y. Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors. Neurochem Int 2025; 183:105921. [PMID: 39708909 DOI: 10.1016/j.neuint.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding. In the context of metabolic regulation of feeding behaviors, eCBs affect the hypothalamic circuits that balance hunger and satiety through signal integration related to energy status and nutrient availability. Dysregulation of this system can contribute to metabolic disorders such as obesity and anorexia. In non-metabolic feeding, the eCB system influences the hedonic aspects of eating by modulating reward pathways, including the mesolimbic system and the olfactory bulb, critical for motivating food intake and processing sensory cues. This review also explores therapeutic strategies targeting the eCB system, including cannabinoid receptor antagonists and eCB hydrolase enzyme inhibitors, which hold promise for treating conditions associated with appetite dysregulation and eating disorders. By synthesizing recent findings, we aim to highlight the intricate mechanisms through which the eCB system affects feeding behavior and to propose future directions for research and therapeutic intervention in the realm of appetite control and eating disorders.
Collapse
Affiliation(s)
- Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China.
| |
Collapse
|
4
|
Lau D, Tobin S, Pribiag H, Nakajima S, Fisette A, Matthys D, Franco Flores AK, Peyot ML, Murthy Madiraju SR, Prentki M, Stellwagen D, Alquier T, Fulton S. ABHD6 loss-of-function in mesoaccumbens postsynaptic but not presynaptic neurons prevents diet-induced obesity in male mice. Nat Commun 2024; 15:10652. [PMID: 39681558 PMCID: PMC11649924 DOI: 10.1038/s41467-024-54819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
α/β-hydrolase domain 6 (ABHD6) is a lipase linked to physiological functions affecting energy metabolism. Brain ABHD6 degrades 2-arachidonoylglycerol and thereby modifies cannabinoid receptor signalling. However, its functional role within mesoaccumbens circuitry critical for motivated behaviour and considerably modulated by endocannabinoids was unknown. Using three viral approaches, we show that control of the nucleus accumbens by neuronal ABHD6 is a key determinant of body weight and reward-directed behaviour in male mice. Contrary to expected outcomes associated with increasing endocannabinoid tone, loss of ABHD6 in nucleus accumbens, but not ventral tegmental area, neurons completely prevents diet-induced obesity, reduces food- and drug-seeking and enhances physical activity without affecting anxiodepressive behaviour. These effects are explained by attenuated inhibitory synaptic transmission onto medium spiny neurons. ABHD6 deletion in nucleus accumbens neurons and dopamine ventral tegmental area neurons produces contrasting effects on effortful responding for food. Intraventricular infusions of an ABHD6 inhibitor also restrain appetite and promote weight loss. Together, these results reveal functional specificity of pre- and post-synaptic mesoaccumbens neuronal ABHD6 to differentially control energy balance and propose ABHD6 inhibition as a potential anti-obesity tool.
Collapse
Affiliation(s)
- David Lau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Tobin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Horia Pribiag
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Dominique Matthys
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Anna Kristyna Franco Flores
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Marie-Line Peyot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marc Prentki
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Center, Montréal, QC, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Yang N, Li M, Li X, Wu L, Wang W, Xu Y, Wang Z, Zhu C, Geng D. MAGL blockade alleviates steroid-induced femoral head osteonecrosis by reprogramming BMSC fate in rat. Cell Mol Life Sci 2024; 81:418. [PMID: 39368012 PMCID: PMC11455816 DOI: 10.1007/s00018-024-05443-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/07/2024]
Abstract
The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3β pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Meng Li
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuefeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215000, China
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
6
|
Cutugno G, Kyriakidou E, Nadjar A. Rethinking the role of microglia in obesity. Neuropharmacology 2024; 253:109951. [PMID: 38615749 DOI: 10.1016/j.neuropharm.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microglia are the macrophages of the central nervous system (CNS), implying their role in maintaining brain homeostasis. To achieve this, these cells are sensitive to a plethora of endogenous and exogenous signals, such as neuronal activity, cellular debris, hormones, and pathological patterns, among many others. More recent research suggests that microglia are highly responsive to nutrients and dietary variations. In this context, numerous studies have demonstrated their significant role in the development of obesity under calorie surfeit. Because many reviews already exist on this topic, we have chosen to present the state of our reflections on various concepts put forth in the literature, bringing a new perspective whenever possible. Our literature review focuses on studies conducted in the arcuate nucleus of the hypothalamus, a key structure in the control of food intake. Specifically, we present the recent data available on the modifications of microglial energy metabolism following the consumption of an obesogenic diet and their consequences on hypothalamic neuron activity. We also highlight the studies unraveling the mechanisms underlying obesity-related sexual dimorphism. The review concludes with a list of questions that remain to be addressed in the field to achieve a comprehensive understanding of the role of microglia in the regulation of body energy metabolism. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- G Cutugno
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - E Kyriakidou
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - A Nadjar
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
7
|
Lee TH, Cota D, Quarta C. Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case. Biochimie 2024; 223:188-195. [PMID: 35863558 DOI: 10.1016/j.biochi.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a chronic and debilitating disorder that originates from alterations in energy-sensing brain circuits controlling body weight gain and food intake. The dysregulated syntheses and actions of lipid mediators in the hypothalamus induce weight gain and overfeeding, but the molecular and cellular underpinnings of these alterations remain elusive. In response to changes in the nutritional status, different lipid sensing pathways in the hypothalamus direct body energy needs in a Yin-Yang model. Endocannabinoids orchestrate the crosstalk between hypothalamic circuits and the sympathetic nervous system to promote food intake and energy accumulation during fasting, whereas bile acids act on the same top-down axis to reduce energy intake and possibly storage after the meal. In obesity, the bioavailability and downstream cellular actions of endocannabinoids and bile acids are altered in hypothalamic neurons involved in body weight and metabolic control. Thus, the onset and progression of this disease might result from an imbalance in hypothalamic sensing of multiple lipid signals, which are possibly integrated by common molecular nodes. In this viewpoint, we discuss a possible model that explains how bile acids and endocannabinoids may exert their effects on energy balance regulation via interconnected mechanisms at the level of the hypothalamic neuronal circuits. Therefore, we propose a new conceptual framework for understanding and treating central mechanisms of maladaptive lipid action in obesity.
Collapse
Affiliation(s)
- Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France.
| |
Collapse
|
8
|
Zhao Z, Covelo A, Couderc Y, Mitra A, Varilh M, Wu Y, Jacky D, Fayad R, Cannich A, Bellocchio L, Marsicano G, Beyeler A. Cannabinoids regulate an insula circuit controlling water intake. Curr Biol 2024; 34:1918-1929.e5. [PMID: 38636514 DOI: 10.1016/j.cub.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.
Collapse
Affiliation(s)
- Zhe Zhao
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Ana Covelo
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yoni Couderc
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arojit Mitra
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yifan Wu
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Débora Jacky
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rim Fayad
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Astrid Cannich
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| | - Anna Beyeler
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
9
|
Jung KM, Lin L, Piomelli D. Overactivation of the Endocannabinoid System in Adolescence Disrupts Adult Adipose Organ Function in Mice. Cells 2024; 13:461. [PMID: 38474425 PMCID: PMC10930932 DOI: 10.3390/cells13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Leidmaa E, Prodan AM, Depner LL, Komorowska-Müller JA, Beins EC, Schuermann B, Kolbe CC, Zimmer A. Astrocytic Dagla Deletion Decreases Hedonic Feeding in Female Mice. Cannabis Cannabinoid Res 2024; 9:74-88. [PMID: 38265773 PMCID: PMC10874831 DOI: 10.1089/can.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Introduction: Endocannabinoids and exogenous cannabinoids are potent regulators of feeding behavior and energy metabolism. Stimulating cannabinoid receptor signaling enhances appetite, particularly for energy-dense palatable foods, and promotes energy storage. To elucidate the underlying cellular mechanisms, we investigate here the potential role of astrocytic endocannabinoid 2-arachidonoylglycerol (2-AG). Astrocytes provide metabolic support for neurons and contribute to feeding regulation but the effect of astrocytic 2-AG on feeding is unknown. Materials and Methods: We generated mice lacking the 2-AG synthesizing enzyme diacylglycerol lipase alpha (Dagla) in astrocytes (GLAST-Dagla KO) and investigated hedonic feeding behavior in male and female mice. Body weight and baseline water and food intake was characterized; additionally, the mice went through milk, saccharine, and sucrose preference tests in fed and fasted states. In female mice, the estrous cycle stages were identified and plasma levels of female sex hormones were measured. Results: We found that the effects of the inducible astrocytic Dagla deletion were sex-specific. Acute milk preference was decreased in female, but not in male mice and the effect was most evident in the estrus stage of the cycle. This prompted us to investigate sex hormone profiles, which were found to be altered in GLAST-Dagla KO females. Specifically, follicle-stimulating hormone was elevated in the estrus stage, luteinizing hormone in the proestrus, and progesterone was increased in both proestrus and estrus stages of the cycle compared with controls. Conclusions: Astrocytic Dagla regulates acute hedonic appetite for palatable food in females and not in males, possibly owing to a deregulated female sex hormone profile. It is plausible that endocannabinoid production by astrocytes at least partly contributes to the greater susceptibility to overeating in females. This finding may also be important for understanding the effects of exogenous cannabinoids on sex hormone profiles.
Collapse
Affiliation(s)
- Este Leidmaa
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexandra Maria Prodan
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lena-Louise Depner
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Eva Carolina Beins
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Medical Faculty, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Britta Schuermann
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Andreas Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
12
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
13
|
Lin L, Jung KM, Lee HL, Le J, Colleluori G, Wood C, Palese F, Squire E, Ramirez J, Su S, Torrens A, Fotio Y, Tang L, Yu C, Yang Q, Huang L, DiPatrizio N, Jang C, Cinti S, Piomelli D. Adolescent exposure to low-dose THC disrupts energy balance and adipose organ homeostasis in adulthood. Cell Metab 2023; 35:1227-1241.e7. [PMID: 37267956 PMCID: PMC10524841 DOI: 10.1016/j.cmet.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and β-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.
Collapse
Affiliation(s)
- Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Georgia Colleluori
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Courtney Wood
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jade Ramirez
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Shiqi Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lingyi Tang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qin Yang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas DiPatrizio
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Saverio Cinti
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
15
|
Haney M, Vallée M, Fabre S, Collins Reed S, Zanese M, Campistron G, Arout CA, Foltin RW, Cooper ZD, Kearney-Ramos T, Metna M, Justinova Z, Schindler C, Hebert-Chatelain E, Bellocchio L, Cathala A, Bari A, Serrat R, Finlay DB, Caraci F, Redon B, Martín-García E, Busquets-Garcia A, Matias I, Levin FR, Felpin FX, Simon N, Cota D, Spampinato U, Maldonado R, Shaham Y, Glass M, Thomsen LL, Mengel H, Marsicano G, Monlezun S, Revest JM, Piazza PV. Signaling-specific inhibition of the CB 1 receptor for cannabis use disorder: phase 1 and phase 2a randomized trials. Nat Med 2023; 29:1487-1499. [PMID: 37291212 PMCID: PMC10287566 DOI: 10.1038/s41591-023-02381-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .
Collapse
Affiliation(s)
- Margaret Haney
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Monique Vallée
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | - Stephanie Collins Reed
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | | | | | - Caroline A Arout
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Richard W Foltin
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Ziva D Cooper
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Tonisha Kearney-Ramos
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | | | - Zuzana Justinova
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Charles Schindler
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | | | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Adeline Cathala
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Filippo Caraci
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
- Department of Drug and Health Sciences, University of Catania, Italy, and Oasi Research Institute-IRCCS, Unit of Translational Neuropharmacology, Troina, Italy
| | - Bastien Redon
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
- Basic Neuroscience Department, Université de Genève, Genève, Switzerland
| | - Elena Martín-García
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Arnau Busquets-Garcia
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Isabelle Matias
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Frances R Levin
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | | | - Nicolas Simon
- Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Service de Pharmacologie Clinique, Marseille, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
16
|
Costas-Insua C, Seijo-Vila M, Blázquez C, Blasco-Benito S, Rodríguez-Baena FJ, Marsicano G, Pérez-Gómez E, Sánchez C, Sánchez-Laorden B, Guzmán M. Neuronal Cannabinoid CB 1 Receptors Suppress the Growth of Melanoma Brain Metastases by Inhibiting Glutamatergic Signalling. Cancers (Basel) 2023; 15:cancers15092439. [PMID: 37173906 PMCID: PMC10177062 DOI: 10.3390/cancers15092439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is one of the deadliest forms of cancer. Most melanoma deaths are caused by distant metastases in several organs, especially the brain, the so-called melanoma brain metastases (MBMs). However, the precise mechanisms that sustain the growth of MBMs remain elusive. Recently, the excitatory neurotransmitter glutamate has been proposed as a brain-specific, pro-tumorigenic signal for various types of cancers, but how neuronal glutamate shuttling onto metastases is regulated remains unknown. Here, we show that the cannabinoid CB1 receptor (CB1R), a master regulator of glutamate output from nerve terminals, controls MBM proliferation. First, in silico transcriptomic analysis of cancer-genome atlases indicated an aberrant expression of glutamate receptors in human metastatic melanoma samples. Second, in vitro experiments conducted on three different melanoma cell lines showed that the selective blockade of glutamatergic NMDA receptors, but not AMPA or metabotropic receptors, reduces cell proliferation. Third, in vivo grafting of melanoma cells in the brain of mice selectively devoid of CB1Rs in glutamatergic neurons increased tumour cell proliferation in concert with NMDA receptor activation, whereas melanoma cell growth in other tissue locations was not affected. Taken together, our findings demonstrate an unprecedented regulatory role of neuronal CB1Rs in the MBM tumour microenvironment.
Collapse
Affiliation(s)
- Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Marta Seijo-Vila
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Sandra Blasco-Benito
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Francisco Javier Rodríguez-Baena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Giovanni Marsicano
- Physiopathologie de la Plasticité Neuronale, NeuroCentre Magendie, U1215 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Neurocampus, University of Bordeaux, 33077 Bordeaux, France
| | - Eduardo Pérez-Gómez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| |
Collapse
|
17
|
Raux PL, Vallée M. Cross-talk between neurosteroid and endocannabinoid systems in cannabis addiction. J Neuroendocrinol 2023; 35:e13191. [PMID: 36043319 DOI: 10.1111/jne.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Steroids and endocannabinoids are part of two modulatory systems and some evidence has shown their interconnections in several functions. Homeostasis is a common steady-state described in the body, which is settled by regulatory systems to counterbalance deregulated or allostatic set points towards an equilibrium. This regulation is of primary significance in the central nervous system for maintaining neuronal plasticity and preventing brain-related disorders. In this context, the recent discovery of the shutdown of the endocannabinoid system (ECS) overload by the neurosteroid pregnenolone has highlighted new endogenous mechanisms of ECS regulation related to cannabis-induced intoxication. These mechanisms involve a regulatory loop mediated by overactivation of the central type-1 cannabinoid receptor (CB1R), which triggers the production of its own regulator, pregnenolone. Therefore, this highlights a new process of regulation of steroidogenesis in the brain. Pregnenolone, long considered an inactive precursor of neurosteroids, can then act as an endogenous negative allosteric modulator of CB1R. The present review aims to shed light on a new framework for the role of ECS in the addictive characteristics of cannabis with the novel endogenous mechanism of ECS involving the neurosteroid pregnenolone. In addition, this new endogenous regulatory loop could provide a relevant therapeutic model in the current context of increasing recreational and medical use of cannabis.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
19
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
20
|
Endocannabinoid System Regulation in Female Rats with Recurrent Episodes of Binge Eating. Int J Mol Sci 2022; 23:ijms232315228. [PMID: 36499556 PMCID: PMC9738776 DOI: 10.3390/ijms232315228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.
Collapse
|
21
|
Busquets-García A, Bolaños JP, Marsicano G. Metabolic Messengers: endocannabinoids. Nat Metab 2022; 4:848-855. [PMID: 35817852 DOI: 10.1038/s42255-022-00600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Arnau Busquets-García
- Cell-type mechanisms in normal and pathological behavior Research Group. IMIM-Hospital del Mar Medical Research Institute, PRBB, Barcelona, Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.
- University of Bordeaux, Bordeaux, France.
| |
Collapse
|
22
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
23
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
24
|
Scienza-Martin K, Lotz FN, Zanona QK, Santana-Kragelund F, Crestani AP, Boos FZ, Calcagnotto ME, Quillfeldt JA. Memory consolidation depends on endogenous hippocampal levels of anandamide: CB1 and M4, but possibly not TRPV1 receptors mediate AM404 effects. Neuroscience 2022; 497:53-72. [DOI: 10.1016/j.neuroscience.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/14/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022]
|
25
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
26
|
Raux PL, Drutel G, Revest JM, Vallée M. New perspectives on the role of the neurosteroid pregnenolone as an endogenous regulator of type-1 cannabinoid receptor (CB1R) activity and function. J Neuroendocrinol 2022; 34:e13034. [PMID: 34486765 DOI: 10.1111/jne.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Pregnenolone is a steroid with specific characteristics, being the first steroid to be synthesised from cholesterol at all sites of steroidogenesis, including the brain. For many years, pregnenolone was defined as an inactive precursor of all steroids because no specific target had been discovered. However, over the last decade, it has become a steroid of interest because it has been recognised as being a biomarker for brain-related disorders through the development of metabolomic approaches and advanced analytical methods. In addition, physiological roles for pregnenolone emerged when specific targets were discovered. In this review, we highlight the discovery of the selective interaction of pregnenolone with the type-1 cannabinoid receptor (CB1R). After describing the specific characteristic of CB1Rs, we discuss the newly discovered mechanisms of their regulation by pregnenolone. In particular, we describe the action of pregnenolone as a negative allosteric modulator and a specific signalling inhibitor of the CB1R. These particular characteristics of pregnenolone provide a great strategic opportunity for therapeutic development in CB1-related disorders. Finally, we outline new perspectives using innovative genetic tools for the discovery of original regulatory mechanisms of pregnenolone on CB1-related functions.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Guillaume Drutel
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
27
|
Brun JF, Varlet-Marie E, Myzia J, Raynaud de Mauverger E, Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites 2021; 12:4. [PMID: 35050126 PMCID: PMC8778269 DOI: 10.3390/metabo12010004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
Many factors in the surrounding environment have been reported to influence erythrocyte deformability. It is likely that some influences represent reversible changes in erythrocyte rigidity that may be involved in physiological regulation, while others represent the early stages of eryptosis, i.e., the red cell self-programmed death. For example, erythrocyte rigidification during exercise is probably a reversible physiological mechanism, while the alterations of red blood cells (RBCs) observed in pathological conditions (inflammation, type 2 diabetes, and sickle-cell disease) are more likely to lead to eryptosis. The splenic clearance of rigid erythrocytes is the major regulator of RBC deformability. The physicochemical characteristics of the surrounding environment (thermal injury, pH, osmolality, oxidative stress, and plasma protein profile) also play a major role. However, there are many other factors that influence RBC deformability and eryptosis. In this comprehensive review, we discuss the various elements and circulating molecules that might influence RBCs and modify their deformability: purinergic signaling, gasotransmitters such as nitric oxide (NO), divalent cations (magnesium, zinc, and Fe2+), lactate, ketone bodies, blood lipids, and several circulating hormones. Meal composition (caloric and carbohydrate intake) also modifies RBC deformability. Therefore, RBC deformability appears to be under the influence of many factors. This suggests that several homeostatic regulatory loops adapt the red cell rigidity to the physiological conditions in order to cope with the need for oxygen or fuel delivery to tissues. Furthermore, many conditions appear to irreversibly damage red cells, resulting in their destruction and removal from the blood. These two categories of modifications to erythrocyte deformability should thus be differentiated.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Emmanuelle Varlet-Marie
- UMR CNRS 5247-Institut des Biomolécules Max Mousseron (IBMM), Laboratoire du Département de Physicochimie et Biophysique, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 34090 Montpellier, France;
| | - Justine Myzia
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 MATIELAND, Stellenbosch 7602, South Africa;
| |
Collapse
|
28
|
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, Rodríguez-Rodríguez R. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
Affiliation(s)
- Cristina Miralpeix
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain.
| |
Collapse
|
29
|
Ma L, Wu S, Zhang K, Tian M, Zhang H. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:666-673. [PMID: 34986538 PMCID: PMC8732249 DOI: 10.3724/zdxbyxb-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 receptor (CB1R), as the major member of the endocannabinoid system, is among the most abundant receptors expressed in the central nervous system. CB1R is mainly located on the axon terminals of presynaptic neurons and participate in the modulation of neuronal excitability and synaptic plasticity, playing an important role in the pathogenesis of various neuropsychiatric diseases. In recent years, the consistent development of CB1R radioligands and the maturity of molecular imaging techniques, particularly positron emission tomography (PET) may help to visualize the expression and distribution of CB1R in central nervous system . At present, CB1R PET imaging can effectively evaluate the changes of CB1R levels in neuropsychiatric diseases such as Huntington's disease and schizophrenia, and its correlation with the disease severity, therefore providing new insights for the diagnosis and treatment of neuropsychiatric diseases. This article reviews the application of CB1R PET imaging in Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, post-traumatic stress disorder, cannabis use disorder and depression.
Collapse
Affiliation(s)
- Lijuan Ma
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shuang Wu
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kai Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mei Tian
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
31
|
Sighinolfi G, Clark S, Blanc L, Cota D, Rhourri-Frih B. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Sci Rep 2021; 11:19664. [PMID: 34608169 PMCID: PMC8490458 DOI: 10.1038/s41598-021-97201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity have been shown to significantly affect brain structures and size. Obesity has been associated with cerebral atrophy, alteration of brain functions, including cognitive impairement, and psychiatric diseases such as depression. Given the importance of lipids in the structure of the brain, here, by using 47 mice fed a high fat diet (HFD) with 60% calories from fat (40% saturated fatty acids) and 20% calories from carbohydrates and age-matched control animals on a normal chow diet, we examined the effects of HFD and diet-induced obesity on the brain lipidome. Using a targeted liquid chromatography mass spectrometry analysis and a non-targeted mass spectrometry MALDI imaging approach, we show that the relative concentration of most lipids, in particular brain phospholipids, is modified by diet-induced obesity (+ 40%of body weight). Use of a non-targeted MALDI-MS imaging approach further allowed define cerebral regions of interest (ROI) involved in eating behavior and changes in their lipid profile. Principal component analysis (PCA) of the obese/chow lipidome revealed persistence of some of the changes in the brain lipidome of obese animals even after their switch to chow feeding and associated weight loss. Altogether, these data reveal that HFD feeding rapidly modifies the murine brain lipidome. Some of these HFD-induced changes persist even after weight loss, implying that some brain sequelae caused by diet-induced obesity are irreversible.
Collapse
Affiliation(s)
| | - Samantha Clark
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | | - Daniela Cota
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
32
|
Ahmed I, Rehman SU, Shahmohamadnejad S, Zia MA, Ahmad M, Saeed MM, Akram Z, Iqbal HMN, Liu Q. Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders. Molecules 2021; 26:3389. [PMID: 34205169 PMCID: PMC8199938 DOI: 10.3390/molecules26113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, School of medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran;
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan;
| | - Muhammad Muzammal Saeed
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Zain Akram
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| |
Collapse
|
33
|
Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons drives overconsumption of palatable food and obesity. Neuropsychopharmacology 2021; 46:982-991. [PMID: 33558679 PMCID: PMC8105345 DOI: 10.1038/s41386-021-00957-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
Palatable food can promote overfeeding beyond homeostatic requirements, thereby constituting a major risk to obesity. Here, the lack of cannabinoid type 1 receptor (CB1) in dorsal telencephalic glutamatergic neurons (Glu-CB1-KO) abrogated the overconsumption of palatable food and the development of obesity. On low-fat diet, no genotype differences were observed. However, under palatable food conditions, Glu-CB1-KO mice showed decreased body weight and food intake. Notably, Glu-CB1-KO mice were protected from alterations in the reward system after high-fat diet feeding. Interestingly, obese wild-type mice showed a superior olfactory detection as compared to mutant mice, suggesting a link between overconsumption of palatable food and olfactory function. Reconstitution of CB1 expression in olfactory cortex in high-fat diet-fed Glu-CB1-KO mice using viral gene delivery partially reversed the lean phenotype concomitantly with improved odor perception. These findings indicate that CB1 in cortical glutamatergic neurons regulates hedonic feeding, whereby a critical role of the olfactory cortex was uncovered as an underlying mechanism.
Collapse
|
34
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
35
|
Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021; 3:299-308. [PMID: 33633406 PMCID: PMC8085907 DOI: 10.1038/s42255-021-00345-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Quarta
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France.
| |
Collapse
|
36
|
Ibarra-Lecue I, Diez-Alarcia R, Urigüen L. Serotonin 2A receptors and cannabinoids. PROGRESS IN BRAIN RESEARCH 2021; 259:135-175. [PMID: 33541675 DOI: 10.1016/bs.pbr.2021.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has proven that both exogenous cannabinoids as well as imbalances in the endocannabinoid system are involved in the onset and development of mental disorders such as anxiety, depression, or schizophrenia. Extensive recent research in this topic has mainly focused on the molecular mechanisms by which cannabinoid agonists may contribute to the pathophysiology of these disorders. Initially, serotonin neurotransmitter garnered most attention due to its relationship to mood disorders and mental diseases, with little attention to specific receptors. To date, the focus has redirected toward the understanding of different serotonin receptors, through a demonstration of its versatile pharmacology and synergy with different modulators. Serotonin 2A receptors are a good example of this phenomenon, and the complex signaling that they trigger appears of high relevance in the context of mental disorders, especially in schizophrenia. This chapter will analyze most relevant attributes of serotonin 2A receptors and the endocannabinoid system, and will highlight the evidence toward the functional bidirectional interaction between these elements in the brain as well as the impact of the endocannabinoid system dysregulation on serotonin 2A receptors functionality.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain.
| |
Collapse
|
37
|
Buch C, Muller T, Leemput J, Passilly-Degrace P, Ortega-Deballon P, Pais de Barros JP, Vergès B, Jourdan T, Demizieux L, Degrace P. Endocannabinoids Produced by White Adipose Tissue Modulate Lipolysis in Lean but Not in Obese Rodent and Human. Front Endocrinol (Lausanne) 2021; 12:716431. [PMID: 34434170 PMCID: PMC8382141 DOI: 10.3389/fendo.2021.716431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.
Collapse
Affiliation(s)
- Chloé Buch
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tania Muller
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pablo Ortega-Deballon
- Department of Digestive, Thoracic and Surgical Oncology, University Hospital, Dijon, France
| | | | - Bruno Vergès
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France
| | - Tony Jourdan
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Pascal Degrace,
| |
Collapse
|
38
|
Zhao Z, Soria-Gómez E, Varilh M, Covelo A, Julio-Kalajzić F, Cannich A, Castiglione A, Vanhoutte L, Duveau A, Zizzari P, Beyeler A, Cota D, Bellocchio L, Busquets-Garcia A, Marsicano G. A Novel Cortical Mechanism for Top-Down Control of Water Intake. Curr Biol 2020; 30:4789-4798.e4. [DOI: 10.1016/j.cub.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023]
|
39
|
Boyer C, Cussonneau L, Brun C, Deval C, Pais de Barros JP, Chanon S, Bernoud-Hubac N, Daira P, Evans AL, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Combaret L, Bertile F, Lefai E. Specific shifts in the endocannabinoid system in hibernating brown bears. Front Zool 2020; 17:35. [PMID: 33292302 PMCID: PMC7681968 DOI: 10.1186/s12983-020-00380-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/20/2020] [Indexed: 01/30/2023] Open
Abstract
In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear’s peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.
Collapse
Affiliation(s)
- Christian Boyer
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Laura Cussonneau
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Charlotte Brun
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Christiane Deval
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Stéphanie Chanon
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | | | - Patricia Daira
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480, Koppang, Norway
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480, Koppang, Norway.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Chantal Simon
- Université de Lyon, INSERM, INRAE, INSA, Functional Lipidomic Plateform, Lyon, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Etienne Lefai
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
40
|
Figlewicz DP, Witkamp RF. FATTY ACIDS AS CELL SIGNALS IN INGESTIVE BEHAVIORS. Physiol Behav 2020; 223:112985. [PMID: 32473927 DOI: 10.1016/j.physbeh.2020.112985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
|
41
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
42
|
Pedro JR, Moura LIF, Valério-Fernandes Â, Baptista FI, Gaspar JM, Pinheiro BS, Lemos C, Kaufmann FN, Morgado C, Silva-Santos CSD, Tavares I, Ferreira SG, Carvalho E, Ambrósio AF, Cunha RA, Duarte JMN, Köfalvi A. Transient gain of function of cannabinoid CB 1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Res Bull 2020; 161:106-115. [PMID: 32428627 DOI: 10.1016/j.brainresbull.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212-2 (500 nM) and the CB1R-selective agonist, ACEA (3 μM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKβ levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.
Collapse
Affiliation(s)
- Joana Reis Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liane I F Moura
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana M Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carla Morgado
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla S da Silva-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Arkansas Children's Research Institute, and Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - António F Ambrósio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Attila Köfalvi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
43
|
Terral G, Varilh M, Cannich A, Massa F, Ferreira G, Marsicano G. Synaptic Functions of Type-1 Cannabinoid Receptors in Inhibitory Circuits of the Anterior Piriform Cortex. Neuroscience 2020; 433:121-131. [DOI: 10.1016/j.neuroscience.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
|
44
|
Quarta C, Cota D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes (Lond) 2020; 44:2179-2193. [PMID: 32317751 DOI: 10.1038/s41366-020-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
45
|
Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21082850. [PMID: 32325875 PMCID: PMC7216281 DOI: 10.3390/ijms21082850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoid synthesis in the human body is naturally occurring and on-demand. It occurs in response to physiological and environmental stimuli, such as stress, anxiety, hunger, other factors negatively disrupting homeostasis, as well as the therapeutic use of the phytocannabinoid cannabidiol and recreational use of exogenous cannabis, which can lead to cannabis use disorder. Together with their specific receptors CB1R and CB2R, endocannabinoids are major components of endocannabinoid-mediated neuromodulation in a rapid and sustained manner. Extensive research on endocannabinoid function and expression includes studies in limbic system structures such as the hippocampus and amygdala. The wide distribution of endocannabinoids, their on-demand synthesis at widely different sites, their co-existence in specific regions of the body, their quantitative differences in tissue type, and different pathological conditions indicate their diverse biological functions that utilize specific and overlapping pathways in multiple organ systems. Here, we review emerging evidence of these pathways with a special emphasis on the role of endocannabinoids in decelerating neurodegenerative pathology through neural networks initiated by cells in the main olfactory bulb.
Collapse
|
46
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
47
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
48
|
Mani BK, Castorena CM, Vianna CR, Lee CE, Metzger NP, Vijayaraghavan P, Osborne-Lawrence S, Elmquist JK, Zigman JM. Combined Loss of Ghrelin Receptor and Cannabinoid CB1 Receptor in Mice Decreases Survival but does not Additively Reduce Body Weight or Eating. Neuroscience 2019; 447:53-62. [PMID: 31520709 DOI: 10.1016/j.neuroscience.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023]
Abstract
Ghrelin administration increases food intake, body weight (BW), adiposity, and blood glucose. In contrast, although mouse models lacking ghrelin or its receptor (Growth Hormone Secretagogue Receptor (GHSR)) exhibit life-threatening hypoglycemia in starvation-like states, they do not exhibit appreciable reductions in food intake, BW, adiposity, blood glucose, or survival when food availability is unrestricted. This suggests the existence of a parallel neuromodulatory system that can compensate for disruptions in the ghrelin system in certain settings. Here, we hypothesized that the cannabinoid CB1 receptor (CB1R) may encode this putative redundancy, and as such, that genetic deletion of both GHSR and CB1R would exaggerate the metabolic deficits associated with deletion of GHSR alone. To test this hypothesis, we assessed food intake, BW, blood glucose, survival, and plasma acyl-ghrelin in ad libitum-fed male wild-type mice and those that genetically lack GHSR (GHSR-nulls), CB1R (CB1R-nulls), or both GHSR and CB1R (double-nulls). BW, fat mass, and lean mass were similar in GHSR-nulls and wild-types, lower in CB1R-nulls, but not further reduced in double-nulls. Food intake, plasma acyl-ghrelin, and blood glucose were similar among genotypes. Deletion of either GHSR or CB1R alone did not have a statistically-significant effect on survival, but double-nulls demonstrated a statistical trend towards decreased survival (p = 0.07). We conclude that CB1R is not responsible for the normal BW, adiposity, food intake, and blood glucose observed in GHSR-null mice in the setting of unrestricted food availability. Nor is CB1R required for plasma acyl-ghrelin secretion in that setting. However, GHSR may be protective against exaggerated mortality associated with CB1R deletion.
Collapse
Affiliation(s)
- Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claudia R Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasanna Vijayaraghavan
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights Into Potential Mechanisms. Sex Med Rev 2019; 7:575-586. [PMID: 31196764 DOI: 10.1016/j.sxmr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Flibanserin, a multifunctional serotonin receptor agonist and antagonist, is currently approved in the United States and Canada for the treatment of acquired, generalized hypoactive sexual desire disorder (HSDD) in premenopausal women. A post hoc analysis of HSDD clinical trial data found that flibanserin treatment was associated with statistically significant weight loss relative to placebo, even though study patients were not selected for being overweight/obese and were provided no expectation for weight reduction or interventions intended to promote weight loss. AIM To understand possible mechanisms by which flibanserin may produce weight loss. METHODS A literature review was performed using Medline database for relevant publications on the mechanisms of action by which flibanserin may provide weight loss and the links between sexual function and weight management. MAIN OUTCOME MEASURES Examination of (i) biopsychosocial factors regulating sexual desire, food intake, and weight regulation; (ii) clinical pharmacology of flibanserin; (iii) neurobiology of brain reward circuitry; and (iv) identification of possible mechanisms common to flibanserin and weight loss. RESULTS Based on flibanserin clinical trial data, there was no consistent correlation between weight loss and improvement in sexual function, as assessed by HSDD outcome measures. Nausea, a common adverse event associated with flibanserin use, also did not appear to be a contributing factor to weight loss. Hypothetical links between flibanserin treatment and weight loss include modulation of peripheral 5-HT2A receptors and factors such as improved mood and improved sleep. CONCLUSION Mechanisms of flibanserin-induced weight loss have not been well characterized but may involve indirect beneficial effects on peripheral 5-HT2A receptors and central regulation of mood and sleep. Future research may better elucidate the links between sexual function and weight management and the mechanism(s) by which flibanserin use may result in weight loss. Simon JA, Kingsberg SA, Goldstein I, et al. Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights into Potential Mechanisms. Sex Med Rev 2019;7:575-586.
Collapse
|
50
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|