1
|
Sears JC, Broadie K. PKA restricts ERK signaling in learning and memory Kenyon cell neurons. Cell Signal 2025; 132:111818. [PMID: 40250698 DOI: 10.1016/j.cellsig.2025.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Protein Kinase A (PKA) and Extracellular Signal-Regulated Kinase (ERK) have core roles in learning and memory. Here, we investigate kinase-kinase signaling interactions in the Drosophila brain Kenyon cell learning/memory circuit using separation of phases-based activity reporter of kinase (SPARK) biosensors to image circuit-localized functions in vivo. We find that constitutively active Rapidly Accelerated Fibrosarcoma (RAFgof) enhances ERK signaling only in Kenyon cell domains with low baseline PKA signaling, and that transgenic inhibition of PKA function elevates ERK signaling. Conversely, loss of ERK has no impact on PKA signaling, whereas RAFgof expands PKA signaling. Importantly, transgenic PKA inhibition together with RAFgof synergistically elevates ERK signaling. These findings indicate a negative PKA-ERK pathway interaction within learning/memory Kenyon cells. We find that potentiating circuit activity using an exogenous NaChBac ion channel elevates PKA signaling in circuit domains with low baseline PKA function, and uniformly strongly increases ERK signaling. Similarly, thermogenetic stimulation of circuit activity with a temperature-sensitive TRPA1 channel increases PKA signaling in circuit domains of low baseline PKA, and elevates ERK signaling. Importantly, potentiating circuit activity (NaChBac) while also inhibiting PKA function synergistically elevates ERK signaling. Likewise, conditional induction of circuit activity (TRPA1) together with PKA inhibition increases activity-dependent ERK signaling. Finally, a mechanically-induced seizure model (bang-sensitive sesB mutant) elevates PKA signaling, while simultaneous transgenic PKA inhibition in this model acts to synergistically increase ERK signaling. Taken together, we conclude PKA limits ERK signaling in Kenyon cells within the learning and memory circuit, with PKA function acting to restrict activity-dependent ERK signaling.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
2
|
Nanami T, Yamada D, Someya M, Hige T, Kazama H, Kohno T. A lightweight data-driven spiking neuronal network model of Drosophila olfactory nervous system with dedicated hardware support. Front Neurosci 2024; 18:1384336. [PMID: 38994271 PMCID: PMC11238178 DOI: 10.3389/fnins.2024.1384336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Data-driven spiking neuronal network (SNN) models enable in-silico analysis of the nervous system at the cellular and synaptic level. Therefore, they are a key tool for elucidating the information processing principles of the brain. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand huge computing facilities and their simulation speed is considerably slower than real-time. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. The model is built using a qualitative modeling approach that can reproduce key dynamics of neuronal activity. We target the Drosophila olfactory nervous system, extracting its network topology from connectome data. The model was successfully implemented on a small entry-level field-programmable gate array and simulated the activity of a network in real-time. In addition, the model reproduced olfactory associative learning, the primary function of the olfactory system, and characteristic spiking activities of different neuron types. In sum, this paper propose a method for building data-driven SNN models from biological data. Our approach reproduces the function and neuronal activities of the nervous system and is lightweight, acceleratable with dedicated hardware, making it scalable to large-scale networks. Therefore, our approach is expected to play an important role in elucidating the brain's information processing at the cellular and synaptic level through an analysis-by-construction approach. In addition, it may be applicable to edge artificial intelligence systems in the future.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Makoto Someya
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hokto Kazama
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| |
Collapse
|
3
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
4
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
5
|
Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ. Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body. Curr Biol 2023; 33:2742-2760.e12. [PMID: 37348501 PMCID: PMC10529417 DOI: 10.1016/j.cub.2023.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.
Collapse
Affiliation(s)
- Maria Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adithya E Rajagopalan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijie Pan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Donnell L Williams
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik A Pedersen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manav Thakral
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelica Previero
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kari C Close
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA; Biophysics LS&A, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Glenn C Turner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
7
|
Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ. Hacking brain development to test models of sensory coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525425. [PMID: 36747712 PMCID: PMC9900841 DOI: 10.1101/2023.01.25.525425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Animals can discriminate myriad sensory stimuli but can also generalize from learned experience. You can probably distinguish the favorite teas of your colleagues while still recognizing that all tea pales in comparison to coffee. Tradeoffs between detection, discrimination, and generalization are inherent at every layer of sensory processing. During development, specific quantitative parameters are wired into perceptual circuits and set the playing field on which plasticity mechanisms play out. A primary goal of systems neuroscience is to understand how material properties of a circuit define the logical operations-computations--that it makes, and what good these computations are for survival. A cardinal method in biology-and the mechanism of evolution--is to change a unit or variable within a system and ask how this affects organismal function. Here, we make use of our knowledge of developmental wiring mechanisms to modify hard-wired circuit parameters in the Drosophila melanogaster mushroom body and assess the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input number, but not cell number, tunes odor selectivity. Simple odor discrimination performance is maintained when Kenyon cell number is reduced and augmented by Kenyon cell expansion.
Collapse
Affiliation(s)
- Maria Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adithya E. Rajagopalan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijie Pan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Donnell L. Williams
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik A. Pedersen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manav Thakral
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelica Previero
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kari C. Close
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
- Biophysics LS&A, University of Michigan, Ann Arbor, MI 48109, United States
- Michigan Neuroscience Institute Affiliate
| | - Glenn C. Turner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| |
Collapse
|
8
|
Nonspiking Interneurons in the Drosophila Antennal Lobe Exhibit Spatially Restricted Activity. eNeuro 2023; 10:ENEURO.0109-22.2022. [PMID: 36650069 PMCID: PMC9884108 DOI: 10.1523/eneuro.0109-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory interneurons are important for neuronal circuit function. They regulate sensory inputs and enhance output discriminability (Olsen and Wilson, 2008; Root et al., 2008; Olsen et al., 2010). Often, the identities of interneurons can be determined by location and morphology, which can have implications for their functions (Wachowiak and Shipley, 2006). While most interneurons fire traditional action potentials, many are nonspiking. These can be seen in insect olfaction (Laurent and Davidowitz, 1994; Husch et al., 2009; Tabuchi et al., 2015) and the vertebrate retina (Gleason et al., 1993). Here, we present the novel observation of nonspiking inhibitory interneurons in the antennal lobe (AL) of the adult fruit fly, Drosophila melanogaster These neurons have a morphology where they innervate a patchwork of glomeruli. We used electrophysiology to determine whether their nonspiking characteristic is because of a lack of sodium current. We then used immunohistochemsitry and in situ hybridization to show this is likely achieved through translational regulation of the voltage-gated sodium channel gene, para Using in vivo calcium imaging, we explored how these cells respond to odors, finding regional isolation in their responses' spatial patterns. Further, their response patterns were dependent on both odor identity and concentration. Thus, we surmise these neurons are electrotonically compartmentalized such that activation of the neurites in one region does not propagate across the whole antennal lobe. We propose these neurons may be the source of intraglomerular inhibition in the AL and may contribute to regulation of spontaneous activity within glomeruli.
Collapse
|
9
|
Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. Curr Biol 2022; 32:3334-3349.e6. [PMID: 35797998 PMCID: PMC9413950 DOI: 10.1016/j.cub.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αβ and α'β' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Corey Fisher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Iqbal J Ali
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nadiya Sharifi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Steven Calle-Schuler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joseph Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Najla Masoodpanah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lucia Kmecova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Kazmos GmbH, Dresden, Germany
| | - Eric Perlman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Yikes LLC, Baltimore, MD, USA
| | - Matthew Nichols
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
10
|
Adel M, Chen N, Zhang Y, Reed ML, Quasney C, Griffith LC. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep. J Neurosci 2022; 42:4297-4310. [PMID: 35474278 PMCID: PMC9145224 DOI: 10.1523/jneurosci.0144-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, in vivo functional imaging studies revealed that associative memory formation is coupled to a cascade of neural plasticity events in distinct compartments of the mushroom body (MB). In-depth investigation of the circuit dynamics, however, will require an ex vivo model that faithfully mirrors these events to allow direct manipulations of circuit elements that are inaccessible in the intact fly. The current ex vivo models have been able to reproduce the fundamental plasticity of aversive short-term memory, a potentiation of the MB intrinsic neuron (Kenyon cells [KCs]) responses after artificial learning ex vivo However, this potentiation showed different localization and encoding properties from those reported in vivo and failed to generate the previously reported suppression plasticity in the MB output neurons (MBONs). Here, we develop an ex vivo model using the female Drosophila brain that recapitulates behaviorally evoked plasticity in the KCs and MBONs. We demonstrate that this plasticity accurately localizes to the MB α'3 compartment and is encoded by a coincidence between KC activation and dopaminergic input. The formed plasticity is input-specific, requiring pairing of the conditioned stimulus and unconditioned stimulus pathways; hence, we name it pairing-dependent plasticity. Pairing-dependent plasticity formation requires an intact CaMKII gene and is blocked by previous-night sleep deprivation but is rescued by rebound sleep. In conclusion, we show that our ex vivo preparation recapitulates behavioral and imaging results from intact animals and can provide new insights into mechanisms of memory formation at the level of molecules, circuits, and brain state.SIGNIFICANCE STATEMENT The mammalian ex vivo LTP model enabled in-depth investigation of the hippocampal memory circuit. We develop a parallel model to study the Drosophila mushroom body (MB) memory circuit. Pairing activation of the conditioned stimulus and unconditioned stimulus pathways in dissected brains induces a potentiation pairing-dependent plasticity (PDP) in the axons of α'β' Kenyon cells and a suppression PDP in the dendrites of their postsynaptic MB output neurons, localized in the MB α'3 compartment. This PDP is input-specific and requires the 3' untranslated region of CaMKII Interestingly, ex vivo PDP carries information about the animal's experience before dissection; brains from sleep-deprived animals fail to form PDP, whereas those from animals who recovered 2 h of their lost sleep form PDP.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Nannan Chen
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Yunpeng Zhang
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Christina Quasney
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
11
|
The best of both worlds: Dual systems of reasoning in animals and AI. Cognition 2022; 225:105118. [PMID: 35453083 DOI: 10.1016/j.cognition.2022.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
Much of human cognition involves two different types of reasoning that operate together. Type 1 reasoning systems are intuitive and fast, whereas Type 2 reasoning systems are reflective and slow. Why has our cognition evolved with these features? Both systems are coherent and in most ecological circumstances either alone is capable of coming up with the right answer most of the time. Neural tissue is costly, and thus far evolutionary models have struggled to identify a benefit of operating two systems of reasoning. To explore this issue we take a broad comparative perspective. We discuss how dual processes of cognition have enabled the emergence of selective attention in insects, transforming the learning capacities of these animals. Modern AIs using dual systems of learning are able to learn how their vast world works and how best to interact with it, allowing them to exceed human levels of performance in strategy games. We propose that the core benefits of dual processes of reasoning are to narrow down a problem space in order to focus cognitive resources most effectively.
Collapse
|
12
|
Endo K, Kazama H. Central organization of a high-dimensional odor space. Curr Opin Neurobiol 2022; 73:102528. [DOI: 10.1016/j.conb.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
|
13
|
Sears JC, Broadie K. Temporally and Spatially Localized PKA Activity within Learning and Memory Circuitry Regulated by Network Feedback. eNeuro 2022; 9:ENEURO.0450-21.2022. [PMID: 35301221 PMCID: PMC8982635 DOI: 10.1523/eneuro.0450-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/β' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.
Collapse
Affiliation(s)
- James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235
| |
Collapse
|
14
|
Prisco L, Deimel SH, Yeliseyeva H, Fiala A, Tavosanis G. The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. eLife 2021; 10:e74172. [PMID: 34964714 PMCID: PMC8741211 DOI: 10.7554/elife.74172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
Collapse
Affiliation(s)
- Luigi Prisco
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Hanna Yeliseyeva
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, University of GöttingenGöttingenGermany
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES, Rheinische Friedrich Wilhelms Universität BonnBonnGermany
| |
Collapse
|
15
|
Abdelrahman NY, Vasilaki E, Lin AC. Compensatory variability in network parameters enhances memory performance in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:e2102158118. [PMID: 34845010 PMCID: PMC8670477 DOI: 10.1073/pnas.2102158118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neural circuits use homeostatic compensation to achieve consistent behavior despite variability in underlying intrinsic and network parameters. However, it remains unclear how compensation regulates variability across a population of the same type of neurons within an individual and what computational benefits might result from such compensation. We address these questions in the Drosophila mushroom body, the fly's olfactory memory center. In a computational model, we show that under sparse coding conditions, memory performance is degraded when the mushroom body's principal neurons, Kenyon cells (KCs), vary realistically in key parameters governing their excitability. However, memory performance is rescued while maintaining realistic variability if parameters compensate for each other to equalize KC average activity. Such compensation can be achieved through both activity-dependent and activity-independent mechanisms. Finally, we show that correlations predicted by our model's compensatory mechanisms appear in the Drosophila hemibrain connectome. These findings reveal compensatory variability in the mushroom body and describe its computational benefits for associative memory.
Collapse
Affiliation(s)
- Nada Y Abdelrahman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
16
|
Zeng X, Komanome Y, Kawasaki T, Inada K, Jonaitis J, Pulver SR, Kazama H, Nose A. An electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryos. Curr Biol 2021; 31:5327-5340.e5. [PMID: 34666002 DOI: 10.1016/j.cub.2021.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
Precocious movements are widely seen in embryos of various animal species. Whether such movements via proprioceptive feedback play instructive roles in motor development or are a mere reflection of activities in immature motor circuits is a long-standing question. Here we image the emerging motor activities in Drosophila embryos that lack proprioceptive feedback and show that proprioceptive experience is essential for the development of locomotor central pattern generators (CPGs). Downstream of proprioceptive inputs, we identify a pioneer premotor circuit composed of two pairs of segmental interneurons, whose gap-junctional transmission requires proprioceptive experience and plays a crucial role in CPG formation. The circuit autonomously generates rhythmic plateau potentials via IP3-mediated Ca2+ release from internal stores, which contribute to muscle contractions and hence produce proprioceptive feedback. Our findings demonstrate the importance of self-generated movements in instructing motor development and identify the cells, circuit, and physiology at the core of this proprioceptive feedback.
Collapse
Affiliation(s)
- Xiangsunze Zeng
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuko Komanome
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tappei Kawasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kengo Inada
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, UK
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Akinao Nose
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan; Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Buerkle N, Jeanne JM. Decision making: An analogue implementation of a drift-diffusion computation in the Drosophila mushroom body. Curr Biol 2021; 31:R1479-R1482. [PMID: 34813753 DOI: 10.1016/j.cub.2021.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new study combines electrophysiology, optogenetics, and behavior to investigate a decision-making circuit in the fly brain, revealing all the major features predicted by drift-diffusion models. Strikingly, much of this computation takes place subthreshold, independent of action potentials.
Collapse
Affiliation(s)
- Nathan Buerkle
- Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06510, USA.
| | - James M Jeanne
- Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Vrontou E, Groschner LN, Szydlowski S, Brain R, Krebbers A, Miesenböck G. Response competition between neurons and antineurons in the mushroom body. Curr Biol 2021; 31:4911-4922.e4. [PMID: 34610272 PMCID: PMC8612741 DOI: 10.1016/j.cub.2021.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αβ core Kenyon cells (on and off αβc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and “antineurons” connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αβc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables—the fill levels of the integrators and the strength of inhibition between them—are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes. Mushroom body output neurons respond with excitation to odor on- and offset On and off responses reflect the convergence of oppositely tuned Kenyon cells (KCs) Opponent KCs compete by eliciting inhibitory feedback from a common interneuron pool KCs and interneurons communicate through graded potentials rather than spikes
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lukas N Groschner
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Susanne Szydlowski
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Alina Krebbers
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
19
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
20
|
Leinwand SG, Scott K. Juvenile hormone drives the maturation of spontaneous mushroom body neural activity and learned behavior. Neuron 2021; 109:1836-1847.e5. [PMID: 33915110 DOI: 10.1016/j.neuron.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Mature behaviors emerge from neural circuits sculpted by genetic programs and spontaneous and evoked neural activity. However, how neural activity is refined to drive maturation of learned behavior remains poorly understood. Here, we explore how transient hormonal signaling coordinates a neural activity state transition and maturation of associative learning. We identify spontaneous, asynchronous activity in a Drosophila learning and memory brain region, the mushroom body. This activity declines significantly over the first week of adulthood. Moreover, this activity is generated cell-autonomously via Cacophony voltage-gated calcium channels in a single cell type, α'/β' Kenyon cells. Juvenile hormone, a crucial developmental regulator, acts transiently in α'/β' Kenyon cells during a young adult sensitive period to downregulate spontaneous activity and enable subsequent enhanced learning. Hormone signaling in young animals therefore controls a neural activity state transition and is required for improved associative learning, providing insight into the maturation of circuits and behavior.
Collapse
Affiliation(s)
- Sarah G Leinwand
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Xie Q, Brbic M, Horns F, Kolluru SS, Jones RC, Li J, Reddy AR, Xie A, Kohani S, Li Z, McLaughlin CN, Li T, Xu C, Vacek D, Luginbuhl DJ, Leskovec J, Quake SR, Luo L, Li H. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife 2021; 10:e63450. [PMID: 33427646 PMCID: PMC7870145 DOI: 10.7554/elife.63450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.
Collapse
Affiliation(s)
- Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Graduate Program, Stanford UniversityStanfordUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Felix Horns
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Biophysics Graduate Program, Stanford UniversityStanfordUnited States
| | | | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anay R Reddy
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Sayeh Kohani
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Zhuoran Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David Vacek
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jure Leskovec
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubStanfordUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
22
|
Fişek M, Jeanne JM. Two-Photon Optogenetic Stimulation of Drosophila Neurons. Methods Mol Biol 2021; 2191:97-108. [PMID: 32865741 DOI: 10.1007/978-1-0716-0830-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optogenetics enables experimental control over neural activity using light. Channelrhodopsin and its variants are typically activated using visible light excitation but can also be activated using infrared two-photon excitation. Two-photon excitation can improve the spatial precision of stimulation in scattering tissue but has several practical limitations that need to be considered before use. Here we describe the methodology and best practices for using two-photon optogenetic stimulation of neurons within the brain of the fruit fly, Drosophila melanogaster, with an emphasis on projection neurons of the antennal lobe.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - James M Jeanne
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Endo K, Tsuchimoto Y, Kazama H. Synthesis of Conserved Odor Object Representations in a Random, Divergent-Convergent Network. Neuron 2020; 108:367-381.e5. [PMID: 32814018 DOI: 10.1016/j.neuron.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/10/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Animals are capable of recognizing mixtures and groups of odors as a unitary object. However, how odor object representations are generated in the brain remains elusive. Here, we investigate sensory transformation between the primary olfactory center and its downstream region, the mushroom body (MB), in Drosophila and show that clustered representations for mixtures and groups of odors emerge in the MB at the population and single-cell levels. Decoding analyses demonstrate that neurons selective for mixtures and groups enhance odor generalization. Responses of these neurons and those selective for individual odors all emerge in an experimentally well-constrained model implementing divergent-convergent, random connectivity between the primary center and the MB. Furthermore, we found that relative odor representations are conserved across animals despite this random connectivity. Our results show that the generation of distinct representations for individual odors and groups and mixtures of odors in the MB can be understood in a unified computational and mechanistic framework.
Collapse
Affiliation(s)
- Keita Endo
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiko Tsuchimoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
25
|
Amin H, Apostolopoulou AA, Suárez-Grimalt R, Vrontou E, Lin AC. Localized inhibition in the Drosophila mushroom body. eLife 2020; 9:56954. [PMID: 32955437 PMCID: PMC7541083 DOI: 10.7554/elife.56954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells’ dendrites and axons, and that both activity in APL and APL’s inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Suárez-Grimalt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Apostolopoulou AA, Lin AC. Mechanisms underlying homeostatic plasticity in the Drosophila mushroom body in vivo. Proc Natl Acad Sci U S A 2020; 117:16606-16615. [PMID: 32601210 PMCID: PMC7368247 DOI: 10.1073/pnas.1921294117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural network function requires an appropriate balance of excitation and inhibition to be maintained by homeostatic plasticity. However, little is known about homeostatic mechanisms in the intact central brain in vivo. Here, we study homeostatic plasticity in the Drosophila mushroom body, where Kenyon cells receive feedforward excitation from olfactory projection neurons and feedback inhibition from the anterior paired lateral neuron (APL). We show that prolonged (4-d) artificial activation of the inhibitory APL causes increased Kenyon cell odor responses after the artificial inhibition is removed, suggesting that the mushroom body compensates for excess inhibition. In contrast, there is little compensation for lack of inhibition (blockade of APL). The compensation occurs through a combination of increased excitation of Kenyon cells and decreased activation of APL, with differing relative contributions for different Kenyon cell subtypes. Our findings establish the fly mushroom body as a model for homeostatic plasticity in vivo.
Collapse
Affiliation(s)
- Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
27
|
Modi MN, Shuai Y, Turner GC. The Drosophila Mushroom Body: From Architecture to Algorithm in a Learning Circuit. Annu Rev Neurosci 2020; 43:465-484. [PMID: 32283995 DOI: 10.1146/annurev-neuro-080317-0621333] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Drosophila brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for Drosophila learning and revealed the following key operations: a) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; b) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; c) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and d) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.
Collapse
Affiliation(s)
- Mehrab N Modi
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | - Yichun Shuai
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | | |
Collapse
|
28
|
Bilz F, Geurten BRH, Hancock CE, Widmann A, Fiala A. Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain. Neuron 2020; 106:963-976.e4. [PMID: 32268119 DOI: 10.1016/j.neuron.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/19/2019] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
During associative conditioning, animals learn which sensory cues are predictive for positive or negative conditions. Because sensory cues are encoded by distributed neurons, one has to monitor plasticity across many synapses to capture how learned information is encoded. We analyzed synaptic boutons of Kenyon cells of the Drosophila mushroom body γ lobe, a brain structure that mediates olfactory learning. A fluorescent Ca2+ sensor was expressed in single Kenyon cells so that axonal boutons could be assigned to distinct cells and Ca2+ could be measured across many animals. Learning induced directed synaptic plasticity in specific compartments along the axons. Moreover, we show that odor-evoked Ca2+ dynamics across boutons decorrelate as a result of associative learning. Information theory indicates that learning renders the stimulus representation more distinct compared with naive stimuli. These data reveal that synaptic boutons rather than cells act as individually modifiable units, and coherence among them is a memory-encoding parameter.
Collapse
Affiliation(s)
- Florian Bilz
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Clare E Hancock
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Annekathrin Widmann
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
29
|
Ray S, Aldworth ZN, Stopfer MA. Feedback inhibition and its control in an insect olfactory circuit. eLife 2020; 9:53281. [PMID: 32163034 PMCID: PMC7145415 DOI: 10.7554/elife.53281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/09/2020] [Indexed: 01/20/2023] Open
Abstract
Inhibitory neurons play critical roles in regulating and shaping olfactory responses in vertebrates and invertebrates. In insects, these roles are performed by relatively few neurons, which can be interrogated efficiently, revealing fundamental principles of olfactory coding. Here, with electrophysiological recordings from the locust and a large-scale biophysical model, we analyzed the properties and functions of GGN, a unique giant GABAergic neuron that plays a central role in structuring olfactory codes in the locust mushroom body. Our simulations suggest that depolarizing GGN at its input branch can globally inhibit KCs several hundred microns away. Our in vivorecordings show that GGN responds to odors with complex temporal patterns of depolarization and hyperpolarization that can vary with odors and across animals, leading our model to predict the existence of a yet-undiscovered olfactory pathway. Our analysis reveals basic new features of GGN and the olfactory network surrounding it.
Collapse
Affiliation(s)
- Subhasis Ray
- Section on Sensory Coding and Neural Ensembles, NICHD, NIH, Bethesda, United States
| | - Zane N Aldworth
- Section on Sensory Coding and Neural Ensembles, NICHD, NIH, Bethesda, United States
| | - Mark A Stopfer
- Section on Sensory Coding and Neural Ensembles, NICHD, NIH, Bethesda, United States
| |
Collapse
|
30
|
Awata H, Takakura M, Kimura Y, Iwata I, Masuda T, Hirano Y. The neural circuit linking mushroom body parallel circuits induces memory consolidation in Drosophila. Proc Natl Acad Sci U S A 2019; 116:16080-16085. [PMID: 31337675 PMCID: PMC6690006 DOI: 10.1073/pnas.1901292116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is augmented by repeated learning following rest intervals, which is known as the spacing effect. Although the spacing effect has been associated with cumulative cellular responses in the neurons engaged in memory, here, we report the neural circuit-based mechanism for generating the spacing effect in the memory-related mushroom body (MB) parallel circuits in Drosophila To investigate the neurons activated during the training, we monitored expression of phosphorylation of mitogen-activated protein kinase (MAPK), ERK [phosphorylation of extracellular signal-related kinase (pERK)]. In an olfactory spaced training paradigm, pERK expression in one of the parallel circuits, consisting of γm neurons, was progressively inhibited via dopamine. This inhibition resulted in reduced pERK expression in a postsynaptic GABAergic neuron that, in turn, led to an increase in pERK expression in a dopaminergic neuron specifically in the later session during spaced training, suggesting that disinhibition of the dopaminergic neuron occurs during spaced training. The dopaminergic neuron was significant for gene expression in the different MB parallel circuits consisting of α/βs neurons for memory consolidation. Our results suggest that the spacing effect-generating neurons and the neurons engaged in memory reside in the distinct MB parallel circuits and that the spacing effect can be a consequence of evolved neural circuit architecture.
Collapse
Affiliation(s)
- Hiroko Awata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Mai Takakura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yoko Kimura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Ikuko Iwata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Tomoko Masuda
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yukinori Hirano
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| |
Collapse
|
31
|
Yamazaki D, Hiroi M, Abe T, Shimizu K, Minami-Ohtsubo M, Maeyama Y, Horiuchi J, Tabata T. Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Rep 2019; 22:2346-2358. [PMID: 29490271 DOI: 10.1016/j.celrep.2018.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022] Open
Abstract
During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5β'2a/β'2mp and MBON-γ2α'1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Takashi Abe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Kazumichi Shimizu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Maki Minami-Ohtsubo
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| |
Collapse
|
32
|
Groschner LN, Miesenböck G. Mechanisms of Sensory Discrimination: Insights from Drosophila Olfaction. Annu Rev Biophys 2019; 48:209-229. [PMID: 30786228 DOI: 10.1146/annurev-biophys-052118-115655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.
Collapse
Affiliation(s)
- Lukas N Groschner
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Gero Miesenböck
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| |
Collapse
|
33
|
Cayco-Gajic NA, Silver RA. Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron 2019; 101:584-602. [PMID: 30790539 PMCID: PMC7028396 DOI: 10.1016/j.neuron.2019.01.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Collapse
Affiliation(s)
- N Alex Cayco-Gajic
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Shih MFM, Davis FP, Henry GL, Dubnau J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 (BETHESDA, MD.) 2019; 9:81-94. [PMID: 30397017 PMCID: PMC6325895 DOI: 10.1534/g3.118.200726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The Drosophila melanogaster MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker Fas2 and the α'/β' class marker trio Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the Drosophila MB provides a valuable resource for the fly neuroscience community.
Collapse
Affiliation(s)
| | - Fred Pejman Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gilbert Lee Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
| |
Collapse
|
35
|
Abstract
Sensory stimuli evoke spiking activities patterned across neurons and time that are hypothesized to encode information about their identity. Since the same stimulus can be encountered in a multitude of ways, how stable or flexible are these stimulus-evoked responses? Here we examine this issue in the locust olfactory system. In the antennal lobe, we find that both spatial and temporal features of odor-evoked responses vary in a stimulus-history dependent manner. The response variations are not random, but allow the antennal lobe circuit to enhance the uniqueness of the current stimulus. Nevertheless, information about the odorant identity is conf ounded due to this contrast enhancement computation. Notably, predictions from a linear logical classifier (OR-of-ANDs) that can decode information distributed in flexible subsets of neurons match results from behavioral experiments. In sum, our results suggest that a trade-off between stability and flexibility in sensory coding can be achieved using a simple computational logic. Sensory stimuli are encountered in multiple ways necessitating a flexible and adaptive neural population code for identification. Here, the authors show that the dynamics of odor coding in the locust antennal lobe varies with stimulus context so as to enhance the target stimulus representation.
Collapse
|
36
|
Zwaka H, Bartels R, Grünewald B, Menzel R. Neural Organization of A3 Mushroom Body Extrinsic Neurons in the Honeybee Brain. Front Neuroanat 2018; 12:57. [PMID: 30127725 PMCID: PMC6089341 DOI: 10.3389/fnana.2018.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
In the insect brain, the mushroom body is a higher order brain area that is key to memory formation and sensory processing. Mushroom body (MB) extrinsic neurons leaving the output region of the MB, the lobes and the peduncle, are thought to be especially important in these processes. In the honeybee brain, a distinct class of MB extrinsic neurons, A3 neurons, are implicated in playing a role in learning. Their MB arborisations are either restricted to the lobes and the peduncle, here called A3 lobe connecting neurons, or they provide feedback information from the lobes to the input region of the MB, the calyces, here called A3 feedback neurons. In this study, we analyzed the morphology of individual A3 lobe connecting and feedback neurons using confocal imaging. A3 feedback neurons were previously assumed to innervate each lip compartment homogenously. We demonstrate here that A3 feedback neurons do not innervate whole subcompartments, but rather innervate zones of varying sizes in the MB lip, collar, and basal ring. We describe for the first time the anatomical details of A3 lobe connecting neurons and show that their connection pattern in the lobes resemble those of A3 feedback cells. Previous studies showed that A3 feedback neurons mostly connect zones of the vertical lobe that receive input from Kenyon cells of distinct calycal subcompartments with the corresponding subcompartments of the calyces. We can show that this also applies to the neck of the peduncle and the medial lobe, where both types of A3 neurons arborize only in corresponding zones in the calycal subcompartments. Some A3 lobe connecting neurons however connect multiple vertical lobe areas. Contrarily, in the medial lobe, the A3 neurons only innervate one division. We found evidence for both input and output areas in the vertical lobe. Thus, A3 neurons are more diverse than previously thought. The understanding of their detailed anatomy might enable us to derive circuit models for learning and memory and test physiological data.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
- Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Ruth Bartels
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde Oberursel, Goethe University Frankfurt, Frankfurt, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|