1
|
Zhao X, Wang H, Li K, Chen S, Hou L. Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Cogn Neurodyn 2025; 19:3. [PMID: 39749101 PMCID: PMC11688262 DOI: 10.1007/s11571-024-10182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial. Despite its importance, the neural mechanisms underlying fatigue remain inadequately explored. In this study, we employed electrophysiological recordings in the M1 region of mice to investigate how excitation-inhibition dynamics and neural oscillations are regulated during exercise-induced fatigue. We observed that fatigue led to decreased voluntary physical activity and cognitive performance, manifesting as reduced running wheel distance, mean speed, exercise intensity, and exploratory behaviour. At the neural level, we detected increased firing frequencies for M1 neurons, including both pyramidal neurons and interneurons, along with heightened beta-band oscillatory activity and stronger coupling between beta-band oscillations and interneurons. These findings enhance our understanding of the mechanisms underlying fatigue, offering insights into behavioural, excitability, and oscillatory changes. The results of this study could pave the way for the development of novel intervention strategies to combat fatigue.
Collapse
Affiliation(s)
- Xudong Zhao
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Hualin Wang
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Ke Li
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Shanguang Chen
- National Key Laboratory of Human Factors Engineering at China Astronaut Research and Training Center, Beijing, 100094 China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| |
Collapse
|
2
|
Han C, Cheung VCK, Chan RHM. Aging amplifies sex differences in low alpha and low beta EEG oscillations. Neuroimage 2025; 312:121231. [PMID: 40252876 DOI: 10.1016/j.neuroimage.2025.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Biological sex profoundly shapes brain function, yet its precise influence on neural oscillations was poorly understood. Despite decades of research, studies investigating sex-based variations in electroencephalographic (EEG) signals have yielded inconsistent findings that obstructs what may be a potentially crucial source of inter-individual variability in brain function. To address this, we analyzed five publicly available resting-state datasets, comprising EEG data (n = 445) and iEEG data (n = 103). Three age ranges were defined, young adult (YA, 18-30 years), middle-aged adult (MA, 30-55 years) and older adult (OA, 55-80 years). Our results revealed striking age-dependent sex differences: OA group exhibited robust sex differences, with males showing heightened low alpha (8-9 Hz) activity in temporal regions and attenuated low beta (16-20 Hz) oscillations in parietal-occipital areas compared to females. Intriguingly, these sex-specific patterns were absent in YA group, suggesting a complex interplay between sex and aging in shaping brain dynamics. The MA groups fall in between YA and OA group. The increase of low beta band activity in older female adults is strongly associated with hip size and BMI. Furthermore, we identified consistent sex-related activity in the precentral gyrus with the results of scalp EEG, potentially driving the observed scalp EEG differences. This multi-level analysis allowed us to bridge the gap between cortical and scalp-level observations, providing a more comprehensive picture of sex-related neural dynamics. The distinct associations between sex-specific oscillatory patterns and several lifestyle factors demonstrates the complex interplay between sex, age, and neural oscillations, revealing the variability in brain dynamics. Our findings highlight the importance of careful demographic consideration in EEG research design to ensure fairness in capturing the full spectrum of neurophysiological diversity.
Collapse
Affiliation(s)
- Chuanliang Han
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal High-Gamma Reflects Spike-Dissociable Value and Decision Mechanisms. J Neurosci 2025; 45:e0789242025. [PMID: 40032521 PMCID: PMC12079734 DOI: 10.1523/jneurosci.0789-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/06/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The orbitofrontal cortex (OFC) plays a crucial role in value-based decisions. While much is known about how OFC neurons represent values, far less is known about information encoded in OFC local field potentials (LFPs). LFPs are important because they can reflect subthreshold activity not directly coupled to spiking and because they are potential targets for less invasive forms of brain-machine interface (BMI). We recorded neural activity in the OFC of male macaques performing a two-option value-based decision task. We compared the value- and decision-coding properties of high-gamma LFPs (HG, 50-150 Hz) to the coding properties of spiking multiunit activity (MUA) recorded concurrently on the same electrodes. HG and MUA both represented the values of decision targets, but HG signals had value-coding features that were distinct from concurrently measured MUA. On average HG amplitude increased monotonically with value, whereas in MUA the value encoding was net neutral on average. HG encoded a signal consistent with a comparison between target values, a signal which was negligible in MUA. In individual channels, HG could predict choice outcomes more accurately than MUA; however, when channels were combined in a population-based decoder, MUA was more accurate than HG. In summary, HG signals reveal value-coding features in OFC that could not be observed from spiking activity, including representation of value comparisons and more accurate behavioral predictions. These results have implications for the role of OFC in value-based decisions and suggest that high-frequency LFPs may be a viable-or even preferable-target for BMIs to assist cognitive function.
Collapse
Affiliation(s)
- Dixit Sharma
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
- Graduate Program in Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| | - Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
- Graduate Program in Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| |
Collapse
|
4
|
Bénard A, Maliia DM, Yochum M, Köksal-Ersöz E, Houvenaghel JF, Wendling F, Sauleau P, Benquet P. Realistic Subject-Specific Simulation of Resting State Scalp EEG Based on Physiological Model. Brain Topogr 2025; 38:43. [PMID: 40358723 DOI: 10.1007/s10548-025-01115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Electroencephalography (EEG) recordings are widely used in neuroscience to identify healthy individual brain rhythms and to detect alterations associated with various brain diseases. However, understanding the cellular origins of scalp EEG signals and their spatiotemporal changes during the resting state (RS) in humans remains challenging, as cellular-level recordings are typically restricted to animal models. The objective of this study was to simulate individual-specific spatiotemporal features of RS EEG and measure the degree of similarity between real and simulated EEG. Using a physiologically grounded whole-brain computational model (based on known neuronal subtypes and their structural and functional connectivity) that simulates interregional cortical circuitry activity, realistic individual EEG recordings during RS of three healthy subjects were created. The model included interconnected neural mass modules simulating activities of different neuronal subtypes, including pyramidal cells and four types of GABAergic interneurons. High-definition EEG and source localization were used to delineate the cortical extent of alpha and beta-gamma rhythms. To evaluate the realism of the simulated EEG, we developed a similarity index based on cross-correlation analysis in the frequency domain across various bipolar channels respecting standard longitudinal montage. Alpha oscillations were produced by strengthening the somatostatin-pyramidal loop in posterior regions, while beta-gamma oscillations were generated by increasing the excitability of parvalbumin-interneurons on pyramidal neurons in anterior regions. The generation of realistic individual RS EEG rhythms represents a significant advance for research fields requiring data augmentation, including brain-computer interfaces and artificial intelligence training.
Collapse
Affiliation(s)
- Adrien Bénard
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France.
- Neurology Department, Rennes University Hospital, Rennes, France.
| | - Dragos-Mihai Maliia
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
- Neurology Department, Rennes University Hospital, Rennes, France
| | - Maxime Yochum
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
| | - Elif Köksal-Ersöz
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
- INRIA, Villerbanne, France
- Cophy Team, Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron, France
| | - Jean-François Houvenaghel
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
- Neurology Department, Rennes University Hospital, Rennes, France
| | - Fabrice Wendling
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
| | - Paul Sauleau
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
- Physiology Department, Pontchaillou University Hospital, Rennes, France
| | - Pascal Benquet
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, F-35042, France
| |
Collapse
|
5
|
Wilson MA, Sumera A, Taylor LW, Meftah S, McGeachan RI, Modebadze T, Jayasekera BAP, Cowie CJA, LeBeau FEN, Liaquat I, Durrant CS, Brennan PM, Booker SA. Phylogenetic divergence of GABA B receptor signaling in neocortical networks over adult life. Nat Commun 2025; 16:4194. [PMID: 40328769 PMCID: PMC12056048 DOI: 10.1038/s41467-025-59262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cortical circuit activity is controlled by GABA-mediated inhibition in a spatiotemporally restricted manner. GABAB receptor (GABABR) signalling exerts powerful slow inhibition that controls synaptic, dendritic and neuronal activity. But, how GABABRs contribute to circuit-level inhibition over the lifespan of rodents and humans is poorly understood. In this study, we quantitatively determined the functional contribution of GABABR signalling to pre- and postsynaptic domains in rat and human cortical principal cells. We find that postsynaptic GABABR differentially control pyramidal cell activity within the cortical column as a function of age in rodents, but minimally change over adult life in humans. Presynaptic GABABRs exert stronger inhibition in humans than rodents. Pre- and postsynaptic GABABRs contribute to co-ordination of local information processing in a layer- and species-dependent manner. Finally, we show that GABABR signalling is elevated in patients that have received the anti-seizure medication Levetiracetam. These data directly increase our knowledge of translationally relevant local circuit dynamics, with direct impact on understanding the role of GABABRs in the treatment of seizure disorders.
Collapse
Affiliation(s)
- Max A Wilson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Anna Sumera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Tamara Modebadze
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - B Ashan P Jayasekera
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Christopher J A Cowie
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Imran Liaquat
- Department for Clinical Neuroscience, NHS Lothian, Royal Infirmary Edinburgh, Edinburgh, EH16 4SB, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Paul M Brennan
- Department for Clinical Neuroscience, NHS Lothian, Royal Infirmary Edinburgh, Edinburgh, EH16 4SB, UK
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
6
|
Meyerolbersleben LS, Sirota A, Busse L. Anatomically resolved oscillatory bursts reveal dynamic motifs of thalamocortical activity during naturalistic stimulus viewing. Neuron 2025:S0896-6273(25)00250-8. [PMID: 40252643 DOI: 10.1016/j.neuron.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/02/2025] [Accepted: 03/25/2025] [Indexed: 04/21/2025]
Abstract
Natural vision requires circuit mechanisms which process complex spatiotemporal stimulus features in parallel. In the mammalian forebrain, one signature of circuit activation is fast oscillatory dynamics, reflected in the local field potential (LFP). Using data from the Allen Neuropixels Visual Coding project, we show that local visual features in naturalistic stimuli induce in mouse primary visual cortex (V1) retinotopically specific oscillations in various frequency bands and V1 layers. Specifically, layer 4 (L4) narrowband gamma was linked to luminance, low-gamma to optic flow, and L4/L5 epsilon oscillations to contrast. These feature-specific oscillations were associated with distinct translaminar spike-phase coupling patterns, which were conserved across a range of stimuli containing the relevant visual features, suggesting that they might constitute feature-specific circuit motifs. Our findings highlight visually induced fast oscillations as markers of dynamic circuit motifs, which may support differential and multiplexed coding of complex visual input and thalamocortical information propagation.
Collapse
Affiliation(s)
- Lukas Sebastian Meyerolbersleben
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anton Sirota
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Dubois AEE, Audet-Duchesne E, Knoth IS, Martin CO, Jizi K, Tamer P, Younis N, Jacquemont S, Dumas G, Lippé S. Genetic modulation of brain dynamics in neurodevelopmental disorders: the impact of copy number variations on resting-state EEG. Transl Psychiatry 2025; 15:139. [PMID: 40216767 PMCID: PMC11992136 DOI: 10.1038/s41398-025-03324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Research has shown that many copy number variations (CNVs) increase the risk of neurodevelopmental disorders (e.g., autism, ADHD, schizophrenia). However, little is known about the effects of CNVs on brain development and function. Resting-state electroencephalography (EEG) is a suitable method to study the disturbances of neuronal functioning in CNVs. We aimed to determine whether there are resting-state EEG signatures that are characteristic of children with pathogenic CNVs. EEG resting-state brain activity of 109 CNV carriers (66 deletion carriers, 43 duplication carriers) aged 3 to 17 years was recorded for 4 minutes. To better account for developmental variations, EEG indices (power spectral density and functional connectivity) were corrected with a normative model estimated from 256 Healthy Brain Network controls. Results showed a decreased exponent of the aperiodic activity and a reduced alpha peak frequency in CNV carriers. Additionally, the study showed altered periodic components and connectivity in several frequency bands. Deletion and duplication carriers exhibited a similar overall pattern of deviations in spectral and connectivity measures, although the significance and effect sizes relative to the control group varied across frequency bands. Deletion and duplication carriers can be differentiated by their periodic power in the gamma band and connectivity in the low alpha band, with duplication carriers showing more disrupted alterations than deletion carriers. The distinctive alterations in spectral patterns were found to be most prominent during adolescence. The results suggest that CNV carriers show electrophysiological alterations compared to neurotypical controls, regardless of the gene dosage effect and their affected genomic region. At the same time, while duplications and deletions share common electrophysiological alterations, each exhibits distinct brain alteration signatures that reflect gene dosage-specific effects.
Collapse
Affiliation(s)
- Adrien E E Dubois
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Elisabeth Audet-Duchesne
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Charles-Olivier Martin
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Khadije Jizi
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Petra Tamer
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Nadine Younis
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, University de Montreal, Montreal, QC, H3T 1C5, Canada
| | - Guillaume Dumas
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Mila - Québec AI Institute, University of Montreal, Montreal, QC, Canada.
| | - Sarah Lippé
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada.
| |
Collapse
|
8
|
Hu J, Liu J, Yan Y, Shen Z, Sun J, Zheng Y. Activating Striatal Parvalbumin Interneurons to Alleviate Chemotherapy-Induced Muscle Atrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13782. [PMID: 40196908 PMCID: PMC11976163 DOI: 10.1002/jcsm.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Cisplatin is a widely used chemotherapeutic agent for treating solid tumours. Still, it induces severe side effects, including muscle atrophy. Understanding the mechanisms of cisplatin-induced muscle loss and exploring potential therapeutic strategies are essential. Parvalbumin (PV) interneurons in the striatum play a crucial role in motor control, and recent studies suggest that their activation may alleviate motor deficits. This study investigates the effects of chemogenetic activation of PV interneurons on cisplatin-induced muscle atrophy and motor dysfunction in mice. METHODS Wild-type C57BL/6 mice and transgenic hM3Dq mice were used in this study. Cisplatin (3 mg/kg) was administered intraperitoneally for 7 days to induce muscle atrophy. Mice were then treated with clozapine-n-oxide (CNO) to activate PV interneurons. Muscle strength and endurance were assessed using grip strength measurements, the inverted grid test and the wire hang test. Neuromuscular junction (NMJ) integrity was examined via histological analysis. Exercise intervention was also included, using a treadmill with a 15° incline for 60 min at varying speeds during seven consecutively days. RESULTS Cisplatin treatment significantly reduced body weight (p < 0.001), grip strength (forelimb strength: p < 0.001, four-limb strength: p < 0.001), endurance (inverted grid test: p = 0.047, wire hang test: p = 0.014) and NMJ integrity (partially innervated NMJs: p = 0.0383). PV interneuron activation with CNO improved spontaneous motor activity in cisplatin-treated mice, as evidenced by a significant increase in total travel distance (p = 0.049) in the open-field test. Histological analysis showed a reduced ratio of partially innervated NMJs in the PV-cre group compared to the control virus group (p = 0.0441). Muscle strength also improved significantly, with forelimb grip strength increased (p < 0.001) and four-limb grip strength increased (p = 0.018). Muscle wet-weight ratios were significantly higher in the PV-cre group (quadriceps: p = 0.030). Exercise intervention significantly improved grip strength (forelimb: p < 0.001, four-limb: p = 0.002), muscle endurance (four-limb hang test: p = 0.048) and muscle weight (quadriceps: p = 0.015, gastrocnemius: p = 0.022), with an increase in muscle fibre cross-sectional area (p = 0.0018). CONCLUSION Activation of PV interneurons significantly alleviates cisplatin-induced motor deficits and muscle atrophy by improving spontaneous motor activity, NMJ integrity and muscle function. It has a similar effect to short-term exercise and may offer a promising therapeutic strategy for mitigating chemotherapy-induced muscle atrophy.
Collapse
Affiliation(s)
- Jun Hu
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
- School of Exercise and HealthShanghai University of SportShanghaiChina
- Department of Rehabilitation MedicineShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina
| | - Jingyuan Liu
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Yuqing Yan
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Ziyu Shen
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Junlong Sun
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| | - Yongjun Zheng
- Department of Pain, Huadong HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Clinical Geriatric MedicineFudan UniversityShanghaiChina
| |
Collapse
|
9
|
Onorato I, Tzanou A, Schneider M, Uran C, Broggini AC, Vinck M. Distinct roles of PV and Sst interneurons in visually induced gamma oscillations. Cell Rep 2025; 44:115385. [PMID: 40048428 DOI: 10.1016/j.celrep.2025.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/26/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Gamma-frequency oscillations are a hallmark of active information processing and are generated by interactions between excitatory and inhibitory neurons. To examine the contribution of distinct inhibitory interneurons to visually induced gamma oscillations, we recorded from optogenetically identified PV+ (parvalbumin) and Sst+ (somatostatin) interneurons in mouse primary visual cortex (V1). PV and Sst inhibitory interneurons exhibited distinct correlations to gamma oscillations. PV cells were strongly phase locked, while Sst cells were weakly phase locked, except for narrow-waveform Sst cells. PV cells fired at a substantially earlier phase in the gamma cycle (≈6 ms) than Sst cells. PV cells fired shortly after the onset of tightly synchronized burst events in excitatory cells, while Sst interneurons fired after subsequent burst spikes or single spikes. These findings indicate a main role of PV interneurons in synchronizing network activity and suggest that PV and Sst interneurons control the excitability of somatic and dendritic neural compartments with precise time delays coordinated by gamma oscillations.
Collapse
Affiliation(s)
- Irene Onorato
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Athanasia Tzanou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Ana Clara Broggini
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Kornfeld-Sylla SS, Gelegen C, Norris JE, Chaloner FA, Lee M, Khela M, Heinrich MJ, Finnie PSB, Ethridge LE, Erickson CA, Schmitt LM, Cooke SF, Wilkinson CL, Bear MF. A human electrophysiological biomarker of Fragile X Syndrome is shared in V1 of Fmr1 KO mice and caused by loss of FMRP in cortical excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644144. [PMID: 40166357 PMCID: PMC11957138 DOI: 10.1101/2025.03.19.644144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Predicting clinical therapeutic outcomes from preclinical animal studies remains an obstacle to developing treatments for neuropsychiatric disorders. Electrophysiological biomarkers analyzed consistently across species could bridge this divide. In humans, alpha oscillations in the resting state electroencephalogram (rsEEG) are altered in many disorders, but these disruptions have not yet been characterized in animal models. Here, we employ a uniform analytical method to show in males with fragile X syndrome (FXS) that the slowed alpha oscillations observed in adults are also present in children and in visual cortex of adult and juvenile Fmr1 -/y mice. We find that alpha-like oscillations in mice reflect the differential activity of two classes of inhibitory interneurons, but the phenotype is caused by deletion of Fmr1 specifically in cortical excitatory neurons. These results provide a framework for studying alpha oscillation disruptions across species, advance understanding of a critical rsEEG signature in the human brain and inform the cellular basis for a putative biomarker of FXS.
Collapse
|
11
|
Coventry BS, Luu CP, Bartlett EL. Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642906. [PMID: 40161605 PMCID: PMC11952546 DOI: 10.1101/2025.03.12.642906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Significance Infrared neural stimulation (INS) has emerged as a potent neuromodulation technology, offering safe and focal stimulation with superior spatial recruitment profiles compared to conventional electrical methods. However, the neural dynamics induced by INS stimulation remain poorly understood. Elucidating these dynamics will help develop new INS stimulation paradigms and advance its clinical application. Aim In this study, we assessed the local network dynamics of INS entrainment in the auditory thalamocortical circuit using the chronically implanted rat model; our approach focused on measuring INS energy-based local field potential (LFP) recruitment induced by focal thalamocortical stimulation. We further characterized linear and nonlinear oscillatory LFP activity in response to single-pulse and periodic INS and performed spectral decomposition to uncover specific LFP band entrainment to INS. Finally, we examined spike-field transformations across the thalamocortical synapse using spike-LFP coherence coupling. Results We found that INS significantly increases LFP amplitude as a log-linear function of INS energy per pulse, primarily entraining to LFP β and γ bands with synchrony extending to 200 Hz in some cases. A subset of neurons demonstrated nonlinear, chaotic oscillations linked to information transfer across cortical circuits. Finally, we utilized spike-field coherences to correlate spike coupling to LFP frequency band activity and suggest an energy-dependent model of network activation resulting from INS stimulation. Conclusions We show that INS reliably drives robust network activity and can potently modulate cortical field potentials across a wide range of frequencies in a stimulus parameter-dependent manner. Based on these results, we propose design principles for developing full coverage, all-optical thalamocortical auditory neuroprostheses.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
| | - Cuong P Luu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53907 USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
12
|
Li M, Liu K, Xu M, Chen Z, Yu L, Zhang J, Wang C, Long C, Jiang J. Anterior Cingulate Cortex-Anterior Insular Cortex Circuit Mediates Hyperalgesia in Adolescent Mice Experiencing Early Life Stress. ACS Chem Neurosci 2025; 16:920-931. [PMID: 39957557 DOI: 10.1021/acschemneuro.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Understanding neurobiological mechanisms underlying changes in behavior and neural activity caused by early life stress (ELS) is essential for improving these adverse outcomes in individuals. ELS incited by exposure to maternal separation (MS) can be defined as a form of social pain, but little is known about the neural mechanism in adolescents with ELS-induced pain sensitization. Employing an MS-induced ELS paradigm in mice, we reported here that both male and female MS mice aged 1-2 months exhibited mechanical and thermal hyperalgesia using paw-withdrawal and hot/cold plate tests. The increased high gamma (γhigh) oscillations accompanied by the activation of parvalbumin-positive interneurons (PVINs) in the anterior insular cortex (AIC), but not the anterior cingulate cortex (ACC), were shown in MS mice. Moreover, ACC-driven AIC connectivity was enhanced in MS mice, characterized by amplified phase coherence in the delta (δ) and theta (θ) bands and an escalation in the coupling of the ACC θ phase and AIC γ amplitude. Chemogenetic inactivation of AIC PVINs relieved hyperalgesia and altered the ACC-AIC connectivity in MS mice. The observed increase in δ-θ synchronization and PVIN activation in the ACC-AIC circuit indicates this pathway is a therapeutic target for ELS-induced hyperalgesia.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kefang Liu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mingyu Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lu Yu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jingquan Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jinxiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
13
|
Glica A, Wasilewska K, Jurkowska J, Żygierewicz J, Kossowski B, Jednoróg K. Reevaluating the neural noise in dyslexia using biomarkers from electroencephalography and high-resolution magnetic resonance spectroscopy. eLife 2025; 13:RP99920. [PMID: 40029268 PMCID: PMC11875536 DOI: 10.7554/elife.99920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agnieszka Glica
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Katarzyna Wasilewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | | | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
14
|
Thies AM, Pochinok I, Marquardt A, Dorofeikova M, Hanganu-Opatz IL, Pöpplau JA. Trajectories of working memory and decision making abilities along juvenile development in mice. Front Neurosci 2025; 19:1524931. [PMID: 40092072 PMCID: PMC11906447 DOI: 10.3389/fnins.2025.1524931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Rodents commonly serve as model organisms for the investigation of human mental disorders by capitalizing on behavioral commonalities. However, our understanding of the developmental dynamics of complex cognitive abilities in rodents remains incomplete. In this study, we examined spatial working memory as well as odor-and texture-based decision making in mice using a delayed non-match to sample task and a two-choice set-shifting task, respectively. Mice were investigated during different stages of development: pre-juvenile, juvenile, and young adult age. We show that, while working memory abilities in mice improve with age, decision making performance peaks during juvenile age by showing a sex-independent trajectory. Moreover, cFos expression, as a first proxy for neuronal activity, shows distinct age-and brain area-specific changes that relate to task-specific behavioral performance. The distinct developmental trajectories of working memory and decision making in rodents resemble those previously reported for humans.
Collapse
Affiliation(s)
- Ann Marlene Thies
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Dorofeikova
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Gabhart KM, Xiong YS, Bastos AM. Predictive coding: a more cognitive process than we thought? Trends Cogn Sci 2025:S1364-6613(25)00030-0. [PMID: 39984365 DOI: 10.1016/j.tics.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
In predictive coding (PC), higher-order brain areas generate predictions that are sent to lower-order sensory areas. Top-down predictions are compared with bottom-up sensory data, and mismatches evoke prediction errors. In PC, the prediction errors are encoded in layer 2/3 pyramidal neurons of sensory cortex that feed forward. The PC model has been tested with multiple recording modalities using the global-local oddball paradigm. Consistent with PC, neuroimaging studies reported prediction error responses in sensory and higher-order areas. However, recent studies of neuronal spiking suggest that genuine prediction errors emerge in prefrontal cortex (PFC). This implies that predictive processing is a more cognitive than sensory-based mechanism - an observation that challenges PC and better aligns with a framework we call predictive routing (PR).
Collapse
Affiliation(s)
| | | | - André M Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Qi H, Zou J, Yao Z, Zhao G, Zhang J, Liu C, Chen M. Differences in EEG complexity of cognitive activities among subtypes of schizophrenia. Front Psychiatry 2025; 16:1473693. [PMID: 39975949 PMCID: PMC11835803 DOI: 10.3389/fpsyt.2025.1473693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The neural mechanisms that underpin cognitive impairments in patients with schizophrenia remain unclear. Previous studies have typically treated patients as a homogeneous group, despite the existence of distinct symptom presentations between deficit and non-deficit subtypes. This approach has been found to be inadequate, necessitating separate investigation. Methods This study was conducted at Daizhuang Hospital in Jining City, China, from January 2022 to October 2023. The study sample comprised 30 healthy controls, 19 patients with deficit schizophrenia, and 19 patients with non-deficit schizophrenia, all aged between 18 and 45 years. Cognitive abilities were evaluated using a change detection task. The NeuroScan EEG/ERP System, comprising 64 channels and utilising standard 10-20 electrode placements, was employed to record EEG signals. The multiscale entropy and sample entropy of the EEG signals were calculated. Results The healthy controls demonstrated superior task performance compared to both the non-deficit (p < 0.001) and deficit groups(p < 0.001). Significant differences in multiscale entropy between the three groups were observed at multiple electrode sites. In the task state, there are significant differences in the sample entropy of the β frequency band among the three groups of subjects. Under simple conditions of difficulty, the performance of the healthy controls exhibited a positive correlation with alpha band sample entropy(r = 0.372) and a negative correlation with beta band sample entropy (r = -0.411). Deficit patients demonstrated positive correlations with alpha band sample entropy (r = 0.370), whereas non-deficit patients exhibited negative correlations with both alpha and beta band sample entropy (r = -0.451, r = -0.362). Under difficult conditions of difficulty, the performance of healthy controls demonstrated a positive correlation with beta band sample entropy (r = 0.486). Deficit patients exhibited a positive correlation with alpha band sample entropy (r = 0.351), while non-deficit patients demonstrated a negative correlation with beta band sample entropy (r = -0.331). Conclusion The results of this study indicate that cognitive impairment in specific subtypes of schizophrenia may have distinct physiological underpinnings, underscoring the need for further investigation.
Collapse
Affiliation(s)
- Hang Qi
- School of Psychology, Qufu Normal University, Qufu, China
| | - Jilin Zou
- Department of Psychology, School of Education, Linyi University, Linyi, Shandong, China
| | - Zhenzhen Yao
- Clinical Psychology Department, Shandong Mental Health Center, Jinan, China
| | - Gaofeng Zhao
- Geriatrics Department, Shandong Daizhuang Hospital, Jining, China
| | - Jing Zhang
- Geriatrics Department, Shandong Daizhuang Hospital, Jining, China
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
17
|
Vinck M, Uran C, Dowdall JR, Rummell B, Canales-Johnson A. Large-scale interactions in predictive processing: oscillatory versus transient dynamics. Trends Cogn Sci 2025; 29:133-148. [PMID: 39424521 PMCID: PMC7616854 DOI: 10.1016/j.tics.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
How do the two main types of neural dynamics, aperiodic transients and oscillations, contribute to the interactions between feedforward (FF) and feedback (FB) pathways in sensory inference and predictive processing? We discuss three theoretical perspectives. First, we critically evaluate the theory that gamma and alpha/beta rhythms play a role in classic hierarchical predictive coding (HPC) by mediating FF and FB communication, respectively. Second, we outline an alternative functional model in which rapid sensory inference is mediated by aperiodic transients, whereas oscillations contribute to the stabilization of neural representations over time and plasticity processes. Third, we propose that the strong dependence of oscillations on predictability can be explained based on a biologically plausible alternative to classic HPC, namely dendritic HPC.
Collapse
Affiliation(s)
- Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Jarrod R Dowdall
- Robarts Research Institute, Western University, London, ON, Canada
| | - Brian Rummell
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Andres Canales-Johnson
- Facultad de Ciencias de la Salud, Universidad Catolica del Maule, 3480122 Talca, Chile; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
18
|
Hu Y, Feng Y, Luo H, Zhu XN, Chen S, Yang K, Deng Z, Luo M, Du W, Wang Q, Wang S, Wei K, Hu J, Wang Y. Dissociation-related behaviors in mice emerge from the inhibition of retrosplenial cortex parvalbumin interneurons. Cell Rep 2025; 44:115086. [PMID: 39708317 DOI: 10.1016/j.celrep.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine. Furthermore, activation of RSC PV-INs or knockdown of the N-methyl-D-aspartate receptor subunit NR1 and the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in RSC PV-INs attenuates ketamine-induced delta oscillations, δ-γ PAC, and certain dissociation-like behaviors. These findings reveal that PV-INs regulate delta oscillations and δ-γ PAC and identify NR1 and HCN1 as ketamine targets in PV-INs that may cooperatively affect dissociation, possibly providing potential therapeutic targets for dissociative symptoms.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Siyu Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziqing Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shubai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Wei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
19
|
Zerlaut Y, Tzilivaki A. Interneuronal modulations as a functional switch for cortical computations: mechanisms and implication for disease. Front Cell Neurosci 2025; 18:1479579. [PMID: 39916937 PMCID: PMC11799556 DOI: 10.3389/fncel.2024.1479579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Understanding cortical inhibition and its diverse roles remains a key challenge in neurophysiological research. Traditionally, inhibition has been recognized for controlling the stability and rhythmicity of network dynamics, or refining the spatiotemporal properties of cortical representations. In this perspective, we propose that specific types of interneurons may play a complementary role, by modulating the computational properties of neural networks. We review experimental and theoretical evidence, mainly from rodent sensory cortices, that supports this view. Additionally, we explore how dysfunctions in these interneurons may disrupt the network's ability to switch between computational modes, impacting the flexibility of cortical processing and potentially contributing to various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Yann Zerlaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz, Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz, Berlin, Germany
| |
Collapse
|
20
|
Shi S, Chen T, Su H, Zhao M. Exploring Cortical Interneurons in Substance Use Disorder: From Mechanisms to Therapeutic Perspectives. Neuroscientist 2025:10738584241310156. [PMID: 39772845 DOI: 10.1177/10738584241310156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Interneurons (INs) play a crucial role in the regulation of neural activity within the medial prefrontal cortex (mPFC), a brain region critically involved in executive functions and behavioral control. In recent preclinical studies, dysregulation of INs in the mPFC has been implicated in the pathophysiology of substance use disorder, characterized by vulnerability to chronic drug use. Here, we explore the diversity of mPFC INs and their connectivity and roles in vulnerability to addiction. We also discuss how these INs change over time with drug exposure. Finally, we focus on noninvasive brain stimulation as a therapeutic approach for targeting INs in substance use disorder, highlighting its potential to restore neural circuits.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Khan HF, Dutta S, Scott AN, Xiao S, Yadav S, Chen X, Aryal UK, Kinzer-Ursem TL, Rochet JC, Jayant K. Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex. Nat Commun 2024; 15:10775. [PMID: 39737978 PMCID: PMC11685769 DOI: 10.1038/s41467-024-54945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites. Notably, while beta-band spike-field-coherence reflected a significant increase beginning in Layer-5 and then spreading to Layer-2/3, the rate of entrainment and the propensity of stochastic beta-burst dynamics was markedly seeding location-specific. This beta dysfunction was accompanied by gradual superficial excitatory ensemble instability following cortical, but not striatal, preformed fibrils injection. We reveal a link between Layer-5 dendritic vulnerabilities and translaminar beta event dysfunction, which could be used to differentiate symptomatically similar synucleinopathies.
Collapse
Affiliation(s)
- Hammad F Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Sayan Dutta
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Alicia N Scott
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Shulan Xiao
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Saumitra Yadav
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Jadhav V, Carreno-Munoz MI, Chehrazi P, Michaud JL, Chattopadhyaya B, Di Cristo G. Developmental Syngap1 Haploinsufficiency in Medial Ganglionic Eminence-Derived Interneurons Impairs Auditory Cortex Activity, Social Behavior, and Extinction of Fear Memory. J Neurosci 2024; 44:e0946242024. [PMID: 39406516 PMCID: PMC11622180 DOI: 10.1523/jneurosci.0946-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 12/06/2024] Open
Abstract
Mutations in SYNGAP1, a protein enriched at glutamatergic synapses, cause intellectual disability associated with epilepsy, autism spectrum disorder, and sensory dysfunctions. Several studies showed that Syngap1 regulates the time course of forebrain glutamatergic synapse maturation; however, the developmental role of Syngap1 in inhibitory GABAergic neurons is less clear. GABAergic neurons can be classified into different subtypes based on their morphology, connectivity, and physiological properties. Whether Syngap1 expression specifically in parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, which are derived from the medial ganglionic eminence (MGE), plays a role in the emergence of distinct brain functions remains largely unknown. We used genetic strategies to generate Syngap1 haploinsufficiency in (1) prenatal interneurons derived from the medial ganglionic eminence, (2) in postnatal PV cells, and (3) in prenatal SST interneurons. We further performed in vivo recordings and behavioral assays to test whether and how these different genetic manipulations alter brain function and behavior in mice of either sex. Mice with prenatal-onset Syngap1 haploinsufficiency restricted to Nkx2.1-expressing neurons show abnormal cortical oscillations and increased entrainment induced by 40 Hz auditory stimulation but lack stimulus-specific adaptation. This latter phenotype was reproduced in mice with Syngap1 haploinsufficiency restricted to PV, but not SST, interneurons. Prenatal-onset Syngap1 haploinsufficiency in Nkx2.1-expressing neurons led to impaired social behavior and inability to extinguish fear memories; however, neither postnatal PV- nor prenatal SST-specific mutant mice show these phenotypes. We speculate that Syngap1 haploinsufficiency in prenatal/perinatal PV interneurons may contribute to cortical activity and cognitive alterations associated with Syngap1 mutations.
Collapse
Affiliation(s)
- Vidya Jadhav
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Maria Isabel Carreno-Munoz
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pegah Chehrazi
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec H3T 1C5, Canada
| | | | - Graziella Di Cristo
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
23
|
Croom K, Rumschlag JA, Molinaro G, Erickson MA, Binder DK, Huber KM, Razak KA. Developmental trajectory and sex differences in auditory processing in a PTEN-deletion model of autism spectrum disorders. Neurobiol Dis 2024; 200:106628. [PMID: 39111703 PMCID: PMC12101825 DOI: 10.1016/j.nbd.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, United States of America
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael A Erickson
- Psychology Department, University of California, Riverside, United States of America
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Psychology Department, University of California, Riverside, United States of America.
| |
Collapse
|
24
|
Pöpplau JA, Hanganu-Opatz IL. Development of Prefrontal Circuits and Cognitive Abilities. Cold Spring Harb Perspect Biol 2024; 16:a041502. [PMID: 38692836 PMCID: PMC11444252 DOI: 10.1101/cshperspect.a041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The prefrontal cortex is considered as the site of multifaceted higher-order cognitive abilities. These abilities emerge late in life long after full sensorimotor maturation, in line with the protracted development of prefrontal circuits that has been identified on molecular, structural, and functional levels. Only recently, as a result of the impressive methodological progress of the last several decades, the mechanisms and clinical implications of prefrontal development have begun to be elucidated, yet major knowledge gaps still persist. Here, we provide an overview on how prefrontal circuits develop to enable multifaceted cognitive processing at adulthood. First, we review recent insights into the mechanisms of prefrontal circuit assembly, with a focus on the contribution of early electrical activity. Second, we highlight the major reorganization of prefrontal circuits during adolescence. Finally, we link the prefrontal plasticity during specific developmental time windows to mental health disorders and discuss potential approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
25
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
26
|
Kim MG, Yu K, Yeh CY, Fouda R, Argueta D, Kiven S, Ni Y, Niu X, Chen Q, Kim K, Gupta K, He B. Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits. Blood 2024; 144:1101-1115. [PMID: 38976875 PMCID: PMC11406192 DOI: 10.1182/blood.2023023718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
ABSTRACT There is an urgent and unmet clinical need to develop nonpharmacological interventions for chronic pain management because of the critical side effects of opioids. Low-intensity transcranial focused ultrasound (tFUS) is an emerging noninvasive neuromodulation technology with high spatial specificity and deep brain penetration. Here, we developed a tightly focused 128-element ultrasound transducer to specifically target small mouse brains using dynamic focus steering. We demonstrate that tFUS stimulation at pain-processing brain circuits can significantly alter pain-associated behaviors in mouse models in vivo. Our findings indicate that a single-session focused ultrasound stimulation to the primary somatosensory cortex (S1) significantly attenuates heat pain sensitivity in wild-type mice and modulates heat and mechanical hyperalgesia in a humanized mouse model of chronic pain in sickle cell disease. Results further revealed a sustained behavioral change associated with heat hypersensitivity by targeting deeper cortical structures (eg, insula) and multisession focused ultrasound stimulation to S1 and insula. Analyses of brain electrical rhythms through electroencephalography demonstrated a significant change in noxious heat hypersensitivity-related and chronic hyperalgesia-associated neural signals after focused ultrasound treatment. Validation of efficacy was carried out through control experiments, tuning ultrasound parameters, adjusting interexperiment intervals, and investigating effects on age, sex, and genotype in a head-fixed awake model. Importantly, tFUS was found to be safe, causing no adverse effects on motor function or the brain's neuropathology. In conclusion, the validated proof-of-principle experimental evidence demonstrates the translational potential of novel focused ultrasound neuromodulation for next-generation pain treatment without adverse effects.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Chih-Yu Yeh
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Raghda Fouda
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Donovan Argueta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Stacy Kiven
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Yunruo Ni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Qiyang Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kang Kim
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Kalpna Gupta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
27
|
Jiang HJ, Qi G, Duarte R, Feldmeyer D, van Albada SJ. A layered microcircuit model of somatosensory cortex with three interneuron types and cell-type-specific short-term plasticity. Cereb Cortex 2024; 34:bhae378. [PMID: 39344196 PMCID: PMC11439972 DOI: 10.1093/cercor/bhae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Three major types of GABAergic interneurons, parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV, SOM, VIP) cells, play critical but distinct roles in the cortical microcircuitry. Their specific electrophysiology and connectivity shape their inhibitory functions. To study the network dynamics and signal processing specific to these cell types in the cerebral cortex, we developed a multi-layer model incorporating biologically realistic interneuron parameters from rodent somatosensory cortex. The model is fitted to in vivo data on cell-type-specific population firing rates. With a protocol of cell-type-specific stimulation, network responses when activating different neuron types are examined. The model reproduces the experimentally observed inhibitory effects of PV and SOM cells and disinhibitory effect of VIP cells on excitatory cells. We further create a version of the model incorporating cell-type-specific short-term synaptic plasticity (STP). While the ongoing activity with and without STP is similar, STP modulates the responses of Exc, SOM, and VIP cells to cell-type-specific stimulation, presumably by changing the dominant inhibitory pathways. With slight adjustments, the model also reproduces sensory responses of specific interneuron types recorded in vivo. Our model provides predictions on network dynamics involving cell-type-specific short-term plasticity and can serve to explore the computational roles of inhibitory interneurons in sensory functions.
Collapse
Affiliation(s)
- Han-Jia Jiang
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| | - Guanxiao Qi
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Renato Duarte
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
| | - Dirk Feldmeyer
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| |
Collapse
|
28
|
Edwards MM, Rubin JE, Huang C. State modulation in spatial networks with three interneuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609417. [PMID: 39229194 PMCID: PMC11370595 DOI: 10.1101/2024.08.23.609417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Several inhibitory interneuron subtypes have been identified as critical in regulating sensory responses. However, the specific contribution of each interneuron subtype remains uncertain. In this work, we explore the contributions of cell-type specific activity and synaptic connections to dynamics of a spatially organized spiking neuron network. We find that the firing rates of the somatostatin (SOM) interneurons align closely with the level of network synchrony irrespective of the target of modulatory input. Further analysis reveals that inhibition from SOM to parvalbumin (PV) interneurons must be limited to allow gradual transitions from asynchrony to synchrony and that the strength of recurrent excitation onto SOM neurons determines the level of synchrony achievable in the network. Our results are consistent with recent experimental findings on cell-type specific manipulations. Overall, our results highlight common dynamic regimes achieved across modulations of different cell populations and identify SOM cells as the main driver of network synchrony.
Collapse
Affiliation(s)
- Madeline M. Edwards
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
30
|
Gallina J, Ronconi L, Marsicano G, Bertini C. Alpha and theta rhythm support perceptual and attentional sampling in vision. Cortex 2024; 177:84-99. [PMID: 38848652 DOI: 10.1016/j.cortex.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at ∼10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at ∼10 Hz and ∼6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a ∼5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy.
| |
Collapse
|
31
|
Greenwood PE, Ward LM. Attentional selection and communication through coherence: Scope and limitations. PLoS Comput Biol 2024; 20:e1011431. [PMID: 39102437 PMCID: PMC11326628 DOI: 10.1371/journal.pcbi.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.
Collapse
Affiliation(s)
| | - Lawrence M Ward
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Wilkinson CL, Yankowitz LD, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components in children 2-44 months of age. Nat Commun 2024; 15:5788. [PMID: 38987558 PMCID: PMC11237135 DOI: 10.1038/s41467-024-50204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants (n = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Lisa D Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
33
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
34
|
Ratliff JM, Terral G, Lutzu S, Heiss J, Mota J, Stith B, Lechuga AV, Ramakrishnan C, Fenno LE, Daigle T, Deisseroth K, Zeng H, Ngai J, Tasic B, Sjulson L, Rudolph S, Kilduff TS, Batista-Brito R. Neocortical long-range inhibition promotes cortical synchrony and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599756. [PMID: 38948753 PMCID: PMC11213009 DOI: 10.1101/2024.06.20.599756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Behavioral states such as sleep and wake are highly correlated with specific patterns of rhythmic activity in the cortex. During low arousal states such as slow wave sleep, the cortex is synchronized and dominated by low frequency rhythms coordinated across multiple regions. Although recent evidence suggests that GABAergic inhibitory neurons are key players in cortical state modulation, the in vivo circuit mechanisms coordinating synchronized activity among local and distant neocortical networks are not well understood. Here, we show that somatostatin and chondrolectin co-expressing cells (Sst-Chodl cells), a sparse and unique class of neocortical inhibitory neurons, are selectively active during low arousal states and are largely silent during periods of high arousal. In contrast to other neocortical inhibitory neurons, we show these neurons have long-range axons that project across neocortical areas. Activation of Sst-Chodl cells is sufficient to promote synchronized cortical states characteristic of low arousal, with increased spike co-firing and low frequency brain rhythms, and to alter behavioral states by promoting sleep. Contrary to the prevailing belief that sleep is exclusively driven by subcortical mechanisms, our findings reveal that these long-range inhibitory neurons not only track changes in behavioral state but are sufficient to induce both sleep-like cortical states and sleep behavior, establishing a crucial circuit component in regulating behavioral states.
Collapse
Affiliation(s)
- Jacob M Ratliff
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Geoffrey Terral
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stefano Lutzu
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Jaime Heiss
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | - Julie Mota
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Bianca Stith
- Albert Einstein College of Medicine, New York City, NY, United States
| | | | | | - Lief E Fenno
- The University of Texas at Austin, Austin, TX, United States
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, United States
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, United States
| | - John Ngai
- National Institute of Neurological Disease and Stroke, Bethesda, MD, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Lucas Sjulson
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stephanie Rudolph
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | | |
Collapse
|
35
|
Li R, Zeng Q, Ji M, Zhang Y, Mao M, Feng S, Duan M, Zhou Z. Oxytocin ameliorates cognitive impairments by attenuating excitation/inhibition imbalance of neurotransmitters acting on parvalbumin interneurons in a mouse model of sepsis-associated encephalopathy. J Biomed Res 2024; 39:1-14. [PMID: 38808550 PMCID: PMC11982676 DOI: 10.7555/jbr.37.20230318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Inflammation plays a crucial role in the initiation and progression of sepsis, and it also induces alterations in brain neurotransmission, thereby contributing to the development of sepsis-associated encephalopathy (SAE). Parvalbumin (PV) interneurons are pivotal contributors to cognitive processes in various central dysfunctions including SAE. Oxytocin, known for its ability to augment the firing rate of gamma-aminobutyric acid (GABA)ergic interneurons and directly stimulate inhibitory interneurons to enhance the tonic inhibition of pyramidal neurons, has prompted an investigation into its potential effects on cognitive dysfunction in SAE. In the current study, we administered intranasal oxytocin to the SAE mice induced by lipopolysaccharide (LPS). Behavioral assessments, including open field, Y-maze, and fear conditioning, were used to evaluate cognitive performance. Golgi staining revealed hippocampal synaptic deterioration, local field potential recordings showed weakened gamma oscillations, and immunofluorescence analysis demonstrated decreased PV expression in the cornu ammonis 1 (CA1) region of the hippocampus following LPS treatment, which was alleviated by oxytocin. Furthermore, immunofluorescence staining of PV co-localization with vesicular glutamate transporter 1 or vesicular GABA transporter indicated a balanced excitation/inhibition effect of neurotransmitters on PV interneurons after oxytocin administration in the SAE mice, leading to improved cognitive function. In conclusion, cognitive function improved after oxytocin treatment. The number of PV neurons in the hippocampal CA1 region and the balance of excitatory/inhibitory synaptic transmission on PV interneurons, as well as changes in local field potential gamma oscillations in the hippocampal CA1 region, may represent its specific mechanisms.
Collapse
Affiliation(s)
- Renqi Li
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Qiuting Zeng
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Muhuo Ji
- Department of Anesthesiology, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yue Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mingjie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| |
Collapse
|
36
|
Brünner H, Kim H, Ährlund-Richter S, van Lunteren JA, Crestani AP, Meletis K, Carlén M. Cell-type-specific representation of spatial context in the rat prefrontal cortex. iScience 2024; 27:109743. [PMID: 38711459 PMCID: PMC11070673 DOI: 10.1016/j.isci.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
The ability to represent one's own position in relation to cues, goals, or threats is crucial to successful goal-directed behavior. Using optotagging in knock-in rats expressing Cre recombinase in parvalbumin (PV) neurons (PV-Cre rats), we demonstrate cell-type-specific encoding of spatial and movement variables in the medial prefrontal cortex (mPFC) during goal-directed reward seeking. Single neurons encoded the conjunction of the animal's spatial position and the run direction, referred to as the spatial context. The spatial context was most prominently represented by the inhibitory PV interneurons. Movement toward the reward was signified by increased local field potential (LFP) oscillations in the gamma band but this LFP signature was not related to the spatial information in the neuronal firing. The results highlight how spatial information is incorporated into cognitive operations in the mPFC. The presented PV-Cre line opens the door for expanded research approaches in rats.
Collapse
Affiliation(s)
- Hans Brünner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Ana Paula Crestani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Deng H, Cui Y, Liu H, Zhang G, Chai X, Yang X, Gong Q, Yu S, Guo D, Xia Y, Yao D, Chen K. The influence of electrode types to the visually induced gamma oscillations in mouse primary visual cortex. Cereb Cortex 2024; 34:bhae191. [PMID: 38725292 DOI: 10.1093/cercor/bhae191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 01/28/2025] Open
Abstract
The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 μm), while the other had lower impedance (100 KΩ) but a thicker tip (200 μm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.
Collapse
Affiliation(s)
- Haoran Deng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yan Cui
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Haolun Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Guizhi Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaoqian Chai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaotong Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Nanming District, Guiyang, Guizhou, 550002, P.R. China
| | - Qiang Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Shuang Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Daqing Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yang Xia
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
| |
Collapse
|
38
|
Spoleti E, La Barbera L, Cauzzi E, De Paolis ML, Saba L, Marino R, Sciamanna G, Di Lazzaro V, Keller F, Nobili A, Krashia P, D'Amelio M. Dopamine neuron degeneration in the Ventral Tegmental Area causes hippocampal hyperexcitability in experimental Alzheimer's Disease. Mol Psychiatry 2024; 29:1265-1280. [PMID: 38228889 PMCID: PMC11189820 DOI: 10.1038/s41380-024-02408-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Collapse
Affiliation(s)
- Elena Spoleti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Luana Saba
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- UniCamillus International University of Health Sciences, 00131, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
39
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
40
|
Jackson AD, Cohen JL, Phensy AJ, Chang EF, Dawes HE, Sohal VS. Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron 2024; 112:1182-1195.e5. [PMID: 38266646 PMCID: PMC10994747 DOI: 10.1016/j.neuron.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Emotional responses arise from limbic circuits including the hippocampus and amygdala. In the human brain, beta-frequency communication between these structures correlates with self-reported mood and anxiety. However, both the mechanism and significance of this biomarker as a readout vs. driver of emotional state remain unknown. Here, we show that beta-frequency communication between ventral hippocampus and basolateral amygdala also predicts anxiety-related behavior in mice, both on long timescales (∼30 min) and immediately preceding behavioral choices. Genetically encoded voltage indicators reveal that this biomarker reflects synchronization between somatostatin interneurons across both structures. Indeed, synchrony between these neurons dynamically predicts approach-avoidance decisions, and optogenetically shifting the phase of synchronization by just 25 ms is sufficient to bidirectionally modulate anxiety-related behaviors. Thus, back-translation establishes a human biomarker as a causal determinant (not just predictor) of emotional state, revealing a novel mechanism whereby interregional synchronization that is frequency, phase, and cell type specific controls emotional processing.
Collapse
Affiliation(s)
- Adam D Jackson
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Aarron J Phensy
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Edward F Chang
- Department of Neurological Surgery, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Heather E Dawes
- Department of Neurological Surgery, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
41
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Sawa A, Kasai K. Longitudinal trajectories of anterior cingulate glutamate and subclinical psychotic experiences in early adolescence: the impact of bullying victimization. Mol Psychiatry 2024; 29:939-950. [PMID: 38182806 PMCID: PMC11176069 DOI: 10.1038/s41380-023-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Center for Research on Counseling and Support Services, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University Mizonokuchi Hospital, Futago 5-1-1, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Yukiko Kano
- Department Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway Street, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
42
|
Gulati D, Ray S. Auditory and Visual Gratings Elicit Distinct Gamma Responses. eNeuro 2024; 11:ENEURO.0116-24.2024. [PMID: 38604776 PMCID: PMC11046261 DOI: 10.1523/eneuro.0116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.
Collapse
Affiliation(s)
- Divya Gulati
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
43
|
Lichtenfeld MJ, Mulvey AG, Nejat H, Xiong YS, Carlson BM, Mitchell BA, Mendoza-Halliday D, Westerberg JA, Desimone R, Maier A, Kaas JH, Bastos AM. The laminar organization of cell types in macaque cortex and its relationship to neuronal oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587084. [PMID: 38585801 PMCID: PMC10996711 DOI: 10.1101/2024.03.27.587084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The canonical microcircuit (CMC) has been hypothesized to be the fundamental unit of information processing in cortex. Each CMC unit is thought to be an interconnected column of neurons with specific connections between excitatory and inhibitory neurons across layers. Recently, we identified a conserved spectrolaminar motif of oscillatory activity across the primate cortex that may be the physiological consequence of the CMC. The spectrolaminar motif consists of local field potential (LFP) gamma-band power (40-150 Hz) peaking in superficial layers 2 and 3 and alpha/beta-band power (8-30 Hz) peaking in deep layers 5 and 6. Here, we investigate whether specific conserved cell types may produce the spectrolaminar motif. We collected laminar histological and electrophysiological data in 11 distinct cortical areas spanning the visual hierarchy: V1, V2, V3, V4, TEO, MT, MST, LIP, 8A/FEF, PMD, and LPFC (area 46), and anatomical data in DP and 7A. We stained representative slices for the three main inhibitory subtypes, Parvalbumin (PV), Calbindin (CB), and Calretinin (CR) positive neurons, as well as pyramidal cells marked with Neurogranin (NRGN). We found a conserved laminar structure of PV, CB, CR, and pyramidal cells. We also found a consistent relationship between the laminar distribution of inhibitory subtypes with power in the local field potential. PV interneuron density positively correlated with gamma (40-150 Hz) power. CR and CB density negatively correlated with alpha (8-12 Hz) and beta (13-30 Hz) oscillations. The conserved, layer-specific pattern of inhibition and excitation across layers is therefore likely the anatomical substrate of the spectrolaminar motif. Significance Statement Neuronal oscillations emerge as an interplay between excitatory and inhibitory neurons and underlie cognitive functions and conscious states. These oscillations have distinct expression patterns across cortical layers. Does cellular anatomy enable these oscillations to emerge in specific cortical layers? We present a comprehensive analysis of the laminar distribution of the three main inhibitory cell types in primate cortex (Parvalbumin, Calbindin, and Calretinin positive) and excitatory pyramidal cells. We found a canonical relationship between the laminar anatomy and electrophysiology in 11 distinct primate areas spanning from primary visual to prefrontal cortex. The laminar anatomy explained the expression patterns of neuronal oscillations in different frequencies. Our work provides insight into the cortex-wide cellular mechanisms that generate neuronal oscillations in primates.
Collapse
|
44
|
You Y, An DD, Wan YS, Zheng BX, Dai HB, Zhang SH, Zhang XN, Wang RR, Shi P, Jin M, Wang Y, Jiang L, Chen Z, Hu WW. Cell-specific IL-1R1 regulates the regional heterogeneity of microglial displacement of GABAergic synapses and motor learning ability. Cell Mol Life Sci 2024; 81:116. [PMID: 38438808 PMCID: PMC10912170 DOI: 10.1007/s00018-023-05111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024]
Abstract
Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1β negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1β on synaptic displacement. This study demonstrates that IL-1β is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Shan Wan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bai-Xiu Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - She-Hong Zhang
- Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong-Rong Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
46
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Shi C, Zhang C, Chen JF, Yao Z. Enhancement of low gamma oscillations by volitional conditioning of local field potential in the primary motor and visual cortex of mice. Cereb Cortex 2024; 34:bhae051. [PMID: 38425214 DOI: 10.1093/cercor/bhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.
Collapse
Affiliation(s)
- Chennan Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Chenyu Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
48
|
Wertz J, Rüttiger L, Bender B, Klose U, Stark RS, Dapper K, Saemisch J, Braun C, Singer W, Dalhoff E, Bader K, Wolpert SM, Knipper M, Munk MHJ. Differential cortical activation patterns: pioneering sub-classification of tinnitus with and without hyperacusis by combining audiometry, gamma oscillations, and hemodynamics. Front Neurosci 2024; 17:1232446. [PMID: 38239827 PMCID: PMC10794389 DOI: 10.3389/fnins.2023.1232446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.
Collapse
Affiliation(s)
- Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Robert S. Stark
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katharina Bader
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan M. Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
49
|
Mirmoosavi M, Aminitabar A, Mirfathollahi A, Shalchyan V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol Dis 2024; 190:106381. [PMID: 38114049 DOI: 10.1016/j.nbd.2023.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.
Collapse
Affiliation(s)
- Mahnoosh Mirmoosavi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Amir Aminitabar
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran 16583-44575, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
50
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|