1
|
Lakshminarasimhan K, Buck J, Kellendonk C, Horga G. A corticostriatal learning mechanism linking excess striatal dopamine and auditory hallucinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643990. [PMID: 40166304 PMCID: PMC11956939 DOI: 10.1101/2025.03.18.643990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Auditory hallucinations are linked to elevated striatal dopamine, but their underlying computational mechanisms have been obscured by regional heterogeneity in striatal dopamine signaling. To address this, we developed a normative circuit model in which corticostriatal plasticity in the ventral striatum is modulated by reward prediction errors to drive reinforcement learning while that in the sensory-dorsal striatum is modulated by sensory prediction errors derived from internal belief to drive self-supervised learning. We then validate the key predictions of this model using dopamine recordings across striatal regions in mice, as well as human behavior in a hybrid learning task. Finally, we find that changes in learning resulting from optogenetic stimulation of the sensory striatum in mice and individual variability in hallucination proneness in humans are best explained by selectively enhancing dopamine levels in the model sensory striatum. These findings identify plasticity mechanisms underlying biased learning of sensory expectations as a biologically plausible link between excess dopamine and hallucinations.
Collapse
Affiliation(s)
- Kaushik Lakshminarasimhan
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Justin Buck
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Guillermo Horga
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Cui L, Tang S, Pan J, Deng L, Zhang Z, Zhao K, Si B, Xu NL. Causal contributions of cell-type-specific circuits in the posterior dorsal striatum to auditory decision-making. Cell Rep 2025; 44:115084. [PMID: 39709603 DOI: 10.1016/j.celrep.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
In the dorsal striatum (DS), the direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) play crucial opposing roles in controlling actions. However, it remains unclear whether and how dSPNs and iSPNs provide distinct and specific contributions to decision-making, a process transforming sensory inputs to actions. Here, we perform causal interrogations on the roles of dSPNs and iSPNs in the posterior DS (pDS) in auditory-guided decision-making. Unilateral activation of dSPNs or iSPNs produces strong opposite drives to choice behaviors regardless of task difficulty. However, inactivation of dSPNs or iSPNs leads to pronounced choice bias preferentially in difficult trials, suggesting decision-specific contributions. Indeed, temporally specific iSPN activation within, but not outside, the decision period significantly biased choices. Finally, concurrent disinhibition of both pathways via inactivating parvalbumin (PV)-positive interneurons leads to contralateral bias primarily in difficult trials. These results reveal specific contributions by coordinated dSPN and iSPN activity to decision-making processes.
Collapse
Affiliation(s)
- Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Deng
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoran Zhang
- School of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kai Zhao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
3
|
Varin C, de Kerchove d'Exaerde A. Neuronal encoding of behaviors and instrumental learning in the dorsal striatum. Trends Neurosci 2025; 48:77-91. [PMID: 39632222 DOI: 10.1016/j.tins.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The dorsal striatum is instrumental in regulating motor control and goal-directed behaviors. The classical description of the two output pathways of the dorsal striatum highlights their antagonistic control over actions. However, recent experimental evidence implicates both pathways and their coordinated activities during actions. In this review, we examine the different models proposed for striatal encoding of actions during self-paced behaviors and how they can account for evidence harvested during goal-directed behaviors. We also discuss how the activation of striatal ensembles can be reshaped and reorganized to support the formation of instrumental learning and behavioral flexibility. Future work integrating these considerations may resolve controversies regarding the control of actions by striatal networks.
Collapse
Affiliation(s)
- Christophe Varin
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| | - Alban de Kerchove d'Exaerde
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| |
Collapse
|
4
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
5
|
van Beest EH, Abdelwahab MAO, Cazemier JL, Baltira C, Maes MC, Peri BD, Self MW, Willuhn I, Roelfsema PR. The direct and indirect pathways of the basal ganglia antagonistically influence cortical activity and perceptual decisions. iScience 2024; 27:110753. [PMID: 39280625 PMCID: PMC11402218 DOI: 10.1016/j.isci.2024.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The striatum, the main input nucleus of the basal ganglia, receives topographically organized input from the cortex and gives rise to the direct and indirect output pathways, which have antagonistic effects on basal ganglia output directed to the cortex. We optogenetically stimulated the direct and indirect pathways in a visual and a working memory task in mice that responded by licking. Unilateral direct pathway stimulation increased the probability of lick responses toward the contralateral, non-stimulated side and increased cortical activity globally. In contrast, indirect pathway stimulation increased the probability of responses toward the stimulated side and decreased activity in the stimulated hemisphere. Moreover, direct pathway stimulation enhanced the neural representation of a contralateral visual stimulus during the delay of the working memory task, whereas indirect pathway stimulation had the opposite effect. Our results demonstrate how these two pathways influence perceptual decisions and working memory and modify activity in the dorsal cortex.
Collapse
Affiliation(s)
- Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mohammed A O Abdelwahab
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - J Leonie Cazemier
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Chrysiida Baltira
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - M Cassandra Maes
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Brandon D Peri
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Ingo Willuhn
- Department of Neuromodulation and Behavior, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, the Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
6
|
Béreau M, Garnier-Allain A, Servant M. Clinically established early Parkinson's disease patients do not show impaired use of priors in conditions of perceptual uncertainty. Neuropsychologia 2024; 202:108965. [PMID: 39097186 DOI: 10.1016/j.neuropsychologia.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The ability to use past learned experiences to guide decisions is an important component of adaptive behavior, especially when decision-making is performed under time pressure or when perceptual information is unreliable. Previous studies using visual discrimination tasks have shown that this prior-informed decision-making ability is impaired in Parkinson's disease (PD), but the mechanisms underlying this deficit and the precise impact of dopaminergic denervation within cortico-basal circuits remain unclear. To shed light on this problem, we evaluated prior-informed decision-making under various conditions of perceptual uncertainty in a sample of 13 clinically established early PD patients, and compared behavioral performance with healthy control (HC) subjects matched in age, sex and education. PD patients and HC subjects performed a random dot motion task in which they had to decide the net direction (leftward vs. rightward) of a field of moving dots and communicate their choices through manual button presses. We manipulated prior knowledge by modulating the probability of occurrence of leftward vs. rightward motion stimuli between blocks of trials, and by explicitly giving these probabilities to subjects at the beginning of each block. We further manipulated stimulus discriminability by varying the proportion of dots moving coherently in the signal direction and speed-accuracy instructions. PD patients used choice probabilities to guide perceptual decisions in both speed and accuracy conditions, and their performance did not significantly differ from that of HC subjects. An additional analysis of the data with the diffusion decision model confirmed this conclusion. These results suggest that the impaired use of priors during visual discrimination observed at more advanced stages of PD is independent of dopaminergic denervation, though additional studies with larger sample sizes are needed to more firmly establish this conclusion.
Collapse
Affiliation(s)
- Matthieu Béreau
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Département de neurologie, réseau NS-PARK/F-CRIN, CHU de Besançon, 25000 Besançon, France
| | | | - Mathieu Servant
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Institut Universitaire de France, France.
| |
Collapse
|
7
|
Cover KK, Elliott K, Preuss SM, Krauzlis RJ. A distinct circuit for biasing visual perceptual decisions and modulating superior colliculus activity through the mouse posterior striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605853. [PMID: 39372791 PMCID: PMC11451588 DOI: 10.1101/2024.07.31.605853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, but with distinct anatomical and functional properties.
Collapse
Affiliation(s)
- Kara K. Cover
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Kerry Elliott
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Sarah M. Preuss
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| |
Collapse
|
8
|
Wu YH, Podvalny E, Levinson M, He BJ. Network mechanisms of ongoing brain activity's influence on conscious visual perception. Nat Commun 2024; 15:5720. [PMID: 38977709 PMCID: PMC11231278 DOI: 10.1038/s41467-024-50102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity's influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.
Collapse
Affiliation(s)
- Yuan-Hao Wu
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Max Levinson
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Myers-Joseph D, Wilmes KA, Fernandez-Otero M, Clopath C, Khan AG. Disinhibition by VIP interneurons is orthogonal to cross-modal attentional modulation in primary visual cortex. Neuron 2024; 112:628-645.e7. [PMID: 38070500 DOI: 10.1016/j.neuron.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 02/24/2024]
Abstract
Attentional modulation of sensory processing is a key feature of cognition; however, its neural circuit basis is poorly understood. A candidate mechanism is the disinhibition of pyramidal cells through vasoactive intestinal peptide (VIP) and somatostatin (SOM)-positive interneurons. However, the interaction of attentional modulation and VIP-SOM disinhibition has never been directly tested. We used all-optical methods to bi-directionally manipulate VIP interneuron activity as mice performed a cross-modal attention-switching task. We measured the activities of VIP, SOM, and parvalbumin (PV)-positive interneurons and pyramidal neurons identified in the same tissue and found that although activity in all cell classes was modulated by both attention and VIP manipulation, their effects were orthogonal. Attention and VIP-SOM disinhibition relied on distinct patterns of changes in activity and reorganization of interactions between inhibitory and excitatory cells. Circuit modeling revealed a precise network architecture consistent with multiplexing strong yet non-interacting modulations in the same neural population.
Collapse
Affiliation(s)
- Dylan Myers-Joseph
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | | | | - Claudia Clopath
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
10
|
Ding L. Contributions of the Basal Ganglia to Visual Perceptual Decisions. Annu Rev Vis Sci 2023; 9:385-407. [PMID: 37713277 PMCID: PMC12093413 DOI: 10.1146/annurev-vision-111022-123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
11
|
Lehnert J, Cha K, Halperin J, Yang K, Zheng DF, Khadra A, Cook EP, Krishnaswamy A. Visual attention to features and space in mice using reverse correlation. Curr Biol 2023; 33:3690-3701.e4. [PMID: 37611588 DOI: 10.1016/j.cub.2023.07.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Visual attention allows the brain to evoke behaviors based on the most important visual features. Mouse models offer immense potential to gain a circuit-level understanding of this phenomenon, yet how mice distribute attention across features and locations is not well understood. Here, we describe a new approach to address this limitation by training mice to detect weak vertical bars in a background of dynamic noise while spatial cues manipulate their attention. By adapting a reverse-correlation method from human studies, we linked behavioral decisions to stimulus features and locations. We show that mice deployed attention to a small rostral region of the visual field. Within this region, mice attended to multiple features (orientation, spatial frequency, contrast) that indicated the presence of weak vertical bars. This attentional tuning grew with training, multiplicatively scaled behavioral sensitivity, approached that of an ideal observer, and resembled the effects of attention in humans. Taken together, we demonstrate that mice can simultaneously attend to multiple features and locations of a visual stimulus.
Collapse
Affiliation(s)
- Jonas Lehnert
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada
| | - Kuwook Cha
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jamie Halperin
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kerry Yang
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Daniel F Zheng
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Erik P Cook
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada.
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada.
| |
Collapse
|
12
|
Thura D, Cabana JF, Feghaly A, Cisek P. Integrated neural dynamics of sensorimotor decisions and actions. PLoS Biol 2022; 20:e3001861. [PMID: 36520685 PMCID: PMC9754259 DOI: 10.1371/journal.pbio.3001861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Recent theoretical models suggest that deciding about actions and executing them are not implemented by completely distinct neural mechanisms but are instead two modes of an integrated dynamical system. Here, we investigate this proposal by examining how neural activity unfolds during a dynamic decision-making task within the high-dimensional space defined by the activity of cells in monkey dorsal premotor (PMd), primary motor (M1), and dorsolateral prefrontal cortex (dlPFC) as well as the external and internal segments of the globus pallidus (GPe, GPi). Dimensionality reduction shows that the four strongest components of neural activity are functionally interpretable, reflecting a state transition between deliberation and commitment, the transformation of sensory evidence into a choice, and the baseline and slope of the rising urgency to decide. Analysis of the contribution of each population to these components shows meaningful differences between regions but no distinct clusters within each region, consistent with an integrated dynamical system. During deliberation, cortical activity unfolds on a two-dimensional "decision manifold" defined by sensory evidence and urgency and falls off this manifold at the moment of commitment into a choice-dependent trajectory leading to movement initiation. The structure of the manifold varies between regions: In PMd, it is curved; in M1, it is nearly perfectly flat; and in dlPFC, it is almost entirely confined to the sensory evidence dimension. In contrast, pallidal activity during deliberation is primarily defined by urgency. We suggest that these findings reveal the distinct functional contributions of different brain regions to an integrated dynamical system governing action selection and execution.
Collapse
Affiliation(s)
- David Thura
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Cabana
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Albert Feghaly
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Paul Cisek
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Wang L, Herman JP, Krauzlis RJ. Neuronal modulation in the mouse superior colliculus during covert visual selective attention. Sci Rep 2022; 12:2482. [PMID: 35169189 PMCID: PMC8847498 DOI: 10.1038/s41598-022-06410-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
15
|
Lyamzin DR, Aoki R, Abdolrahmani M, Benucci A. Probabilistic discrimination of relative stimulus features in mice. Proc Natl Acad Sci U S A 2021; 118:e2103952118. [PMID: 34301903 PMCID: PMC8325293 DOI: 10.1073/pnas.2103952118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During perceptual decision-making, the brain encodes the upcoming decision and the stimulus information in a mixed representation. Paradigms suitable for studying decision computations in isolation rely on stimulus comparisons, with choices depending on relative rather than absolute properties of the stimuli. The adoption of tasks requiring relative perceptual judgments in mice would be advantageous in view of the powerful tools available for the dissection of brain circuits. However, whether and how mice can perform a relative visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex orientation discrimination task in which the choices are decoupled from the orientation of individual stimuli. Moreover, we demonstrate a typical discrimination acuity of 9°, challenging the common belief that mice are poor visual discriminators. We reached these conclusions by introducing a probabilistic choice model that explained behavioral strategies in 40 mice and demonstrated that the circularity of the stimulus space is an additional source of choice variability for trials with fixed difficulty. Furthermore, history biases in the model changed with task engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our results reveal that mice adopt a diverse set of strategies in a task that decouples decision-relevant information from stimulus-specific information, thus demonstrating their usefulness as an animal model for studying neural representations of relative categories in perceptual decision-making research.
Collapse
Affiliation(s)
- Dmitry R Lyamzin
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
| | - Ryo Aoki
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan
| | | | - Andrea Benucci
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Bunkyo City 113-0032, Japan
| |
Collapse
|
16
|
Levinson M, Podvalny E, Baete SH, He BJ. Cortical and subcortical signatures of conscious object recognition. Nat Commun 2021; 12:2930. [PMID: 34006884 PMCID: PMC8131711 DOI: 10.1038/s41467-021-23266-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition. Cortical and subcortical neural activity supporting conscious object recognition has not yet been well defined. Here, the authors describe these networks and show recognition-related category information can be decoded from widespread cortical activity but not subcortical activity.
Collapse
Affiliation(s)
- Max Levinson
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Steven H Baete
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Department of Radiology, New York University School of Medicine, New York, NY, USA. .,Department of Neurology, New York University School of Medicine, New York, NY, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Duan CA, Pan Y, Ma G, Zhou T, Zhang S, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021; 12:2727. [PMID: 33976124 PMCID: PMC8113349 DOI: 10.1038/s41467-021-22547-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
Survival in a dynamic environment requires animals to plan future actions based on past sensory evidence, known as motor planning. However, the neuronal circuits underlying this crucial brain function remain elusive. Here, we employ projection-specific imaging and perturbation methods to investigate the direct pathway linking two key nodes in the motor planning network, the secondary motor cortex (M2) and the midbrain superior colliculus (SC), in mice performing a memory-dependent perceptual decision task. We find dynamic coding of choice information in SC-projecting M2 neurons during motor planning and execution, and disruption of this information by inhibiting M2 terminals in SC selectively impaired decision maintenance. Furthermore, we show that while both excitatory and inhibitory SC neurons receive synaptic inputs from M2, these SC subpopulations display differential temporal patterns in choice coding during behavior. Our results reveal the dynamic recruitment of the premotor-collicular pathway as a circuit mechanism for motor planning. Duan, Pan et al. find that the premotor cortex cooperates with the midbrain superior colliculus via direct projections to implement decision maintenance. These results reveal mechanisms of cortico-collicular interaction during cognition and action in a pathway- and cell-type-specific manner.
Collapse
Affiliation(s)
- Chunyu A Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuxin Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taotao Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Zhang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
18
|
Striatal activity topographically reflects cortical activity. Nature 2021; 591:420-425. [PMID: 33473213 PMCID: PMC7612253 DOI: 10.1038/s41586-020-03166-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
The cortex projects to the dorsal striatum topographically1,2 to regulate behaviour3-5, but spiking activity in the two structures has previously been reported to have markedly different relations to sensorimotor events6-9. Here we show that the relationship between activity in the cortex and striatum is spatiotemporally precise, topographic, causal and invariant to behaviour. We simultaneously recorded activity across large regions of the cortex and across the width of the dorsal striatum in mice that performed a visually guided task. Striatal activity followed a mediolateral gradient in which behavioural correlates progressed from visual cue to response movement to reward licking. The summed activity in each part of the striatum closely and specifically mirrored activity in topographically associated cortical regions, regardless of task engagement. This relationship held for medium spiny neurons and fast-spiking interneurons, whereas the activity of tonically active neurons differed from cortical activity with stereotypical responses to sensory or reward events. Inactivation of the visual cortex abolished striatal responses to visual stimuli, supporting a causal role of cortical inputs in driving the striatum. Striatal visual responses were larger in trained mice than untrained mice, with no corresponding change in overall activity in the visual cortex. Striatal activity therefore reflects a consistent, causal and scalable topographical mapping of cortical activity.
Collapse
|
19
|
Whole-Brain Mapping of Direct Inputs to Dopamine D1 and D2 Receptor-Expressing Medium Spiny Neurons in the Posterior Dorsomedial Striatum. eNeuro 2021; 8:ENEURO.0348-20.2020. [PMID: 33380525 PMCID: PMC7877463 DOI: 10.1523/eneuro.0348-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The posterior dorsomedial striatum (pDMS) is mainly composed of medium spiny neurons (MSNs) expressing either dopamine D1 receptors (D1Rs) or D2Rs. Activation of these two MSN types produces opposing effects on addictive behaviors. However, it remains unclear whether pDMS D1-MSNs or D2-MSNs receive afferent inputs from different brain regions or whether the extrastriatal afferents express distinct dopamine receptors. To assess whether these afferents also contained D1Rs or D2Rs, we generated double transgenic mice, in which D1R-expressing and D2R-expressing neurons were fluorescently labeled. We used rabies virus-mediated retrograde tracing in these mice to perform whole-brain mapping of direct inputs to D1-MSNs or D2-MSNs in the pDMS. We found that D1-MSNs preferentially received inputs from the secondary motor, secondary visual, and cingulate cortices, whereas D2-MSNs received inputs from the primary motor and primary sensory cortices, and the thalamus. We also discovered that the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala (CeA) contained abundant D2R-expressing, but few D1R-expressing, neurons in a triple transgenic mouse model. Remarkably, although limited D1R or D2R expression was observed in extrastriatal neurons that projected to D1-MSNs or D2-MSNs, we found that cortical structures preferentially contained D1R-expressing neurons that projected to D1-MSNs or D2-MSNs, while the thalamus, substantia nigra pars compacta (SNc), and BNST had more D2R-expressing cells that projected to D2-MSNs. Taken together, these findings provide a foundation for future understanding of the pDMS circuit and its role in action selection and reward-based behaviors.
Collapse
|
20
|
Pisupati S, Chartarifsky-Lynn L, Khanal A, Churchland AK. Lapses in perceptual decisions reflect exploration. eLife 2021; 10:55490. [PMID: 33427198 PMCID: PMC7846276 DOI: 10.7554/elife.55490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Perceptual decision-makers often display a constant rate of errors independent of evidence strength. These ‘lapses’ are treated as a nuisance arising from noise tangential to the decision, e.g. inattention or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these explanations cannot account for lapses’ stimulus dependence. We propose a novel explanation: lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring uncertain ones. We tested this model’s predictions by selectively manipulating one action’s reward magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-related computations to neural structures based on disruption experiments (here, posterior striatum and secondary motor cortex). These results suggest that lapses reflect an integral component of decision-making and are informative about action values in normal and disrupted brain states.
Collapse
Affiliation(s)
- Sashank Pisupati
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Lital Chartarifsky-Lynn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Anup Khanal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | | |
Collapse
|
21
|
Jin M, Glickfeld LL. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors. Curr Biol 2020; 30:4682-4692.e7. [PMID: 33035487 PMCID: PMC7725996 DOI: 10.1016/j.cub.2020.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Cortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of the primary visual cortex (V1) and three key higher visual areas (lateromedial [LM], anterolateral [AL], and posteromedial [PM]) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM, or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm (FA) rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically specific, suggesting that suppression of PM altered sensory integration or the decision-making process rather than processing of local visual features. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Involvement of Striatal Direct Pathway in Visual Spatial Attention in Mice. Curr Biol 2020; 30:4739-4744.e5. [PMID: 32976807 DOI: 10.1016/j.cub.2020.08.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The basal ganglia are implicated in a range of perceptual functions [1], in addition to their well-known role in the regulation of movement [2]. One unifying explanation for these diverse roles is that the basal ganglia control the level of commitment to particular motor or cognitive outcomes based on the behavioral context [3, 4]. If this explanation is applicable to the allocation of visual spatial attention, then the involvement of basal ganglia circuits should incorporate the subject's expectations about the spatial location of upcoming events as well as the routing of visual signals that guide the response. From the viewpoint of signal detection theory, these changes in the level of commitment might correspond to shifts in the subject's decision criterion, one of two distinct components recently ascribed to visual selective attention [5]. We tested this idea using unilateral optogenetic activation of neurons in the dorsal striatum of mice during a visual spatial attention task [6], taking advantage of the ability to specifically target medium spiny neurons in the "direct" pathway associated with promoting responses [7, 8]. By comparing results across attention task conditions, we found that direct-pathway activation caused changes in performance determined by the spatial probability and location of the visual event. Moreover, across conditions with identical visual stimulation, activation shifted the decision criterion selectively when attention was directed to the contralateral visual field. These results demonstrate that activity through the basal ganglia may play an important and distinct role among the multifarious mechanisms that accomplish visual spatial attention.
Collapse
|
23
|
Zhang Z, Cheng H, Yang T. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning. PLoS Comput Biol 2020; 16:e1008342. [PMID: 33141824 PMCID: PMC7673505 DOI: 10.1371/journal.pcbi.1008342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/18/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
The brain makes flexible and adaptive responses in a complicated and ever-changing environment for an organism's survival. To achieve this, the brain needs to understand the contingencies between its sensory inputs, actions, and rewards. This is analogous to the statistical inference that has been extensively studied in the natural language processing field, where recent developments of recurrent neural networks have found many successes. We wonder whether these neural networks, the gated recurrent unit (GRU) networks in particular, reflect how the brain solves the contingency problem. Therefore, we build a GRU network framework inspired by the statistical learning approach of NLP and test it with four exemplar behavior tasks previously used in empirical studies. The network models are trained to predict future events based on past events, both comprising sensory, action, and reward events. We show the networks can successfully reproduce animal and human behavior. The networks generalize the training, perform Bayesian inference in novel conditions, and adapt their choices when event contingencies vary. Importantly, units in the network encode task variables and exhibit activity patterns that match previous neurophysiology findings. Our results suggest that the neural network approach based on statistical sequence learning may reflect the brain's computational principle underlying flexible and adaptive behaviors and serve as a useful approach to understand the brain.
Collapse
Affiliation(s)
- Zhewei Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Huzi Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Tianming Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, China
| |
Collapse
|
24
|
Lee J, Wang W, Sabatini BL. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat Neurosci 2020; 23:1388-1398. [PMID: 32989293 PMCID: PMC7606600 DOI: 10.1038/s41593-020-00712-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
In the basal ganglia (BG), anatomically segregated and topographically organized feedforward circuits are thought to modulate multiple behaviors in parallel. Although topographically arranged BG circuits have been described, the extent to which these relationships are maintained across the BG output nuclei and in downstream targets is unclear. Here, using focal trans-synaptic anterograde tracing, we show that the motor-action-related topographical organization of the striatum is preserved in all BG output nuclei. The topography is also maintained downstream of the BG and in multiple parallel closed loops that provide striatal input. Furthermore, focal activation of two distinct striatal regions induces either licking or turning, consistent with their respective anatomical targets of projection outside of the BG. Our results confirm the parallel model of BG function and suggest that the integration and competition of information relating to different behavior occur largely outside of the BG.
Collapse
Affiliation(s)
- Jaeeon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Doi T, Fan Y, Gold JI, Ding L. The caudate nucleus contributes causally to decisions that balance reward and uncertain visual information. eLife 2020; 9:56694. [PMID: 32568068 PMCID: PMC7308093 DOI: 10.7554/elife.56694] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Our decisions often balance what we observe and what we desire. A prime candidate for implementing this complex balancing act is the basal ganglia pathway, but its roles have not yet been examined experimentally in detail. Here, we show that a major input station of the basal ganglia, the caudate nucleus, plays a causal role in integrating uncertain visual evidence and reward context to guide adaptive decision-making. In monkeys making saccadic decisions based on motion cues and asymmetric reward-choice associations, single caudate neurons encoded both sources of information. Electrical microstimulation at caudate sites during motion viewing affected the monkeys’ decisions. These microstimulation effects included coordinated changes in multiple computational components of the decision process that mimicked the monkeys’ similarly coordinated voluntary strategies for balancing visual and reward information. These results imply that the caudate nucleus plays causal roles in coordinating decision processes that balance external evidence and internal preferences.
Collapse
Affiliation(s)
- Takahiro Doi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Department of Psychology, University of Pennsylvania, Philadelphia, United States
| | - Yunshu Fan
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
26
|
Wang L, McAlonan K, Goldstein S, Gerfen CR, Krauzlis RJ. A Causal Role for Mouse Superior Colliculus in Visual Perceptual Decision-Making. J Neurosci 2020; 40:3768-3782. [PMID: 32253361 PMCID: PMC7204078 DOI: 10.1523/jneurosci.2642-19.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
The superior colliculus (SC) is arguably the most important visual structure in the mouse brain and is well known for its involvement in innate responses to visual threats and prey items. In other species, the SC plays a central role in voluntary as well as innate visual functions, including crucial contributions to selective attention and perceptual decision-making. In the mouse, the possible role of the SC in voluntary visual choice behaviors has not been established. Here, we demonstrate that the mouse SC of both sexes plays a causal role in visual perceptual decision-making by transiently inhibiting SC activity during an orientation change detection task. First, unilateral SC inhibition-induced spatially specific deficits in detection. Hit rates were reduced, and reaction times increased for orientation changes in the contralateral but not ipsilateral visual field. Second, the deficits caused by SC inhibition were specific to a temporal epoch coincident with early visual burst responses in the SC. Inhibiting SC during this 100-ms period caused a contralateral detection deficit, whereas inhibition immediately before or after did not. Third, SC inhibition reduced visual detection sensitivity. Psychometric analysis revealed that inhibiting SC visual activity significantly increased detection thresholds for contralateral orientation changes. In addition, effects on detection thresholds and lapse rates caused by SC inhibition were larger in the presence of a competing visual stimulus, indicating a role for the mouse SC in visual target selection. Together, our results demonstrate that the mouse SC is necessary for the normal performance of voluntary visual choice behaviors.SIGNIFICANCE STATEMENT The mouse superior colliculus (SC) has become a popular model for studying the circuit organization and development of the visual system. Although the SC is a fundamental component of the visual pathways in mice, its role in visual perceptual decision-making is not clear. By investigating how temporally precise SC inhibition influenced behavioral performance during a visually guided orientation change detection task, we identified a 100-ms temporal epoch of SC visual activity that is crucial for the ability of mice to detect behaviorally relevant visual changes. In addition, we found that SC inhibition also caused deficits in visual target selection. Thus, our findings highlight the importance of the SC for visual perceptual choice behavior in the mouse.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892
| | - Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892
| | - Sheridan Goldstein
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892
| |
Collapse
|
27
|
Abstract
Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
28
|
Krauzlis RJ, Nichols N, Rangarajan KV, McAlonan K, Goldstein S, Yochelson D, Wang L. Visual Psychophysics in Head-Fixed Mice. ACTA ACUST UNITED AC 2020; 92:e95. [PMID: 32216169 DOI: 10.1002/cpns.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a set of protocols for doing visual psychophysical experiments in head-fixed mice. The goal of this approach was to conduct in mice the same type of precise and well-controlled tests of visual perception and decision making as is commonly done in primates. For example, these experimental protocols were the basis for our demonstration that mice are capable of visual selective attention in paradigms adapted from classic attention cueing paradigms in primates. Basic Protocol 1 describes how to construct the experimental apparatus, including the removable wheel assembly on which the mice run during the visual tasks, the lick spout used to deliver rewards and detect licks, and the behavioral box that places these components together with the visual displays. We also describe the functions of the computerized control system and the design of the customized head fixture. Basic Protocol 2 describes the preparation of mice for the experiments, including the detailed surgical steps. Basic Protocol 3 describes the transition to a food schedule for the mice and how to operate the experimental apparatus. Basic Protocol 4 outlines the logic of the task design and the steps necessary for training the mice. Finally, Basic Protocol 5 describes how to obtain and analyze the psychometric data. Our methods include several distinctive features, including a custom quick-release method for holding the head and specific strategies for training mice over multiple weeks. Published 2020. U.S. Government. Basic Protocol 1: Experimental apparatus Basic Protocol 2: Head fixture surgery Basic Protocol 3: General operation of the experimental apparatus Basic Protocol 4: Behavioral task design and training Basic Protocol 5: Psychometric data collection and analysis.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Nick Nichols
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Krsna V Rangarajan
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Sheridan Goldstein
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Daniel Yochelson
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland
| |
Collapse
|
29
|
Single-trial neural dynamics are dominated by richly varied movements. Nat Neurosci 2019; 22:1677-1686. [PMID: 31551604 PMCID: PMC6768091 DOI: 10.1038/s41593-019-0502-4] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
When experts are immersed in a task, do their brains prioritize task-related activity? Most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. We wondered whether task-performing animals explore a broader movement landscape, and how this impacts neural activity. We characterized movements using video and other sensors and measured neural activity using widefield and two-photon imaging. Cortex-wide activity was dominated by movements, especially uninstructed movements not required for the task. Some uninstructed movements were aligned to trial events. Accounting for them revealed that neurons with similar trial-averaged activity often reflected utterly different combinations of cognitive and movement variables. Other movements occurred idiosyncratically, accounting for trial-by-trial fluctuations that are often considered “noise”. This held true throughout task-learning and for extracellular Neuropixels recordings that included subcortical areas. Our observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity.
Collapse
|
30
|
Subcortical connectivity correlates selectively with attention's effects on spatial choice bias. Proc Natl Acad Sci U S A 2019; 116:19711-19716. [PMID: 31492811 PMCID: PMC6765279 DOI: 10.1073/pnas.1902704116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Forebrain mechanisms of visuospatial attention have been widely studied. Yet, how the midbrain contributes to attention remains comparatively unknown. Here, we examined the role of the superior colliculus (SC), a vertebrate midbrain structure, in attention. Does the SC control sensitivity to attended information, or enable biasing choices toward attended information, or both? We mapped structural connections of the human SC with neocortical regions and found that the strengths of these connections correlated with, and were strongly predictive of, individuals’ choice bias, but not sensitivity. Taken together with previous animal studies, our results suggest that the human SC may play an evolutionarily conserved role in controlling choice bias during visual attention. Neural mechanisms of attention are extensively studied in the neocortex; comparatively little is known about how subcortical regions contribute to attention. The superior colliculus (SC) is an evolutionarily conserved, subcortical (midbrain) structure that has been implicated in controlling visuospatial attention. Yet how the SC contributes mechanistically to attention remains unknown. We investigated the role of the SC in attention, combining model-based psychophysics, diffusion imaging, and tractography in human participants. Specifically, we asked whether the SC contributes to enhancing sensitivity (d′) to attended information, or whether it contributes to biasing choices (criteria) in favor of attended information. We tested human participants on a multialternative change detection task, with endogenous spatial cueing, and quantified sensitivity and bias with a recently developed multidimensional signal detection model (m-ADC model). At baseline, sensitivity and bias exhibited complementary patterns of asymmetries across the visual hemifields: While sensitivity was consistently higher for detecting changes in the left hemifield, bias was higher for reporting changes in the right hemifield. Remarkably, white matter connectivity of the SC with the neocortex mirrored this pattern of asymmetries. Specifically, the asymmetry in SC–cortex connectivity correlated with the asymmetry in choice bias, but not in sensitivity. In addition, SC–cortex connectivity strength could predict cueing-induced modulation of bias, but not of sensitivity, across individuals. In summary, the SC may be a key node in an evolutionarily conserved network for controlling choice bias during visuospatial attention.
Collapse
|
31
|
Banerjee S, Grover S, Ganesh S, Sridharan D. Sensory and decisional components of endogenous attention are dissociable. J Neurophysiol 2019; 122:1538-1554. [PMID: 31268805 PMCID: PMC6843089 DOI: 10.1152/jn.00257.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endogenous cueing of attention enhances sensory processing of the attended stimulus (perceptual sensitivity) and prioritizes information from the attended location for guiding behavioral decisions (spatial choice bias). Here, we test whether sensitivity and bias effects of endogenous spatial attention are under the control of common or distinct mechanisms. Human observers performed a multialternative visuospatial attention task with probabilistic spatial cues. Observers' behavioral choices were analyzed with a recently developed multidimensional signal detection model (the m-ADC model). The model effectively decoupled the effects of spatial cueing on sensitivity from those on spatial bias and revealed striking dissociations between them. Sensitivity was highest at the cued location and not significantly different among uncued locations, suggesting a spotlight-like allocation of sensory resources at the cued location. On the other hand, bias varied systematically with cue validity, suggesting a graded allocation of decisional priority across locations. Cueing-induced modulations of sensitivity and bias were uncorrelated within and across subjects. Bias, but not sensitivity, correlated with key metrics of prioritized decision-making, including reaction times and decision optimality indices. In addition, we developed a novel metric, differential risk curvature, for distinguishing bias effects of attention from those of signal expectation. Differential risk curvature correlated selectively with m-ADC model estimates of bias but not with estimates of sensitivity. Our results reveal dissociable effects of endogenous attention on perceptual sensitivity and choice bias in a multialternative choice task and motivate the search for the distinct neural correlates of each.NEW & NOTEWORTHY Attention is often studied as a unitary phenomenon. Yet, attention can both enhance the perception of important stimuli (sensitivity) and prioritize such stimuli for decision-making (bias). Employing a multialternative spatial attention task with probabilistic cueing, we show that attention affects sensitivity and bias through dissociable mechanisms. Specifically, the effects on sensitivity alone match the notion of an attentional "spotlight." Our behavioral model enables quantifying component processes of attention, and identifying their respective neural correlates.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
32
|
Contribution of Sensory Encoding to Measured Bias. J Neurosci 2019; 39:5115-5127. [PMID: 31015339 DOI: 10.1523/jneurosci.0076-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022] Open
Abstract
Signal detection theory (SDT) is a widely used theoretical framework that describes how variable sensory signals are integrated with a decision criterion to support perceptual decision-making. SDT provides two key measurements: sensitivity (d') and bias (c), which reflect the separability of decision variable distributions (signal and noise) and the position of the decision criterion relative to optimal, respectively. Although changes in the subject's decision criterion can be reflected in changes in bias, decision criterion placement is not the sole contributor to measured bias. Indeed, neuronal representations of bias have been observed in sensory areas, suggesting that some changes in bias are because of effects on sensory encoding. To directly test whether the sensory encoding process can influence bias, we optogenetically manipulated neuronal excitability in primary visual cortex (V1) in mice of both sexes during either an orientation discrimination or a contrast detection task. Increasing excitability in V1 significantly decreased behavioral bias, whereas decreasing excitability had the opposite effect. To determine whether this change in bias is consistent with effects on sensory encoding, we made extracellular recordings from V1 neurons in passively viewing mice. Indeed, we found that optogenetic manipulation of excitability shifted the neuronal bias in the same direction as the behavioral bias. Moreover, manipulating the quality of V1 encoding by changing stimulus contrast or interstimulus interval also resulted in consistent changes in both behavioral and neuronal bias. Thus, changes in sensory encoding are sufficient to drive changes in bias measured using SDT.SIGNIFICANCE STATEMENT Perceptual decision-making involves sensory integration followed by application of a cognitive criterion. Using signal detection theory, one can extract features of the underlying decision variables and rule: sensitivity (d') and bias (c). Because bias is measured as the difference between the optimal and actual criterion, it is sensitive to both the sensory encoding processes and the placement of the decision criterion. Here, we use behavioral and electrophysiological approaches to demonstrate that measures of bias depend on sensory processes. Optogenetic manipulations of V1 in mice bidirectionally affect both behavioral and neuronal measures of bias with little effect on sensitivity. Thus, changes in sensory encoding influence bias, and the absence of changes in sensitivity do not preclude changes in sensory encoding.
Collapse
|
33
|
Suárez-Pinilla M, Nikiforou K, Fountas Z, Seth AK, Roseboom W. Perceptual Content, Not Physiological Signals, Determines Perceived Duration When Viewing Dynamic, Natural Scenes. COLLABRA: PSYCHOLOGY 2019. [DOI: 10.1525/collabra.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals have difficulty accounting for observations that time perception varies systematically with perceptual content. We examined physiological influences on human duration estimates for naturalistic videos between 1–64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration estimates. Our results support a recent proposal that tracking change in perceptual classification networks provides a basis for human time perception, and suggest that previous assertions of the importance of physiological factors should be tempered.
Collapse
Affiliation(s)
- Marta Suárez-Pinilla
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Department of Informatics, University of Sussex, Brighton, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Zafeirios Fountas
- Emotech Labs, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Anil K. Seth
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Department of Informatics, University of Sussex, Brighton, UK
| | - Warrick Roseboom
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Department of Informatics, University of Sussex, Brighton, UK
| |
Collapse
|
34
|
Arcizet F, Krauzlis RJ. Covert spatial selection in primate basal ganglia. PLoS Biol 2018; 16:e2005930. [PMID: 30365496 PMCID: PMC6221351 DOI: 10.1371/journal.pbio.2005930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/07/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The basal ganglia are important for action selection. They are also implicated in perceptual and cognitive functions that seem far removed from motor control. Here, we tested whether the role of the basal ganglia in selection extends to nonmotor aspects of behavior by recording neuronal activity in the caudate nucleus while animals performed a covert spatial attention task. We found that caudate neurons strongly select the spatial location of the relevant stimulus throughout the task even in the absence of any overt action. This spatially selective activity was dependent on task and visual conditions and could be dissociated from goal-directed actions. Caudate activity was also sufficient to correctly identify every epoch in the covert attention task. These results provide a novel perspective on mechanisms of attention by demonstrating that the basal ganglia are involved in spatial selection and tracking of behavioral states even in the absence of overt orienting movements.
Collapse
Affiliation(s)
- Fabrice Arcizet
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Perugini A, Ditterich J, Shaikh AG, Knowlton BJ, Basso MA. Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends Neurosci 2018; 41:512-525. [PMID: 29747856 PMCID: PMC6124671 DOI: 10.1016/j.tins.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
People with Parkinson's disease (PD) show impaired decision-making when sensory and memory information must be combined. This recently identified impairment results from an inability to accumulate the proper amount of information needed to make a decision and appears to be independent of dopamine tone and reinforcement learning mechanisms. Although considerable work focuses on PD and decisions involving risk and reward, in this Opinion article we propose that the emerging findings in perceptual decision-making highlight the multisystem nature of PD, and that unraveling the neuronal circuits underlying perceptual decision-making impairment may help in understanding other cognitive impairments in people with PD. We also discuss how a decision-making framework may be extended to gain insights into mechanisms of motor impairments in PD.
Collapse
Affiliation(s)
- Alessandra Perugini
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jochen Ditterich
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Barbara J Knowlton
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Khan AG, Hofer SB. Contextual signals in visual cortex. Curr Opin Neurobiol 2018; 52:131-138. [PMID: 29883940 DOI: 10.1016/j.conb.2018.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/11/2018] [Indexed: 11/15/2022]
Abstract
Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions.
Collapse
Affiliation(s)
- Adil G Khan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
37
|
Guo L, Walker WI, Ponvert ND, Penix PL, Jaramillo S. Stable representation of sounds in the posterior striatum during flexible auditory decisions. Nat Commun 2018; 9:1534. [PMID: 29670112 PMCID: PMC5906458 DOI: 10.1038/s41467-018-03994-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 11/09/2022] Open
Abstract
The neuronal pathways that link sounds to rewarded actions remain elusive. For instance, it is unclear whether neurons in the posterior tail of the dorsal striatum (which receive direct input from the auditory system) mediate action selection, as other striatal circuits do. Here, we examine the role of posterior striatal neurons in auditory decisions in mice. We find that, in contrast to the anterior dorsal striatum, activation of the posterior striatum does not elicit systematic movement. However, activation of posterior striatal neurons during sound presentation in an auditory discrimination task biases the animals' choices, and transient inactivation of these neurons largely impairs sound discrimination. Moreover, the activity of these neurons during sound presentation reliably encodes stimulus features, but is only minimally influenced by the animals' choices. Our results suggest that posterior striatal neurons play an essential role in auditory decisions, and provides a stable representation of sounds during auditory tasks.
Collapse
Affiliation(s)
- Lan Guo
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - William I Walker
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Nicholas D Ponvert
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Phoebe L Penix
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Santiago Jaramillo
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|