1
|
Ecco JC, Soares AA, da Silva KET, Ansolin V, Sousa Silva GV, Resende E Silva DT. Inflammatory pain and electroacupuncture: how the P2X3 receptor can help modulate inflammation-a review of current literature. Inflamm Res 2025; 74:58. [PMID: 40153028 DOI: 10.1007/s00011-025-02023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/30/2025] Open
Abstract
AIM Inflammatory pain arises from tissue stress or injury and is initiated by signaling molecules that stimulate the immune and nervous systems. Evidence suggests that purinergic signaling pathways can modulate pain and inflammation through the activation of P1 and P2 purinergic receptors, such as the P2X3 receptor, which are stimulated by extracellular molecules like adenosine triphosphate (ATP). Electroacupuncture (EA) exhibits precise mechanisms that modulate inflammatory pain through the activation of the P2X3 receptor. OBJECTIVE This review analyzed evidence regarding the role of electroacupuncture and the purinergic system, particularly the P2X3 receptor, in modulating inflammation and pain. MATERIALS AND METHODS A search for the most relevant articles available in the SciVerse Scopus and MEDLINE/PubMed databases was conducted for publications from 1995 to 2024. Articles were initially selected by reading the title, abstract, and main text, respectively. RESULTS It was found that the P2X3 receptor, as well as the molecules activating purinergic receptors, such as ATP and adenosine, have the potential to regulate pain and inflammation. Additionally, EA can modulate the purinergic system in an anti-inflammatory response. EA may stimulate analgesia mainly through the conversion of ATP to adenosine, a crucial molecule in pain control. CONCLUSION The purinergic system directly influences inflammatory pain and controls inflammation. In this context, EA has the potential to orchestrate this system to control pain and inflammation.
Collapse
Affiliation(s)
- Jardel Cristiano Ecco
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil
| | - Adinei Abadio Soares
- Department of Medicine, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Keroli Eloiza Tessaro da Silva
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil
| | - Vinicius Ansolin
- Department of Nursing, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | | | - Débora Tavares Resende E Silva
- Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, Santa Catarina, CEP 89815-899, Brazil.
- Department of Medicine, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
- Department of Nursing, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2025; 46:539-553. [PMID: 39424975 PMCID: PMC11845708 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Sun Q, Weng RX, Li YC, Jia SM, Ma CT, Zhang HH, Tang Y, Li R, Xu GY. Potentiation of visualized exosomal miR-1306-3p from primary sensory neurons contributes to chronic visceral pain via spinal P2X3 receptors. Pain 2025:00006396-990000000-00814. [PMID: 39907482 DOI: 10.1097/j.pain.0000000000003537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Exosomes served as "communicators" to exchange information among different cells in the nervous system. Our previous study demonstrated that the enhanced spinal synaptic transmission contributed to chronic visceral pain in irritable bowel syndrome. However, the underlying mechanism of primary sensory neuron (PSN)-derived exosomes on spinal transmission remains unclear. In this study, an exosome visualization method was established to specifically track exosomes derived from PSNs in CD63-GFPf/+ (green fluorescent protein) mice. Neonatal maternal deprivation (NMD) was adopted to induce chronic visceral pain in CD63-GFPf/+ male mice. The exosome visualization technology demonstrated that NMD increased visible PSN-derived exosomes in the spinal dorsal horn, enhanced spinal synaptic transmission, and led to visceral pain in CD63-GFPf/+ male mice. The PSN-derived exosomal miR-1306-3p sorted from spinal dorsal horn activated P2X3R, enhanced spinal synaptic transmission, and led to visceral pain in NMD mice. Moreover, upregulation of Rab27a in dorsal root ganglia mediated the increased release of PSN-derived exosomes, and intrathecal injection of siR-Rab27a reduced visible PSN-derived exosomes in spinal cord, suppressed spinal synaptic transmission, and alleviated visceral pain in NMD mice. This and future studies would reveal the detailed mechanisms of PSN-derived exosomes and provide a potential target for clinical treatment of chronic visceral pain in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Man Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Chun-Tao Ma
- Department of Gastroenterology, Suzhou Xiangcheng People's Hospital, Suzhou, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
4
|
Izuhara K, Nunomura S, Nanri Y, Honda Y. [Mechanism of transduction of itch and strategy of treatment for itch]. Nihon Yakurigaku Zasshi 2025; 160:79-85. [PMID: 40024709 DOI: 10.1254/fpj.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Itch is an unpleasant sense to evoke desire to scratch skin. Itch not only disturbs daily lives, but also exacerbates inflammation in case of atopic dermatitis (AD). It had been thought that both itch and pain are transduced by the same neurons; however, it is now known that neutrons transducing either itch or pain are distinct. Moreover, TRP channels, a family of calcium channels, play an important role for transducing itch as well as pain, temperature, and pressure. Development of neuroscience and molecular biology has dramatically advanced our understanding of how itch is transduced in recent years. On the other hand, development of immunology has revealed that there exist several immune types in our host defense mechanism and that type 2 immune reaction is dominant in the pathogenesis of allergic diseases including AD. Although it had been already known that type 2 cytokines contribute to the pathogenesis of AD by binding to their receptors on both immune cells and tissue resident cells, it has been recently found that several type 2 cytokines directly transduce the itch signals by binding to peripheral nerves. Due to this discovery, we can understand more deeply the itch mechanism of AD and can develop molecularly targeted drugs for AD targeting type 2 cytokines, which has dramatically changed the treatment of AD. In this review article, we describe the progress of our recent understanding of the itch mechanism and the strategy of treatment against it.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Allergy, Department of Biomolecular Sciences, Saga Medical School
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| |
Collapse
|
5
|
Yang H, Wang YY, Chang W, Zhai M, Du WJ, Jiang W, Xiang YW, Qin G, Yu J, Gong Y, Han Q. Primary sensory neuron-derived miR-let-7b underlies stress-elicited psoriasis. Brain Behav Immun 2025; 123:997-1010. [PMID: 39510418 DOI: 10.1016/j.bbi.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/09/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Psoriasis, a chronic autoimmune skin condition with significant global morbidity, badly impairs patients' quality of life. Stress has been identified as a prominent trigger for psoriasis, and effectively management of stress can ameliorate its pathological manifestations. However, the precise mechanisms by which stress influences psoriasis remain elusive. In this study, we found that mice subjected to chronic social defeat stress (CSDS) exhibit severer imiquimod (IMQ)-induced psoriasis with increased epidermal scaling, epidermal hyperplasia, number of epidermal ridges, itch, and skin inflammation than control mice. Mechanistic study reveals that CSDS leads to an elevated release of miR-let-7b, an endogenous ligand of Toll-like receptor 7 (TLR7), from the peripheral terminal of dorsal root ganglia (DRG) neurons into the skin. This process can stimulate skin-resident macrophages to release cytokines (such as IL-6 and TNF-a) and chemokines (such as MCP-1), subsequently promoting the recruitment of additional macrophages into the skin. Notably, the specific blockade of miR-let-7b in DRG neurons effectively relieve stress-induced exacerbations of psoriasis. Furthermore, intradermal injection of synthetic miR-let-7b can induce a psoriasis-like phenotype in wildtype mice, a phenomenon that can be countered by the application of a TLR7 antagonist. Additionally, microfluidic chamber coculture assays demonstrated that miR-let-7b released by DRG neurons activates macrophages via TLR7 expressed on these immune cells. Totally, this study found that stress-induced upregulation and release of miR-let-7b from DRG neurons stimulates macrophages to secrete more inflammatory cytokines and chemokines, thereby exacerbating skin inflammation and the psoriatic phenotype. These findings provide a potential therapeutic strategy targeting the miR-let-7b/TLR7 pathway to alleviate stress-induced exacerbation of psoriasis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yun-Yun Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengying Zhai
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wan-Jie Du
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wencheng Jiang
- Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Qingjian Han
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Pariyar R, Wang J, Hammond R, Koo H, Dalley N, La JH. TRPA1 Agonist-Responsive Afferents Contribute to Central Sensitization by Suppressing Spinal GABAergic Interneurons Through Somatostatin 2A Receptors. THE JOURNAL OF PAIN 2024; 25:104686. [PMID: 39321909 PMCID: PMC11560608 DOI: 10.1016/j.jpain.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Altered nociception, a key feature of nociplastic pain, often involves central sensitization. We previously found that central sensitization underlying a nociplastic pain state in female mice depends on the ongoing activity of TRPA1 agonist-responsive afferents. Here, we investigated how the activity of these afferents induces and maintains central sensitization at the spinal level. We hypothesized that, in the superficial dorsal horn where somatostatin (SST) is expressed in excitatory interneurons and the SST2A receptor (SST2A-R) in GABAergic inhibitory interneurons (GABAn), TRPA1 agonist-responsive afferents stimulate SST-expressing excitatory interneurons (SSTn), leading to GABAn suppression through SST2A-R and resulting in altered nociception. We tested this hypothesis using ex vivo Ca2+ imaging of dorsal root-attached spinal cord slices expressing GCaMP6f in either SSTn or GABAn and in vivo assessment of mechanical hypersensitivity. The dorsal root was chemically (with allyl isothiocyanate [AITC]) and electrically stimulated to activate TRPA1-expressing nociceptors and all afferents, respectively. The stimulation of dorsal root with AITC excited SSTn. During activation of AITC-responsive afferents, a subset of SSTn showed potentiated responses to both low- and high-threshold afferent inputs, whereas a subset of GABAn showed suppressed responses to those afferents in an SST2A-R-dependent manner. Intrathecally administered SST2A-R antagonist inhibited the development of mechanical hypersensitivity by intraplantar AITC injection and alleviated persistent mechanical hypersensitivity in the murine model of nociplastic pain. These results suggest that the activity of TRPA1 agonist-responsive afferents induces and maintains central sensitization by activating dorsal horn SSTn and suppressing GABAn via SST2A-R, resulting in altered nociception that manifests as mechanical hypersensitivity. PERSPECTIVE: This article presents experimental evidence that TRPA1 agonist-responsive afferents induce and maintain central sensitization at the spinal level by activating SST-expressing excitatory interneurons and suppressing GABAergic inhibitory interneurons via SST2A-R. Spinal SST2A-R may represent a promising target for treating mechanical pain hypersensitivity due to central sensitization by TRPA1 agonist-responsive afferents.
Collapse
Affiliation(s)
- Ramesh Pariyar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jigong Wang
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Regan Hammond
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Ho Koo
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Nicholas Dalley
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jun-Ho La
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
7
|
Tian W, Jia Q, Lin J, Luo J, He D, Yang J, Guo T, Guo H, Guo Y, Zhang W, Chen F, Ye Y, Liu J, Xu M, Deng C, Cui B, Su D, Wang H, Lu Y, Xiao J, Liu H, Yang J, Hou Z, Wang S. Remote neurostimulation through an endogenous ion channel using a near-infrared light-activatable nanoagonist. SCIENCE ADVANCES 2024; 10:eadn0367. [PMID: 39121219 PMCID: PMC11313869 DOI: 10.1126/sciadv.adn0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The development of noninvasive approaches to precisely control neural activity in mammals is highly desirable. Here, we used the ion channel transient receptor potential ankyrin-repeat 1 (TRPA1) as a proof of principle, demonstrating remote near-infrared (NIR) activation of endogenous neuronal channels in mice through an engineered nanoagonist. This achievement enables specific neurostimulation in nongenetically modified mice. Initially, target-based screening identified flavins as photopharmacological agonists, allowing for the photoactivation of TRPA1 in sensory neurons upon ultraviolet A/blue light illumination. Subsequently, upconversion nanoparticles (UCNPs) were customized with an emission spectrum aligned to flavin absorption and conjugated with flavin adenine dinucleotide, creating a nanoagonist capable of NIR activation of TRPA1. Following the intrathecal injection of the nanoagonist, noninvasive NIR stimulation allows precise bidirectional control of nociception in mice through remote activation of spinal TRPA1. This study demonstrates a noninvasive NIR neurostimulation method with the potential for adaptation to various endogenous ion channels and neural processes by combining photochemical toolboxes with customized UCNPs.
Collapse
Affiliation(s)
- Weifeng Tian
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Organoid Technology, Kunming Medical University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiewen Lin
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Luo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongmei He
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiling Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yusheng Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feiyu Chen
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Ye
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mindong Xu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chengjie Deng
- Cell Biology and Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Boxiang Cui
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Deyuan Su
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hao Wang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Heng Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zhiyao Hou
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shu Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chen O, Jiang C, Berta T, Gray B, Furutani K, Sullenger BA, Ji RR. MicroRNA let-7b enhances spinal cord nociceptive synaptic transmission and induces acute and persistent pain through neuronal and microglial signaling. Pain 2024; 165:1824-1839. [PMID: 38452223 PMCID: PMC11257826 DOI: 10.1097/j.pain.0000000000003206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
ABSTRACT Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 μg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 μg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Temugin Berta
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, OH 45267, USA
| | - Bethany Gray
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| |
Collapse
|
10
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
11
|
Du WJ, Yang H, Tong F, Liu S, Zhang C, Chen Y, Yan Y, Xiang YW, Hua LY, Gong Y, Xu ZX, Liu X, Jiang X, Lu M, Guan JS, Han Q. Ash1L ameliorates psoriasis via limiting neuronal activity-dependent release of miR-let-7b. Br J Pharmacol 2024; 181:1107-1127. [PMID: 37766518 DOI: 10.1111/bph.16254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.
Collapse
Affiliation(s)
- Wan-Jie Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeying Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuze Yan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yang Hua
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Xiang Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Mingfang Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Mahmoud RH, Brooks SG, Yosipovitch G. Current and emerging drugs for the treatment of pruritus: an update of the literature. Expert Opin Pharmacother 2024; 25:655-672. [PMID: 38682595 DOI: 10.1080/14656566.2024.2349193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pruritus, particularly in its chronic form, often imposes significant suffering and reductions in patients' quality of life. The pathophysiology of itch is varied depending on disease context, creating opportunities for unique drug development and multimodal therapy. AREAS COVERED The purpose of this article is to provide an update of the literature regarding current and emerging therapeutics in itch. We review the multitudes of drug targets available and corresponding drugs that have shown efficacy in clinical trials, with a particular emphasis on phase 2 and 3 trials and beyond. Broadly, these targets include therapies directed against type 2 inflammation (i.e. Th2 cytokines, JAK/STAT, lipid mediators, T-cell mediators, and other enzymes and receptors) and neural receptors and targets (i.e. PARs, TRP channels, opioid receptors, MRGPRs, GABA receptors, and cannabinoid receptors). EXPERT OPINION Therapeutics for itch are emerging at a remarkable pace, and we are entering an era with more and more specialized therapies. Increasingly, these treatments are able to relieve itch beyond their effect on inflammation by directly targeting the neurosensory system.
Collapse
Affiliation(s)
- Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
13
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
14
|
Tang QQ, Wu Y, Tao Q, Shen Y, An X, Liu D, Xu Z. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacology 2024; 49:455-466. [PMID: 37848732 PMCID: PMC10724280 DOI: 10.1038/s41386-023-01748-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.
Collapse
Affiliation(s)
- Qian-Qian Tang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yuanyuan Wu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Qiang Tao
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yanan Shen
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Xiaohu An
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifeng Xu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China.
| |
Collapse
|
15
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Esfahan SJ, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 regulates maresin and potassium channel signaling for pain control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569787. [PMID: 38106084 PMCID: PMC10723316 DOI: 10.1101/2023.12.03.569787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.
Collapse
|
16
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
17
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
18
|
Li DJ, Zhong ZJ, Wang XL, Wei N, Zhao SJ, Shan TT, Liu YP, Yu YQ. Chemokine receptor CXCR2 in primary sensory neurons of trigeminal ganglion mediates orofacial itch. Front Mol Neurosci 2023; 16:1279237. [PMID: 37953876 PMCID: PMC10637378 DOI: 10.3389/fnmol.2023.1279237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The CXCR2 chemokine receptor is known to have a significant impact on the initiation and control of inflammatory processes. However, its specific involvement in the sensation of itch is not yet fully understood. In this study, we aimed to elucidate the function of CXCR2 in the trigeminal ganglion (TG) by utilizing orofacial itch models induced by incision, chloroquine (CQ), and histamine. Our results revealed a significant up-regulation of CXCR2 mRNA and protein expressions in the primary sensory neurons of TG in response to itch stimuli. The CXCR2 inhibitor SB225002 resulted in notable decrease in CXCR2 protein expression and reduction in scratch behaviors. Distal infraorbital nerve (DION) microinjection of a specific shRNA virus inhibited CXCR2 expression in TG neurons and reversed itch behaviors. Additionally, the administration of the PI3K inhibitor LY294002 resulted in a decrease in the expressions of p-Akt, Akt, and CXCR2 in TG neurons, thereby mitigating pruritic behaviors. Collectively, we report that CXCR2 in the primary sensory neurons of trigeminal ganglion contributes to orofacial itch through the PI3K/Akt signaling pathway. These observations highlight the potential of molecules involved in the regulation of CXCR2 as viable therapeutic targets for the treatment of itch.
Collapse
Affiliation(s)
- Dong-Jin Li
- College of Life Sciences, Northwest University, Xi’an, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Zhen-Juan Zhong
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Si-Jia Zhao
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ting-Ting Shan
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ya-Ping Liu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yao-Qing Yu
- College of Life Sciences, Northwest University, Xi’an, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| |
Collapse
|
19
|
Zhang Z, Shao H, Liu C, Song H, Wu X, Cao D, Zhu M, Fu Y, Wang J, Gao Y. Descending dopaminergic pathway facilitates itch signal processing via activating spinal GRPR + neurons. EMBO Rep 2023; 24:e56098. [PMID: 37522391 PMCID: PMC10561366 DOI: 10.15252/embr.202256098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.
Collapse
Affiliation(s)
- Zhi‐Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Han‐Yu Shao
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Chuan Liu
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Hao‐Lin Song
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Xiao‐Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - De‐Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Meixuan Zhu
- University of North Carolina at Chapel HillChapel HillNCUSA
| | - Yuan‐Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Juan Wang
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| |
Collapse
|
20
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
21
|
Wu YY, Wang Q, Zhang PA, Zhu C, Xu GY. miR-1306-3p directly activates P2X3 receptors in primary sensory neurons to induce visceral pain in rats. Pain 2023; 164:1555-1565. [PMID: 36633528 PMCID: PMC10281022 DOI: 10.1097/j.pain.0000000000002853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
- School of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, P. R. China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
22
|
Cerqueira ARA, Rodrigues L, Coavoy-Sánchez SA, Teixeira SA, Feitosa KB, Taniguchi EY, Lopes LR, Cassola AC, Muscará MN, Sá-Nunes A, Costa SKP. Aedes aegypti salivary gland extract alleviates acute itching by blocking TRPA1 channels. Front Physiol 2023; 14:1055706. [PMID: 37441000 PMCID: PMC10333701 DOI: 10.3389/fphys.2023.1055706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.
Collapse
Affiliation(s)
- Anderson R. A. Cerqueira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Rodrigues
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Simone A. Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Karla B. Feitosa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Erika Y. Taniguchi
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lucia R. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Antônio C. Cassola
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo N. Muscará
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Soraia K. P. Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Tian W, He D, Liu J, Chen F, Zhang W, Hu J, Wang S. Topical borneol relieves nonhistaminergic pruritus via targeting TRPA1 and TRPM8 channels in peripheral nerve terminals of mice. Eur J Pharmacol 2023:175833. [PMID: 37290679 DOI: 10.1016/j.ejphar.2023.175833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Borneol has been used successfully for the treatment of itchy skin in traditional Chinese medicine. However, the antipruritic effect of borneol has rarely been studied, and the mechanism is unclear. Here, we showed that topical application of borneol on skin substantially suppressed pruritogen chloroquine- and compound 48/80-induced itching in mice. The potential targets of borneol, including transient receptor potential cation channel subfamily V member 3 (TRPV3), transient receptor potential cation channel subfamily A member 1 (TRPA1), transient receptor potential cation channel subfamily M member 8 (TRPM8), and gamma-aminobutyric acid type A (GABAA) receptor were pharmacologically inhibited or genetically knocked out one by one in mouse. Itching behavior studies demonstrated that the antipruritic effect of borneol is largely independent of TRPV3 and GABAA receptor, and TRPA1 and TRPM8 channels are responsible for a major portion of the effect of borneol on chloroquine-induced nonhistaminergic itching. Borneol activates TRPM8 and inhibits TRPA1 in sensory neurons of mice. Topical co-application of TRPA1 antagonist and TRPM8 agonist mimicked the effect of borneol on chloroquine-induced itching. Intrathecal injection of a group II metabotropic glutamate receptor antagonist partially attenuated the effect of borneol and completely abolished the effect of TRPM8 agonist on chloroquine-induced itching, suggesting that a spinal glutamatergic mechanism is involved. In contrast, the effect of borneol on compound 48/80-induced histaminergic itching occurs through TRPA1-and TRPM8-independent mechanisms. Our work demonstrates that borneol is an effective topical itch reliever, and TRPA1 inhibition and TRPM8 activation in peripheral nerve terminals account for its antipruritic effect.
Collapse
Affiliation(s)
- Weifeng Tian
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Dongmei He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feiyu Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Hu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Shu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Furutani K, Chen O, McGinnis A, Wang Y, Serhan CN, Hansen TV, Ji RR. Novel proresolving lipid mediator mimetic 3-oxa-PD1n-3 docosapentaenoic acid reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice. Pain 2023; 164:1340-1354. [PMID: 36378290 PMCID: PMC10182233 DOI: 10.1097/j.pain.0000000000002824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Specialized proresolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs and 3-oxa-PD1 n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). In this article, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T-cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, the antipruritic effect lasted for several weeks after 1-week intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. Cutaneous T-cell lymphoma increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch through the regulation of excitatory or inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.
Collapse
Affiliation(s)
- Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Yuqing Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
25
|
Hu Z, Zhang Y, Yu W, Li J, Yao J, Zhang J, Wang J, Wang C. Transient receptor potential ankyrin 1 (TRPA1) modulators: Recent update and future perspective. Eur J Med Chem 2023; 257:115392. [PMID: 37269667 DOI: 10.1016/j.ejmech.2023.115392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.
Collapse
Affiliation(s)
- Zelin Hu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenhan Yu
- College of Letters & Science, University of California, Berkeley, Berkeley, 94720, California, United States
| | - Junjie Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Yao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
26
|
Millet A, Jendzjowsky N. Pathogen recognition by sensory neurons: hypotheses on the specificity of sensory neuron signaling. Front Immunol 2023; 14:1184000. [PMID: 37207232 PMCID: PMC10189129 DOI: 10.3389/fimmu.2023.1184000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Sensory neurons cooperate with barrier tissues and resident immune cells to form a significant aspect of defensive strategies in concert with the immune system. This assembly of neuroimmune cellular units is exemplified across evolution from early metazoans to mammalian life. As such, sensory neurons possess the capability to detect pathogenic infiltrates at barrier surfaces. This capacity relies on mechanisms that unleash specific cell signaling, trafficking and defensive reflexes. These pathways exploit mechanisms to amplify and enhance the alerting response should pathogenic infiltration seep into other tissue compartments and/or systemic circulation. Here we explore two hypotheses: 1) that sensory neurons' potential cellular signaling pathways require the interaction of pathogen recognition receptors and ion channels specific to sensory neurons and; 2) mechanisms which amplify these sensing pathways require activation of multiple sensory neuron sites. Where possible, we provide references to other apt reviews which provide the reader more detail on specific aspects of the perspectives provided here.
Collapse
Affiliation(s)
- Antoine Millet
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
27
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
28
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
29
|
Chen O, He Q, Han Q, Furutani K, Gu Y, Olexa M, Ji RR. Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma. J Clin Invest 2023; 133:160807. [PMID: 36520531 PMCID: PMC9927942 DOI: 10.1172/jci160807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Qingjian Han
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Madelynne Olexa
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
31
|
Wang B, Jiang B, Li G, Dong F, Luo Z, Cai B, Wei M, Huang J, Wang K, Feng X, Tong F, Wang S, Wang Q, Han Q, Li C, Zhang X, Yang L, Bao L. Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice. EMBO Rep 2023; 24:e54313. [PMID: 36524339 PMCID: PMC9900349 DOI: 10.15252/embr.202154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Bowen Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Guo‐Wei Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Fei Dong
- Institute of Neuroscience and State Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghaiChina
| | - Zheng Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Bing Cai
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Manyi Wei
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiansong Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Kaikai Wang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xin Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Sashuang Wang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Changlin Li
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Research Unit of Pain, Chinese Academy of Medical Sciences, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Institute of Neuroscience and State Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Research Unit of Pain, Chinese Academy of Medical Sciences, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
32
|
Ji RR. Specialized Pro-Resolving Mediators as Resolution Pharmacology for the Control of Pain and Itch. Annu Rev Pharmacol Toxicol 2023; 63:273-293. [PMID: 36100219 DOI: 10.1146/annurev-pharmtox-051921-084047] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Specialized pro-resolving mediators (SPMs), including resolvins, protectins, and maresins, are endogenous lipid mediators that are synthesized from omega-3 polyunsaturated fatty acids during the acute phase or resolution phase of inflammation. Synthetic SPMs possess broad safety profiles and exhibit potent actions in resolving inflammation in preclinical models. Accumulating evidence in the past decade has demonstrated powerful analgesia of exogenous SPMs in rodent models of inflammatory, neuropathic, and cancer pain. Furthermore, endogenous SPMs are produced by sham surgery and neuromodulation (e.g., vagus nerve stimulation). SPMs produce their beneficial actions through multiple G protein-coupled receptors, expressed by immune cells, glial cells, and neurons. Notably, loss of SPM receptors impairs the resolution of pain. I also highlight the emerging role of SPMs in the control of itch. Pharmacological targeting of SPMs or SPM receptors has the potential to lead to novel therapeutics for pain and itch as emerging approaches in resolution pharmacology.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
33
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
34
|
Mechanisms of pruritus in cholestasis: understanding and treating the itch. Nat Rev Gastroenterol Hepatol 2023; 20:26-36. [PMID: 36307649 DOI: 10.1038/s41575-022-00687-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/01/2023]
Abstract
Pruritus in cholestatic liver diseases can be a major burden and dramatically impair the quality of life of those affected. Here, we provide an update on the latest insights into the molecular pathogenesis of and novel therapeutic approaches for cholestasis-associated itch. Endogenous and exogenous small-molecule pruritogen candidates bind to their receptors on unmyelinated itch C-fibres in the skin. Candidate pruritogens in cholestasis include certain lysophospholipids and sulfated progesterone metabolites, among others, whereas total bile acid or bilirubin conjugates seem unlikely to have a dominant role in the pathogenesis of cholestasis-associated pruritus. Transmission of itch signals via primary, secondary and tertiary itch neurons to the postcentral gyrus and activation of scratch responses offer various targets for therapeutic intervention. At present, evidence-based treatment options for pruritus in fibrosing cholangiopathies, such as primary biliary cholangitis and primary sclerosing cholangitis, are the peroxisome proliferator-associated receptor (PPAR) agonist bezafibrate and the pregnane X receptor (PXR) agonist rifampicin. In pruritus of intrahepatic cholestasis of pregnancy, ursodeoxycholic acid is recommended and might be supported in the third trimester by rifampicin if needed. Alternatively, non-absorbable anion exchange resins, such as cholestyramine, can be administered, albeit with poor trial evidence. Liver transplantation for intolerable refractory pruritus has become an extremely rare therapeutic strategy.
Collapse
|
35
|
De Logu F, Maglie R, Titiz M, Poli G, Landini L, Marini M, Souza Monteiro de Araujo D, De Siena G, Montini M, Cabrini DA, Otuki MF, Pawloski PL, Antiga E, Tuccinardi T, Calixto JB, Geppetti P, Nassini R, André E. miRNA-203b-3p Induces Acute and Chronic Pruritus through 5-HTR2B and TRPV4. J Invest Dermatol 2023; 143:142-153.e10. [PMID: 36049541 DOI: 10.1016/j.jid.2022.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.
Collapse
Affiliation(s)
- Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mustafa Titiz
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lorenzo Landini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Matilde Marini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Gaetano De Siena
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Marco Montini
- Medical Genetics Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | | | | | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | | | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.
| | - Eunice André
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
36
|
Giordano R, Kjær-Staal Petersen K, Arendt-Nielsen L. The link between epigenetics, pain sensitivity and chronic pain. Scand J Pain 2022; 22:664-666. [PMID: 36149940 DOI: 10.1515/sjpain-2022-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests an association between gene expression and clinical pain. Epigenetic modifications are the main modulators of gene expression or protein translation in response to environmental stimuli and pathophysiological conditions. Preclinical and clinical studies indicate that epigenetic modifications could also impact the development of pain, the transition from acute to chronic pain, and the maintenance hereof.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
37
|
Integrated Analysis of the microRNA–mRNA Network Predicts Potential Regulators of Atrial Fibrillation in Humans. Cells 2022; 11:cells11172629. [PMID: 36078037 PMCID: PMC9454849 DOI: 10.3390/cells11172629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrillation (AF) is a form of sustained cardiac arrhythmia and microRNAs (miRs) play crucial roles in the pathophysiology of AF. To identify novel miR–mRNA pairs, we performed RNA-seq from atrial biopsies of persistent AF patients and non-AF patients with normal sinus rhythm (SR). Differentially expressed miRs (11 down and 9 up) and mRNAs (95 up and 82 down) were identified and hierarchically clustered in a heat map. Subsequently, GO, KEGG, and GSEA analyses were run to identify deregulated pathways. Then, miR targets were predicted in the miRDB database, and a regulatory network of negatively correlated miR–mRNA pairs was constructed using Cytoscape. To select potential candidate genes from GSEA analysis, the top-50 enriched genes in GSEA were overlaid with predicted targets of differentially deregulated miRs. Further, the protein–protein interaction (PPI) network of enriched genes in GSEA was constructed, and subsequently, GO and canonical pathway analyses were run for genes in the PPI network. Our analyses showed that TNF-α, p53, EMT, and SYDECAN1 signaling were among the highly affected pathways in AF samples. SDC-1 (SYNDECAN-1) was the top-enriched gene in p53, EMT, and SYDECAN1 signaling. Consistently, SDC-1 mRNA and protein levels were significantly higher in atrial samples of AF patients. Among negatively correlated miRs, miR-302b-3p was experimentally validated to suppress SDC-1 transcript levels. Overall, our results suggested that the miR-302b-3p/SDC-1 axis may be involved in the pathogenesis of AF.
Collapse
|
38
|
Li L, Gao J, Li J, Wang J. MiR-711 regulates gastric cancer progression by targeting CD44. Cancer Biomark 2022; 35:71-81. [PMID: 35786646 DOI: 10.3233/cbm-210213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play an important role in tumor progression by regulating the expression of target genes. OBJECTIVE This study attempted to verify the role of miR-711 in gastric cancer (GC) progression by in vitro and in vivo assays. METHODS The expression of miR-711 in tumor tissues and cells was detected by real-time quantitative PCR (qRT-PCR). Expression of MiR-711 in NCI-N87 and SNU-1 cells was detected by FISH. We transfected GC cells with miR-711 mimics or inhibitors. The effects of miR-711 on the proliferation and metastasis of GC cells were detected by CCK-8, wound healing and transwell assays. Dual-luciferase reporter gene assay was used to verify the targeting relationship between miR-711 and CD44. Xenograft assays was used to verify the regulatory effect of miR-711 on tumor growth. RESULTS In GC tissues and cell lines, the expression of miR-711 was down-regulated when compare with adjacent tissues or normal epithelial cells. The results indicated that overexpressing of miR-711 could suppress the GC cell proliferation, migration, and invasion through targeting CD44. The knockdown of CD44 showed similar effects as miR-711 overexpression in GC cells. Moreover, we confirmed these effects in the in vivo assays. Furthermore, we found that miR-711 could play a role by influencing tumor cell stemness. CONCLUSION MiR-711 plays vital roles as a tumor-suppressor by targeting CD44 and may be a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jie Gao
- Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jiangang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jun Wang
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
39
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|
40
|
Zhou F, Metzner K, Engel P, Balzulat A, Sisignano M, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack Potassium Channels Modulate TRPA1-Mediated Nociception in Sensory Neurons. Cells 2022; 11:cells11101693. [PMID: 35626730 PMCID: PMC9140117 DOI: 10.3390/cells11101693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential (TRP) ankyrin type 1 (TRPA1) channel is highly expressed in a subset of sensory neurons where it acts as an essential detector of painful stimuli. However, the mechanisms that control the activity of sensory neurons upon TRPA1 activation remain poorly understood. Here, using in situ hybridization and immunostaining, we found TRPA1 to be extensively co-localized with the potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) in sensory neurons. Mice lacking Slack globally (Slack−/−) or conditionally in sensory neurons (SNS-Slack−/−) demonstrated increased pain behavior after intraplantar injection of the TRPA1 activator allyl isothiocyanate. By contrast, pain behavior induced by the TRP vanilloid 1 (TRPV1) activator capsaicin was normal in Slack-deficient mice. Patch-clamp recordings in sensory neurons and in a HEK cell line transfected with TRPA1 and Slack revealed that Slack-dependent potassium currents (IKS) are modulated in a TRPA1-dependent manner. Taken together, our findings highlight Slack as a modulator of TRPA1-mediated, but not TRPV1-mediated, activation of sensory neurons.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Annika Balzulat
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany; (P.R.); (R.L.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany; (P.R.); (R.L.)
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany; (F.Z.); (K.M.); (P.E.); (A.B.); (A.S.)
- Correspondence: ; Tel.: +49-69-798-29377
| |
Collapse
|
41
|
Ji RR. Third Special Issue on Mechanisms of Pain and Itch. Neurosci Bull 2022; 38:339-341. [PMID: 35467251 PMCID: PMC9068844 DOI: 10.1007/s12264-022-00851-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Habgood M, Seiferth D, Zaki AM, Alibay I, Biggin PC. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci Rep 2022; 12:4929. [PMID: 35322090 PMCID: PMC8943162 DOI: 10.1038/s41598-022-08824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Collapse
Affiliation(s)
- Matthew Habgood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK.
| | - David Seiferth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Afroditi-Maria Zaki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
43
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
44
|
Abstract
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| |
Collapse
|
45
|
Yang D, Deschênes I, Fu JD. Multilayer control of cardiac electrophysiology by microRNAs. J Mol Cell Cardiol 2022; 166:107-115. [PMID: 35247375 PMCID: PMC9035102 DOI: 10.1016/j.yjmcc.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Hu Y, Fu QY, Fu DN, Wang XL, Wang ZH, Zhang JT, Xu WJ, Zhou GK, Chen LH, Liu T. The Role of Transient Receptor Potential A1 and G Protein-Coupled Receptor 39 in Zinc-Mediated Acute and Chronic Itch in Mice. Front Mol Neurosci 2022; 14:768731. [PMID: 35095413 PMCID: PMC8790520 DOI: 10.3389/fnmol.2021.768731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Itching is a common symptom of many skin or systemic diseases and has a negative impact on the quality of life. Zinc, one of the most important trace elements in an organism, plays an important role in the regulation of pain. Whether and how zinc regulates itching is largely unclear. Herein, we explored the role of Zn2+ in the regulation of acute and chronic itch in mice. It is found that intradermal injection (i.d.) of Zn2+ dose-dependently induced acute itch and transient receptor potential A1 (TRPA1) participated in Zn2+-induced acute itch in mice. Moreover, the pharmacological analysis showed the involvement of histamine, mast cells, opioid receptors, and capsaicin-sensitive C-fibers in Zn2+-induced acute itch in mice. Systemic administration of Zn2+ chelators, such as N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), pyrithione, and clioquinol were able to attenuate both acute itch and dry skin-induced chronic itch in mice. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the messenger RNA (mRNA) expression levels of zinc transporters (ZIPs and ZnTs) significantly changed in the dorsal root ganglia (DRG) under dry skin-induced chronic itch condition in mice. Activation of extracellular signal-regulated kinase (ERK) pathway was induced in the DRG and skin by the administration of zinc or under dry skin condition, which was inhibited by systemic administration of Zn2+ chelators. Finally, we found that the expression of GPR39 (a zinc-sensing GPCR) was significantly upregulated in the dry skin mice model and involved in the pathogenesis of chronic itch. Together, these results indicated that the TRPA1/GPR39/ERK axis mediated the zinc-induced itch and, thus, targeting zinc signaling may be a promising strategy for anti-itch therapy.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Wen-Jing Xu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Guo-Kun Zhou
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
- Li-Hua Chen
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yan'an, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
- *Correspondence: Tong Liu
| |
Collapse
|
47
|
Challenging Cutaneous T-Cell Lymphoma: What Animal Models Tell us So Far. J Invest Dermatol 2022; 142:1533-1540. [PMID: 35000751 DOI: 10.1016/j.jid.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Cutaneous T-cell lymphomas are characterized by heterogeneity of clinical variants, further complicated by genomic and microenvironmental variables. Furthermore, in vitro experiments are hampered by the low culture efficiency of these malignant cells. Animal models are essential for understanding the pathogenetic mechanisms underlying malignancy and for discovering new anticancer treatments. They are divided into two main categories: those in which tumors arise in the host owing to genetic modifications and those that use tumor cell transplantation. In this review, we summarize the attempts to decipher the complexity of the pathogenesis of cutaneous T-cell lymphoma by exploiting genetically modified and xenograft models.
Collapse
|
48
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
49
|
Ji J, He Q, Luo X, Bang S, Matsuoka Y, McGinnis A, Nackley AG, Ji RR. IL-23 Enhances C-Fiber-Mediated and Blue Light-Induced Spontaneous Pain in Female Mice. Front Immunol 2021; 12:787565. [PMID: 34950149 PMCID: PMC8688771 DOI: 10.3389/fimmu.2021.787565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 μm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.
Collapse
Affiliation(s)
- Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Andrea G. Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
50
|
Sympathetic Nerve Mediated Spinal Glia Activation Underlies Itch in a Cutaneous T-Cell Lymphoma Model. Neurosci Bull 2021; 38:435-439. [PMID: 34870787 DOI: 10.1007/s12264-021-00805-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
|