1
|
Serantes D, Cavelli M, Gonzalez J, Mondino A, Benedetto L, Torterolo P. Characterising the power spectrum dynamics of the non-REM to REM sleep transition. J Sleep Res 2025; 34:e14388. [PMID: 39520222 DOI: 10.1111/jsr.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The transition from non-rapid eye movement (NREM) to rapid eye movement (REM) sleep is considered a transitional or intermediate stage (IS), characterised by high amplitude spindles in the frontal cortex and theta activity in the occipital cortex. Early reports in rats showed an IS lasting from 1 to 5 s, but recent studies suggested a longer duration of this stage of up to 20 s. To further characterise the IS, we analysed its spectral characteristics on electrocorticogram (ECoG) recordings of the olfactory bulb (OB), primary motor (M1), primary somatosensory (S1), and secondary visual cortex (V2) in 12 Wistar male adult rats. By comparing the IS with consolidated NREM/REM epochs, our results reveal that the IS has specific power spectral patterns that fall out of the NREM and REM sleep state power distribution. Specifically, the main findings were that sigma (11-16 Hz) power in OB, M1, S1, and V2 increased during the IS compared with NREM and REM sleep, which started first in the frontal part of the brain (OB -54 s, M1 -53 s) prior to the last spindle occurrence. The beta band (17-30 Hz) power showed a similar pattern to that of the sigma band, starting -54 s before the last spindle occurrence in the M1 cortex. Notably, sigma infraslow coupling (~0.02 Hz) increased during the IS but occurred at a slower frequency (~0.01 Hz) compared with NREM sleep. Thus, we argue that the NREM to REM transition contains its own local spectral profile, in accordance with previous reports, and is more extended than described previously.
Collapse
Affiliation(s)
- Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Cavelli
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joaquín Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Alejandra Mondino
- Departamento de Clínicas y Hospital Veterinario, Unidad de Medicina de Pequeños Animales, Neurología, Universidad de la República, Montevideo, Uruguay
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Kerrén C, Reznik D, Doeller CF, Griffiths BJ. Exploring the role of dimensionality transformation in episodic memory. Trends Cogn Sci 2025:S1364-6613(25)00021-X. [PMID: 39952797 DOI: 10.1016/j.tics.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Episodic memory must accomplish two adversarial goals: encoding and storing a multitude of experiences without exceeding the finite neuronal structure of the brain, and recalling memories in vivid detail. Dimensionality reduction and expansion ('dimensionality transformation') enable the brain to meet these demands. Reduction compresses sensory input into simplified, storable codes, while expansion reconstructs vivid details. Although these processes are essential to memory, their neural mechanisms for episodic memory remain unclear. Drawing on recent insights from cognitive psychology, systems neuroscience, and neuroanatomy, we propose two accounts of how dimensionality transformation occurs in the brain: structurally (via corticohippocampal pathways) and functionally (through neural oscillations). By examining cross-species evidence, we highlight neural mechanisms that may support episodic memory and identify crucial questions for future research.
Collapse
Affiliation(s)
- Casper Kerrén
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Daniel Reznik
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
3
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2025; 39:74-86. [PMID: 39345118 PMCID: PMC11723815 DOI: 10.1177/15459683241287731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. OBJECTIVES This study investigated the effectiveness of contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery driven by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity, and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. METHODS Twenty-six prospectively enrolled chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. RESULTS Chronic stroke patients achieved significant motor improvement in both proximal and distal upper extremity with BCI therapy. Motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3/C4 motor electrodes and positively correlated with motor recovery across BCI therapy sessions. CONCLUSIONS BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients, which significantly correlated with theta-gamma CFC increases in the motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven rehabilitation in chronic stroke patients. TRIAL REGISTRATION Advarra Study: https://classic.clinicaltrials.gov/ct2/show/NCT04338971 and Washington University Study: https://classic.clinicaltrials.gov/ct2/show/NCT03611855.
Collapse
Affiliation(s)
- Nabi Rustamov
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Alexandre Carter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
- Neurolutions, Inc. St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
McHugh SB, Lopes-Dos-Santos V, Castelli M, Gava GP, Thompson SE, Tam SKE, Hartwich K, Perry B, Toth R, Denison T, Sharott A, Dupret D. Offline hippocampal reactivation during dentate spikes supports flexible memory. Neuron 2024; 112:3768-3781.e8. [PMID: 39321790 PMCID: PMC7616703 DOI: 10.1016/j.neuron.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Stabilizing new memories requires coordinated neuronal spiking activity during sleep. Hippocampal sharp-wave ripples (SWRs) in the cornu ammonis (CA) region and dentate spikes (DSs) in the dentate gyrus (DG) are prime candidate network events for supporting this offline process. SWRs have been studied extensively, but the contribution of DSs remains unclear. By combining triple-ensemble (DG-CA3-CA1) recordings and closed-loop optogenetics in mice, we show that, like SWRs, DSs synchronize spiking across DG and CA principal cells to reactivate population-level patterns of neuronal coactivity expressed during prior waking experience. Notably, the population coactivity structure in DSs is more diverse and higher dimensional than that seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during DSs impairs subsequent flexible memory performance during multi-object recognition tasks and associated hippocampal patterns of neuronal coactivity. We conclude that DSs constitute a second offline network event central to hippocampal population dynamics serving memory-guided behavior.
Collapse
Affiliation(s)
- Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Manfredi Castelli
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Sophie E Thompson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Shu K E Tam
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Brook Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Timothy Denison
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
5
|
Gallo D, Cavelli M, Castro-Zaballa S, Castro-Nin JP, Pascovich C, Torterolo P, González J. Differential effects of haloperidol on neural oscillations during wakefulness and sleep. Neuroscience 2024; 560:67-76. [PMID: 39270770 DOI: 10.1016/j.neuroscience.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The electrical activity of the brain, characterized by its frequency components, reflects a complex interplay between periodic (oscillatory) and aperiodic components. These components are associated with various neurophysiological processes, such as the excitation-inhibition balance (aperiodic activity) or interregional communication (oscillatory activity). However, we do not fully understand whether these components are truly independent or if different neuromodulators affect them in different ways. The dopaminergic system has a critical role for cognition and motivation, being a potential modulator of these power spectrum components. To improve our understanding of these questions, we investigated the differential effects of this system on these components using electrocorticogram recordings in cats, which show clear oscillations and aperiodic 1/f activity. Specifically, we focused on the effects of haloperidol (a D2 receptor antagonist) on oscillatory and aperiodic dynamics during wakefulness and sleep. By parameterizing the power spectrum into these two components, our findings reveal a robust modulation of oscillatory activity by the D2 receptor across the brain. Surprisingly, aperiodic activity was not significantly affected and exhibited inconsistent changes across the brain. This suggests a nuanced interplay between neuromodulation and the distinct components of brain oscillations, providing insights into the selective regulation of oscillatory dynamics in awake states.
Collapse
Affiliation(s)
- Diego Gallo
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Matias Cavelli
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Santiago Castro-Zaballa
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Juan Pedro Castro-Nin
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Claudia Pascovich
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Department of Psychology, King's College, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Pablo Torterolo
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay.
| | - Joaquín González
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056, Brazil.
| |
Collapse
|
6
|
Altafi M, Chen C, Korotkova T, Ponomarenko A. Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations. J Neurosci 2024; 44:e0518242024. [PMID: 39256049 PMCID: PMC11502232 DOI: 10.1523/jneurosci.0518-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors-social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30-60 and 60-90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.
Collapse
Affiliation(s)
- Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Changwan Chen
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Cologne 50931, Germany
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
7
|
Gava GP, Lefèvre L, Broadbelt T, McHugh SB, Lopes-Dos-Santos V, Brizee D, Hartwich K, Sjoberg H, Perestenko PV, Toth R, Sharott A, Dupret D. Organizing the coactivity structure of the hippocampus from robust to flexible memory. Science 2024; 385:1120-1127. [PMID: 39236189 PMCID: PMC7616439 DOI: 10.1126/science.adk9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.
Collapse
Affiliation(s)
- Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tabitha Broadbelt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hanna Sjoberg
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Huang YN, Liang WK, Juan CH. Spatial prediction modulates the rhythm of attentional sampling. Cereb Cortex 2024; 34:bhae392. [PMID: 39329361 DOI: 10.1093/cercor/bhae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies demonstrate that behavioral performance during visual spatial attention fluctuates at theta (4 to 8 Hz) and alpha (8 to 16 Hz) frequencies, linked to phase-amplitude coupling of neural oscillations within the visual and attentional system depending on task demands. To investigate the influence of prior spatial prediction, we employed an adaptive discrimination task with variable cue-target onset asynchronies (300 to 1,300 ms) and different cue validity (100% & 50%). We recorded electroencephalography concurrently and adopted adaptive electroencephalography data analytical methods, namely, Holo-Holo-Hilbert spectral analysis and Holo-Hilbert cross-frequency phase clustering. Our findings indicate that response precision for near-threshold Landolt rings fluctuates at the theta band (4 Hz) under certain predictions and at alpha & beta bands (15 & 19 Hz) with uncertain predictions. Furthermore, spatial prediction strengthens theta-alpha modulations at parietal-occipital areas, frontal theta/parietal-occipital alpha phase-amplitude coupling, and within frontal theta-alpha phase-amplitude coupling. Notably, during the pretarget period, beta-modulated gamma oscillations in parietal-occipital areas predict response precision under uncertain prediction, while frontal theta/parietal-occipital alpha phase-amplitude coupling predicts response precision in spatially certain conditions. In conclusion, our study highlights the critical role of spatial prediction in attentional sampling rhythms with both behavioral and electroencephalography evidence.
Collapse
Affiliation(s)
- Yih-Ning Huang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| |
Collapse
|
9
|
Haziza S, Chrapkiewicz R, Zhang Y, Kruzhilin V, Li J, Li J, Delamare G, Swanson R, Buzsáki G, Kannan M, Vasan G, Lin MZ, Zeng H, Daigle TL, Schnitzer MJ. Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607428. [PMID: 39185175 PMCID: PMC11343216 DOI: 10.1101/2024.08.15.607428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
Collapse
Affiliation(s)
- Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vasily Kruzhilin
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jane Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Madhuvanthi Kannan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ganesh Vasan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Z Lin
- Departments of Bioengineering & Pediatrics, Stanford University, Stanford CA 94305, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
10
|
Li Y, Hou S, Li F, Long S, Yang Y, Li Y, Zhao L, Yu Y. Preoperative recovery sleep ameliorates postoperative cognitive dysfunction aggravated by sleep fragmentation in aged mice by enhancing EEG delta-wave activity and LFP theta oscillation in hippocampal CA1. Brain Res Bull 2024; 211:110945. [PMID: 38608544 DOI: 10.1016/j.brainresbull.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shaowei Hou
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Siwen Long
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yue Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
11
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
12
|
Souza AC, Souza BC, França A, Moradi M, Souza NC, Leão KE, Tort ABL, Leão RN, Lopes-Dos-Santos V, Ribeiro S. 5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats. Sci Rep 2024; 14:11281. [PMID: 38760450 PMCID: PMC11101617 DOI: 10.1038/s41598-024-61474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.
Collapse
Affiliation(s)
- Annie C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Bryan C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Arthur França
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Marzieh Moradi
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Neuroscience and Behavioural Sciences, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholy C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katarina E Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Richardson N Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vítor Lopes-Dos-Santos
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Center for Strategic Studies, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Bein O, Davachi L. Event Integration and Temporal Differentiation: How Hierarchical Knowledge Emerges in Hippocampal Subfields through Learning. J Neurosci 2024; 44:e0627232023. [PMID: 38129134 PMCID: PMC10919070 DOI: 10.1523/jneurosci.0627-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| |
Collapse
|
14
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
15
|
Douchamps V, di Volo M, Torcini A, Battaglia D, Goutagny R. Gamma oscillatory complexity conveys behavioral information in hippocampal networks. Nat Commun 2024; 15:1849. [PMID: 38418832 PMCID: PMC10902292 DOI: 10.1038/s41467-024-46012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The hippocampus and entorhinal cortex exhibit rich oscillatory patterns critical for cognitive functions. In the hippocampal region CA1, specific gamma-frequency oscillations, timed at different phases of the ongoing theta rhythm, are hypothesized to facilitate the integration of information from varied sources and contribute to distinct cognitive processes. Here, we show that gamma elements -a multidimensional characterization of transient gamma oscillatory episodes- occur at any frequency or phase relative to the ongoing theta rhythm across all CA1 layers in male mice. Despite their low power and stochastic-like nature, individual gamma elements still carry behavior-related information and computational modeling suggests that they reflect neuronal firing. Our findings challenge the idea of rigid gamma sub-bands, showing that behavior shapes ensembles of irregular gamma elements that evolve with learning and depend on hippocampal layers. Widespread gamma diversity, beyond randomness, may thus reflect complexity, likely functional but invisible to classic average-based analyses.
Collapse
Affiliation(s)
- Vincent Douchamps
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France
| | - Matteo di Volo
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, U1208, Bron, France
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation (LPTM), CNRS, UMR 8089, 95302, Cergy-Pontoise, France
| | - Alessandro Torcini
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation (LPTM), CNRS, UMR 8089, 95302, Cergy-Pontoise, France
- CNR - Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Demian Battaglia
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France.
- Aix-Marseille Université, Institut de Neurosciences des Systèmes (INS), INSERM, UMR 1106, Marseille, France.
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France.
| | - Romain Goutagny
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France.
| |
Collapse
|
16
|
Santiago RMM, Lopes-Dos-Santos V, Aery Jones EA, Huang Y, Dupret D, Tort ABL. Waveform-based classification of dentate spikes. Sci Rep 2024; 14:2989. [PMID: 38316828 PMCID: PMC10844627 DOI: 10.1038/s41598-024-53075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M M Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B L Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
17
|
Hadler MD, Tzilivaki A, Schmitz D, Alle H, Geiger JRP. Gamma oscillation plasticity is mediated via parvalbumin interneurons. SCIENCE ADVANCES 2024; 10:eadj7427. [PMID: 38295164 PMCID: PMC10830109 DOI: 10.1126/sciadv.adj7427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.
Collapse
Affiliation(s)
- Michael D. Hadler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle-Straße 10, 13125 Berlin, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R. P. Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Zhang H, Skelin I, Ma S, Paff M, Mnatsakanyan L, Yassa MA, Knight RT, Lin JJ. Awake ripples enhance emotional memory encoding in the human brain. Nat Commun 2024; 15:215. [PMID: 38172140 PMCID: PMC10764865 DOI: 10.1038/s41467-023-44295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Enhanced memory for emotional experiences is hypothesized to depend on amygdala-hippocampal interactions during memory consolidation. Here we show using intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task increased awake ripples after encoding of emotional, compared to neutrally-valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is predictive of later memory discrimination. Ripple-locked stimulus similarity appears earlier in the amygdala than in hippocampus and mutual information analysis confirms amygdala influence on hippocampal activity. Finally, the joint ripple-locked stimulus similarity in the amygdala and hippocampus is predictive of correct memory discrimination. These findings provide electrophysiological evidence that post-encoding ripples enhance memory for emotional events.
Collapse
Affiliation(s)
- Haoxin Zhang
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, 92603, CA, USA.
| | - Ivan Skelin
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, M5T 1M8, Canada
- Department Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, M5G 2A2, Canada
| | - Shiting Ma
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michelle Paff
- Department of Neurosurgery, University of California Irvine, Irvine, 92603, CA, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michael A Yassa
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, 92697, CA, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, 92697, CA, USA
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, 94720, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Jack J Lin
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, 95817, CA, USA.
- Center for Mind and Brain, University of California Davis, Davis, 95618, CA, USA.
| |
Collapse
|
19
|
Esparza J, Sebastián ER, de la Prida LM. From cell types to population dynamics: Making hippocampal manifolds physiologically interpretable. Curr Opin Neurobiol 2023; 83:102800. [PMID: 37898015 DOI: 10.1016/j.conb.2023.102800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023]
Abstract
The study of the hippocampal code is gaining momentum. While the physiological approach targets the contribution of individual cells as determined by genetic, biophysical and circuit factors, the field pushes for a population dynamic approach that considers the representation of behavioural variables by a large number of neurons. In this alternative framework, neuronal activity is projected into low-dimensional manifolds. These manifolds can reveal the structure of population representations, but their physiological interpretation is challenging. Here, we review the recent literature and propose that integrating information regarding behavioral traits, local field potential oscillations and cell-type-specificity into neural manifolds offers strategies to make them interpretable at the physiological level.
Collapse
|
20
|
Santiago RM, Lopes-dos-Santos V, Jones EAA, Huang Y, Dupret D, Tort AB. Waveform-based classification of dentate spikes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563826. [PMID: 37961150 PMCID: PMC10634814 DOI: 10.1101/2023.10.24.563826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M.M. Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Vítor Lopes-dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B.L. Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
21
|
Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science 2023; 382:eadi8237. [PMID: 37856604 PMCID: PMC10894649 DOI: 10.1126/science.adi8237] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).
Collapse
Affiliation(s)
| | | | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
22
|
Király B, Domonkos A, Jelitai M, Lopes-Dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V, Hangya B. The medial septum controls hippocampal supra-theta oscillations. Nat Commun 2023; 14:6159. [PMID: 37816713 PMCID: PMC10564782 DOI: 10.1038/s41467-023-41746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Andor Domonkos
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Márta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Barnabás Kocsis
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richárd Fiáth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
23
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Chang WS, Liang WK, Li DH, Muggleton NG, Balachandran P, Huang NE, Juan CH. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity. Sci Rep 2023; 13:14252. [PMID: 37653059 PMCID: PMC10471634 DOI: 10.1038/s41598-023-41358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
Electrophysiological working memory (WM) research shows brain areas communicate via macroscopic oscillations across frequency bands, generating nonlinear amplitude modulation (AM) in the signal. Traditionally, AM is expressed as the coupling strength between the signal and a prespecified modulator at a lower frequency. Therefore, the idea of AM and coupling cannot be studied separately. In this study, 33 participants completed a color recall task while their brain activity was recorded through EEG. The AM of the EEG data was extracted using the Holo-Hilbert spectral analysis (HHSA), an adaptive method based on the Hilbert-Huang transforms. The results showed that WM load modulated parieto-occipital alpha/beta power suppression. Furthermore, individuals with higher frontal theta power and lower parieto-occipital alpha/beta power exhibited superior WM precision. In addition, the AM of parieto-occipital alpha/beta power predicted WM precision after presenting a target-defining probe array. The phase-amplitude coupling (PAC) between the frontal theta phase and parieto-occipital alpha/beta AM increased with WM load while processing incoming stimuli, but the PAC itself did not predict the subsequent recall performance. These results suggest frontal and parieto-occipital regions communicate through theta-alpha/beta PAC. However, the overall recall precision depends on the alpha/beta AM following the onset of the retro cue.
Collapse
Affiliation(s)
- Wen-Sheng Chang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Dong-Han Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Norden E Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
26
|
Hernández-Recio S, Muñoz-Arnaiz R, López-Madrona V, Makarova J, Herreras O. Uncorrelated bilateral cortical input becomes timed across hippocampal subfields for long waves whereas gamma waves are largely ipsilateral. Front Cell Neurosci 2023; 17:1217081. [PMID: 37576568 PMCID: PMC10412937 DOI: 10.3389/fncel.2023.1217081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
The role of interhemispheric connections along successive segments of cortico-hippocampal circuits is poorly understood. We aimed to obtain a global picture of spontaneous transfer of activity during non-theta states across several nodes of the bilateral circuit in anesthetized rats. Spatial discrimination techniques applied to bilateral laminar field potentials (FP) across the CA1/Dentate Gyrus provided simultaneous left and right readouts in five FP generators that reflect activity in specific hippocampal afferents and associative pathways. We used a battery of correlation and coherence analyses to extract complementary aspects at different time scales and frequency bands. FP generators exhibited varying bilateral correlation that was high in CA1 and low in the Dentate Gyrus. The submillisecond delays indicate coordination but not support for synaptic dependence of one side on another. The time and frequency characteristics of bilateral coupling were specific to each generator. The Schaffer generator was strongly bilaterally coherent for both sharp waves and gamma waves, although the latter maintained poor amplitude co-variation. The lacunosum-moleculare generator was composed of up to three spatially overlapping activities, and globally maintained high bilateral coherence for long but not short (gamma) waves. These two CA1 generators showed no ipsilateral relationship in any frequency band. In the Dentate Gyrus, strong bilateral coherence was observed only for input from the medial entorhinal areas, while those from the lateral entorhinal areas were largely asymmetric, for both alpha and gamma waves. Granger causality testing showed strong bidirectional relationships between all homonymous bilateral generators except the lateral entorhinal input and a local generator in the Dentate Gyrus. It also revealed few significant relationships between ipsilateral generators, most notably the anticipation of lateral entorhinal cortex toward all others. Thus, with the notable exception of the lateral entorhinal areas, there is a marked interhemispheric coherence primarily for slow envelopes of activity, but not for pulse-like gamma waves, except in the Schafer segment. The results are consistent with essentially different streams of activity entering from and returning to the cortex on each side, with slow waves reflecting times of increased activity exchange between hemispheres and fast waves generally reflecting ipsilateral processing.
Collapse
Affiliation(s)
- Sara Hernández-Recio
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
- Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Ricardo Muñoz-Arnaiz
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | | | - Julia Makarova
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Oscar Herreras
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
27
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
28
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Ojanen S, Kuznetsova T, Kharybina Z, Voikar V, Lauri SE, Taira T. Interneuronal GluK1 kainate receptors control maturation of GABAergic transmission and network synchrony in the hippocampus. Mol Brain 2023; 16:43. [PMID: 37210550 PMCID: PMC10199616 DOI: 10.1186/s13041-023-01035-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023] Open
Abstract
Kainate type glutamate receptors (KARs) are strongly expressed in GABAergic interneurons and have the capability of modulating their functions via ionotropic and G-protein coupled mechanisms. GABAergic interneurons are critical for generation of coordinated network activity in both neonatal and adult brain, yet the role of interneuronal KARs in network synchronization remains unclear. Here, we show that GABAergic neurotransmission and spontaneous network activity is perturbed in the hippocampus of neonatal mice lacking GluK1 KARs selectively in GABAergic neurons. Endogenous activity of interneuronal GluK1 KARs maintains the frequency and duration of spontaneous neonatal network bursts and restrains their propagation through the hippocampal network. In adult male mice, the absence of GluK1 in GABAergic neurons led to stronger hippocampal gamma oscillations and enhanced theta-gamma cross frequency coupling, coinciding with faster spatial relearning in the Barnes maze. In females, loss of interneuronal GluK1 resulted in shorter sharp wave ripple oscillations and slightly impaired abilities in flexible sequencing task. In addition, ablation of interneuronal GluK1 resulted in lower general activity and novel object avoidance, while causing only minor anxiety phenotype. These data indicate a critical role for GluK1 containing KARs in GABAergic interneurons in regulation of physiological network dynamics in the hippocampus at different stages of development.
Collapse
Affiliation(s)
- Simo Ojanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tatiana Kuznetsova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Zoia Kharybina
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Vootele Voikar
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Tsai YC, Li CT, Juan CH. A review of critical brain oscillations in depression and the efficacy of transcranial magnetic stimulation treatment. Front Psychiatry 2023; 14:1073984. [PMID: 37260762 PMCID: PMC10228658 DOI: 10.3389/fpsyt.2023.1073984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta burst stimulation (iTBS) have been proven effective non-invasive treatments for patients with drug-resistant major depressive disorder (MDD). However, some depressed patients do not respond to these treatments. Therefore, the investigation of reliable and valid brain oscillations as potential indices for facilitating the precision of diagnosis and treatment protocols has become a critical issue. The current review focuses on brain oscillations that, mostly based on EEG power analysis and connectivity, distinguish between MDD and controls, responders and non-responders, and potential depression severity indices, prognostic indicators, and potential biomarkers for rTMS or iTBS treatment. The possible roles of each biomarker and the potential reasons for heterogeneous results are discussed, and the directions of future studies are proposed.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Cheng-Ta Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
33
|
Oliva A, Fernandez-Ruiz A, Karaba LA. CA2 orchestrates hippocampal network dynamics. Hippocampus 2023; 33:241-251. [PMID: 36575880 PMCID: PMC9974898 DOI: 10.1002/hipo.23495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp-wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.
Collapse
Affiliation(s)
- Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
34
|
Szymanski HV. Hippocampal dysfunction underlies delusions of control in schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
35
|
Guardamagna M, Stella F, Battaglia FP. Heterogeneity of network and coding states in mouse CA1 place cells. Cell Rep 2023; 42:112022. [PMID: 36709427 DOI: 10.1016/j.celrep.2023.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023] Open
Abstract
Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from past to future. Phase precession is the correlation between theta firing phase and animal position. Here, we reconsider these temporal processes in CA1 and the computational principles that they are thought to obey. We find stronger heterogeneity than previously described: we identify cells that do not phase precess but reliably express theta sequences. Other cells phase precess only when medium gamma (linked to entorhinal inputs) is strongest. The same cells express more sequences, but not precession, when slow gamma (linked to CA3 inputs) dominates. Moreover, sequences occur independently in distinct cell groups. Our results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences, suggesting a role for CA1 cells in multiplexing diverse computational processes.
Collapse
Affiliation(s)
- Matteo Guardamagna
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Gonzalez J, Torterolo P, Tort ABL. Mechanisms and functions of respiration-driven gamma oscillations in the primary olfactory cortex. eLife 2023; 12:e83044. [PMID: 36806332 PMCID: PMC10069865 DOI: 10.7554/elife.83044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gamma oscillations are believed to underlie cognitive processes by shaping the formation of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the phase of breathing cycles in several brain areas, possibly reflecting local computations driven by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and result from recurrent connections between local excitatory and inhibitory neuronal populations. Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation leading to sparse odor coding during each breathing cycle. Our results shed new light on the mechanisms of gamma oscillations, bridging computation, cognition, and physiology.
Collapse
Affiliation(s)
- Joaquin Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
| | - Adriano BL Tort
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
37
|
Hines M, Poulter S, Douchamps V, Pibiri F, McGregor A, Lever C. Frequency matters: how changes in hippocampal theta frequency can influence temporal coding, anxiety-reduction, and memory. Front Syst Neurosci 2023; 16:998116. [PMID: 36817946 PMCID: PMC9936826 DOI: 10.3389/fnsys.2022.998116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Hippocampal theta frequency is a somewhat neglected topic relative to theta power, phase, coherence, and cross-frequency coupling. Accordingly, here we review and present new data on variation in hippocampal theta frequency, focusing on functional associations (temporal coding, anxiety reduction, learning, and memory). Taking the rodent hippocampal theta frequency to running-speed relationship as a model, we identify two doubly-dissociable frequency components: (a) the slope component of the theta frequency-to-stimulus-rate relationship ("theta slope"); and (b) its y-intercept frequency ("theta intercept"). We identify three tonic determinants of hippocampal theta frequency. (1) Hotter temperatures increase theta frequency, potentially consistent with time intervals being judged as shorter when hot. Initial evidence suggests this occurs via the "theta slope" component. (2) Anxiolytic drugs with widely-different post-synaptic and pre-synaptic primary targets share the effect of reducing the "theta intercept" component, supporting notions of a final common pathway in anxiety reduction involving the hippocampus. (3) Novelty reliably decreases, and familiarity increases, theta frequency, acting upon the "theta slope" component. The reliability of this latter finding, and the special status of novelty for learning, prompts us to propose a Novelty Elicits Slowing of Theta frequency (NEST) hypothesis, involving the following elements: (1) Theta frequency slowing in the hippocampal formation is a generalised response to novelty of different types and modalities; (2) Novelty-elicited theta slowing is a hippocampal-formation-wide adaptive response functioning to accommodate the additional need for learning entailed by novelty; (3) Lengthening the theta cycle enhances associativity; (4) Even part-cycle lengthening may boost associativity; and (5) Artificial theta stimulation aimed at enhancing learning should employ low-end theta frequencies.
Collapse
|
38
|
Folschweiller S, Sauer JF. Controlling neuronal assemblies: a fundamental function of respiration-related brain oscillations in neuronal networks. Pflugers Arch 2023; 475:13-21. [PMID: 35637391 PMCID: PMC9816207 DOI: 10.1007/s00424-022-02708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
Respiration exerts profound influence on cognition, which is presumed to rely on the generation of local respiration-coherent brain oscillations and the entrainment of cortical neurons. Here, we propose an addition to that view by emphasizing the role of respiration in pacing cortical assemblies (i.e., groups of synchronized, coactive neurons). We review recent findings of how respiration directly entrains identified assembly patterns and discuss how respiration-dependent pacing of assembly activations might be beneficial for cognitive functions.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| |
Collapse
|
39
|
Duleme M, Perrey S, Dray G. Stable decoding of working memory load through frequency bands. Cogn Neurosci 2023; 14:1-14. [PMID: 35083960 DOI: 10.1080/17588928.2022.2026312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that working memory modulates every frequency band's power in the human brain. Yet, the question of how the highly distributed working memory adapts to external demands remains unresolved. Here, we explored frequency band modulations underlying working memory load, taking executive control under account. We hypothesized that synchronizations underlying various cognitive functions may be sequenced in time to avoid interference and that transient modulation of decoding accuracy of task difficulty would vary with increasing difficulty. We recorded whole scalp EEG data from 12 healthy participants, while they performed a visuo-spatial n-back task with three conditions of increasing difficulty, after an initial learning phase. We analyzed evoked spectral perturbations and time-resolved decoding of individual synchronization. Surprisingly, our results provide evidence for persistent decoding above the level-of-chance (83.17% AUC) for combined frequency bands. In fact, the decoding accuracy was higher for the combined than for isolated frequency bands (AUC from 65.93% to 74.30%). However, in line with our hypothesis, frequency band clusters transiently emerged in parieto-occipital regions within two separate time windows for alpha-/beta-band (relative synchronization from approximately 200 to 600 ms) and for the delta-/theta-band (relative desynchronization from approximately 600 to 1000 ms). Overall, these findings highlight concurrent sustained and transient measurable features of working memory load. This could reflect the emergence of stability within and between functional networks of the complex working memory system. In turn, this process allows energy savings to cope with external demands.
Collapse
Affiliation(s)
- Meyi Duleme
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Gerard Dray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| |
Collapse
|
40
|
Viney TJ, Sarkany B, Ozdemir AT, Hartwich K, Schweimer J, Bannerman D, Somogyi P. Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Rep 2022; 41:111646. [PMID: 36384116 PMCID: PMC9681663 DOI: 10.1016/j.celrep.2022.111646] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of the THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing prosubicular pyramidal cells, but the firing population retains its coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity, but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms maintain cortical neuronal coordination, counteracting the widespread pTau aggregation, loss of high-firing cells, and neurodegeneration.
Collapse
Affiliation(s)
- Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Barbara Sarkany
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - A Tugrul Ozdemir
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Katja Hartwich
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Judith Schweimer
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
41
|
Pedrosa R, Nazari M, Mohajerani MH, Knöpfel T, Stella F, Battaglia FP. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proc Natl Acad Sci U S A 2022; 119:e2204959119. [PMID: 36279469 PMCID: PMC9636925 DOI: 10.1073/pnas.2204959119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Hippocampus-neocortex interactions during sleep are critical for memory processes: Hippocampally initiated replay contributes to memory consolidation in the neocortex and hippocampal sharp wave/ripples modulate cortical activity. Yet, the spatial and temporal patterns of this interaction are unknown. With voltage imaging, electrocorticography, and laminarly resolved hippocampal potentials, we characterized cortico-hippocampal signaling during anesthesia and nonrapid eye movement sleep. We observed neocortical activation transients, with statistics suggesting a quasi-critical regime, may be helpful for communication across remote brain areas. From activity transients, we identified, in a data-driven fashion, three functional networks. A network overlapping with the default mode network and centered on retrosplenial cortex was the most associated with hippocampal activity. Hippocampal slow gamma rhythms were strongly associated to neocortical transients, even more than ripples. In fact, neocortical activity predicted hippocampal slow gamma and followed ripples, suggesting that consolidation processes rely on bidirectional signaling between hippocampus and neocortex.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Francesco P. Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
42
|
McHugh SB, Lopes-Dos-Santos V, Gava GP, Hartwich K, Tam SKE, Bannerman DM, Dupret D. Adult-born dentate granule cells promote hippocampal population sparsity. Nat Neurosci 2022; 25:1481-1491. [PMID: 36216999 PMCID: PMC9630129 DOI: 10.1038/s41593-022-01176-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/01/2022] [Indexed: 01/13/2023]
Abstract
The dentate gyrus (DG) gates neocortical information flow to the hippocampus. Intriguingly, the DG also produces adult-born dentate granule cells (abDGCs) throughout the lifespan, but their contribution to downstream firing dynamics remains unclear. Here, we show that abDGCs promote sparser hippocampal population spiking during mnemonic processing of novel stimuli. By combining triple-(DG-CA3-CA1) ensemble recordings and optogenetic interventions in behaving mice, we show that abDGCs constitute a subset of high-firing-rate neurons with enhanced activity responses to novelty and strong modulation by theta oscillations. Selectively activating abDGCs in their 4-7-week post-birth period increases sparsity of hippocampal population patterns, whereas suppressing abDGCs reduces this sparsity, increases principal cell firing rates and impairs novel object recognition with reduced dimensionality of the network firing structure, without affecting single-neuron spatial representations. We propose that adult-born granule cells transiently support sparser hippocampal population activity structure for higher-dimensional responses relevant to effective mnemonic information processing.
Collapse
Affiliation(s)
- Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Li M, Cheng S, Fan J, Shang Z, Wan H, Yang L, Yang L. Disarrangement and reorganization of the hippocampal functional connectivity during the spatial path adjustment of pigeons. BMC ZOOL 2022; 7:54. [PMID: 37170160 PMCID: PMC10127027 DOI: 10.1186/s40850-022-00143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The hippocampus plays an important role to support path planning and adjustment in goal-directed spatial navigation. While we still only have limited knowledge about how do the hippocampal neural activities, especially the functional connectivity patterns, change during the spatial path adjustment. In this study, we measured the behavioural indicators and local field potentials of the pigeon (Columba livia, male and female) during a goal-directed navigational task with the detour paradigm, exploring the changing patterns of the hippocampal functional network connectivity of the bird during the spatial path learning and adjustment.
Results
Our study demonstrates that the pigeons progressively learned to solve the path adjustment task after the preferred path is blocked suddenly. Behavioural results show that both the total duration and the path lengths pigeons completed the task during the phase of adjustment are significantly longer than those during the acquisition and recovery phases. Furthermore, neural results show that hippocampal functional connectivity selectively changed during path adjustment. Specifically, we identified depressed connectivity in lower bands (delta and theta) and elevated connectivity in higher bands (slow-gamma and fast-gamma).
Conclusions
These results feature both the behavioural response and neural representation of the avian spatial cognitive learning process, suggesting that the functional disarrangement and reorganization of the connectivity in the avian hippocampus during different phases may contribute to our further understanding of the potential mechanism of path learning and adjustment.
Collapse
|
44
|
Zheng J, Skelin I, Lin JJ. Neural computations underlying contextual processing in humans. Cell Rep 2022; 40:111395. [PMID: 36130515 PMCID: PMC9552771 DOI: 10.1016/j.celrep.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Context shapes our perception of facial expressions during everyday social interactions. We interpret a person’s face in a hostile situation negatively and judge the same face under pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-specific framing to resolve ambiguity and guide our interpersonal behavior. This context-specific modulation of facial expression is thought to engage the amygdala, hippocampus, and orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use human intracranial electroencephalograms (EEGs) directly recorded from these regions and report bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating contextual processing. Contextual information is subsequently represented in the orbitofrontal cortex, where a theta phase shift binds context and face associations within theta cycles, endowing faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as mediating associations between context and face processing, supporting flexible social behavior. Context influences our perception of facial expressions. Zheng et al. show that contextual modulation of faces relies on medial temporal lobe-orbitofrontal cortex communications in humans. High gamma bursts occur in rhythm with theta oscillations, with cross-regional theta-gamma phase shifts binding context-face associations.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
45
|
Pardo-Bellver C, Vila-Martin ME, Martínez-Bellver S, Villafranca-Faus M, Teruel-Sanchis A, Savarelli-Balsamo CA, Drabik SM, Martínez-Ricós J, Cervera-Ferri A, Martínez-García F, Lanuza E, Teruel-Martí V. Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice. Front Neuroanat 2022; 16:988015. [PMID: 36120099 PMCID: PMC9479637 DOI: 10.3389/fnana.2022.988015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Manuel E. Vila-Martin
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Villafranca-Faus
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Anna Teruel-Sanchis
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Camila A. Savarelli-Balsamo
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sylwia M. Drabik
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Joana Martínez-Ricós
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Fernando Martínez-García
- Faculty of Health Sciences, Pre-Departmental Unit of Medicine, Jaume I University, Castellón de la Plana, Spain
| | - Enrique Lanuza
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- *Correspondence: Enrique Lanuza,
| | - Vicent Teruel-Martí
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Vicent Teruel-Martí,
| |
Collapse
|
46
|
Fabus MS, Woolrich MW, Warnaby CW, Quinn AJ. Understanding Harmonic Structures Through Instantaneous Frequency. IEEE OPEN JOURNAL OF SIGNAL PROCESSING 2022; 3:320-334. [PMID: 36172264 PMCID: PMC9491016 DOI: 10.1109/ojsp.2022.3198012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
The analysis of harmonics and non-sinusoidal waveform shape in time-series data is growing in importance. However, a precise definition of what constitutes a harmonic is lacking. In this paper, we propose a rigorous definition of when to consider signals to be in a harmonic relationship based on an integer frequency ratio, constant phase, and a well-defined joint instantaneous frequency. We show this definition is linked to extrema counting and Empirical Mode Decomposition (EMD). We explore the mathematics of our definition and link it to results from analytic number theory. This naturally leads to us to define two classes of harmonic structures, termed strong and weak, with different extrema behaviour. We validate our framework using both simulations and real data. Specifically, we look at the harmonic structures in shallow water waves, the FitzHugh-Nagumo neuronal model, and the non-sinusoidal theta oscillation in rat hippocampus local field potential data. We further discuss how our definition helps to address mode splitting in nonlinear time-series decomposition methods. A clear understanding of when harmonics are present in signals will enable a deeper understanding of the functional roles of non-sinusoidal oscillations.
Collapse
Affiliation(s)
- Marco S. Fabus
- Nuffield Deparment of Clinical NeurosciencesUniversity of OxfordOxfordOX1 2JDU.K.
| | | | - Catherine W. Warnaby
- Nuffield Deparment of Clinical NeurosciencesUniversity of OxfordOxfordOX1 2JDU.K.
| | - Andrew J. Quinn
- Department of PsychiatryUniversity of OxfordOxfordOX1 2JDU.K.
| |
Collapse
|
47
|
Rayan A, Donoso JR, Mendez-Couz M, Dolón L, Cheng S, Manahan-Vaughan D. Learning shifts the preferred theta phase of gamma oscillations in CA1. Hippocampus 2022; 32:695-704. [PMID: 35920344 DOI: 10.1002/hipo.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
Hippocampal neuronal oscillations reflect different cognitive processes and can therefore be used to dissect the role of hippocampal subfields in learning and memory. In particular, it has been suggested that encoding and retrieval is associated with slow gamma (25-55 Hz) and fast gamma (60-100 Hz) oscillations, respectively, which appear in a nested manner at specific phases of the ongoing theta oscillations (4-12 Hz). However, the relationship between memory demand and the theta phase of gamma oscillations remains unclear. Here, we assessed the theta phase preference of gamma oscillations in the CA1 region, at the starting and junction zones of a T-maze, while rats were learning an appetitive task. We found that the theta phase preference of slow gamma showed a ~180° phase shift when animals switched from novice to skilled performance during task acquisition. This phase-shift was not present at the junction zone, where animals chose a right or left turn within the T-maze, suggesting that a recall/decision process had already taken place at the starting zone. Our findings indicate that slow gamma oscillations support both encoding and retrieval, depending on the theta phase at which they occur. These properties are particularly evident prior to cognitive engagement in an acquired spatial task.
Collapse
Affiliation(s)
- Abdelrahman Rayan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - José R Donoso
- Faculty of Computer Science, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Marta Mendez-Couz
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Laura Dolón
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Faculty of Computer Science, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
48
|
Sakalar E, Klausberger T, Lasztóczi B. Neurogliaform cells dynamically decouple neuronal synchrony between brain areas. Science 2022; 377:324-328. [DOI: 10.1126/science.abo3355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effective communication across brain areas requires distributed neuronal networks to dynamically synchronize or decouple their ongoing activity. GABA
ergic
interneurons lock ensembles to network oscillations, but there remain questions regarding how synchrony is actively disengaged to allow for new communication partners. We recorded the activity of identified interneurons in the CA1 hippocampus of awake mice. Neurogliaform cells (NGFCs)—which provide GABA
ergic
inhibition to distal dendrites of pyramidal cells—strongly coupled their firing to those gamma oscillations synchronizing local networks with cortical inputs. Rather than strengthening such synchrony, action potentials of NGFCs decoupled pyramidal cell activity from cortical gamma oscillations but did not reduce their firing nor affect local oscillations. Thus, NGFCs regulate information transfer by temporarily disengaging the synchrony without decreasing the activity of communicating networks.
Collapse
Affiliation(s)
- Ece Sakalar
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bálint Lasztóczi
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Ghosh M, Yang FC, Rice SP, Hetrick V, Gonzalez AL, Siu D, Brennan EKW, John TT, Ahrens AM, Ahmed OJ. Running speed and REM sleep control two distinct modes of rapid interhemispheric communication. Cell Rep 2022; 40:111028. [PMID: 35793619 PMCID: PMC9291430 DOI: 10.1016/j.celrep.2022.111028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Rhythmic gamma-band communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, using multisite recordings in both rats and mice, we show that even faster ~140 Hz rhythms are robustly anti-phase across cortical hemispheres, visually resembling splines, the interlocking teeth on mechanical gears. Splines are strongest in superficial granular retrosplenial cortex, a region important for spatial navigation and memory. Spline-frequency interhemispheric communication becomes more coherent and more precisely anti-phase at faster running speeds. Anti-phase splines also demarcate high-activity frames during REM sleep. While splines and associated neuronal spiking are anti-phase across retrosplenial hemispheres during navigation and REM sleep, gamma-rhythmic interhemispheric communication is precisely in-phase. Gamma and splines occur at distinct points of a theta cycle and thus highlight the ability of interhemispheric cortical communication to rapidly switch between in-phase (gamma) and anti-phase (spline) modes within individual theta cycles during both navigation and REM sleep. Gamma-rhythmic communication within and across cortical hemispheres is critical for optimal perception, navigation, and memory. Here, Ghosh et al. identify even faster ~140 Hz rhythms, named splines, that reflect anti-phase neuronal synchrony across hemispheres. The balance of anti-phase spline and in-phase gamma communication is dynamically controlled by behavior and sleep.
Collapse
Affiliation(s)
- Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang-Chi Yang
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharena P Rice
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaughn Hetrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alcides Lorenzo Gonzalez
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danny Siu
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen K W Brennan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tibin T John
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison M Ahrens
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
López-Madrona VJ, Medina Villalon S, Badier JM, Trébuchon A, Jayabal V, Bartolomei F, Carron R, Barborica A, Vulliémoz S, Alario FX, Bénar CG. Magnetoencephalography can reveal deep brain network activities linked to memory processes. Hum Brain Mapp 2022; 43:4733-4749. [PMID: 35766240 PMCID: PMC9491290 DOI: 10.1002/hbm.25987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large‐scale neocortical networks. In the present study, we disentangled mesial activity and large‐scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo‐electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | | | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Geneva, Switzerland
| | | | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|