1
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nat Commun 2024; 15:10741. [PMID: 39738049 PMCID: PMC11685451 DOI: 10.1038/s41467-024-54960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Christopher A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Park PY, Bleakley LE, Saraya N, Al-Jawahiri R, Eck J, Aloi MA, Melland H, Baker K, Gordon SL. Correlation between evoked neurotransmitter release and adaptive functions in SYT1-associated neurodevelopmental disorder. EBioMedicine 2024; 109:105416. [PMID: 39481209 PMCID: PMC11564929 DOI: 10.1016/j.ebiom.2024.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Pathogenic missense variants in the essential synaptic vesicle protein synaptotagmin-1 (SYT1) cause a neurodevelopmental disorder characterised by motor delay and intellectual disability, hyperkinetic movement disorder, episodic agitation, and visual impairments. SYT1 is the presynaptic calcium sensor that triggers synchronous neurotransmitter release. We have previously shown that pathogenic variants around the calcium-sensing region of the critical C2B domain decrease synaptic vesicle exocytosis in neurons. METHODS Here, we have used cultured hippocampal neurons transfected with SYT1-pHluorin to examine how variants within the C2A and C2B domain of SYT1 impact evoked exocytosis. FINDINGS We show that recently identified variants within the facilitatory C2A domain of the protein (L159R, T196K, E209K, E219Q), as well as additional variants in the C2B domain (M303V, S309P, Y365C, G369D), share an underlying pathogenic mechanism, causing a graded and variant-dependent dominant-negative impairment in exocytosis. We establish that the extent of evoked exocytosis observed in vitro in the presence of SYT1 variants correlates with neurodevelopmental impacts of this disorder. Specifically, the severity of motor and communication impairments exhibited by individuals harbouring these variants correlates with multiple measures of exocytic efficiency. INTERPRETATION Together, this suggests that there is a genotype-function-phenotype relationship in SYT1-associated neurodevelopmental disorder, centring impaired evoked neurotransmitter release as a common pathogenic driver. Moreover, this points toward a direct link between control of neurotransmitter release and development of adaptive functions, providing a tractable target for therapeutic amelioration. FUNDING Australian National Health and Medical Research Council, UK Medical Research Council, Great Ormond Street Hospital Children's Charity, University of Melbourne.
Collapse
Affiliation(s)
- Paul Yangho Park
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Lauren Elizabeth Bleakley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Nadia Saraya
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Reem Al-Jawahiri
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Josefine Eck
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Marc Anthony Aloi
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Holly Melland
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, 3052, VIC, Australia; Neuromedicines Discovery Centre, Monash University, Parkville, 3052, VIC, Australia
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK; Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Sarah Louise Gordon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, Australia.
| |
Collapse
|
3
|
Kumar A, Schrader AW, Aggarwal B, Boroojeny AE, Asadian M, Lee J, Song YJ, Zhao SD, Han HS, Sinha S. Intracellular spatial transcriptomic analysis toolkit (InSTAnT). Nat Commun 2024; 15:7794. [PMID: 39242579 PMCID: PMC11379969 DOI: 10.1038/s41467-024-49457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/04/2024] [Indexed: 09/09/2024] Open
Abstract
Imaging-based spatial transcriptomics technologies such as Multiplexed error-robust fluorescence in situ hybridization (MERFISH) can capture cellular processes in unparalleled detail. However, rigorous and robust analytical tools are needed to unlock their full potential for discovering subcellular biological patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT), a computational toolkit for extracting molecular relationships from spatial transcriptomics data at single molecule resolution. InSTAnT employs specialized statistical tests and algorithms to detect gene pairs and modules exhibiting intriguing patterns of co-localization, both within individual cells and across the cellular landscape. We showcase the toolkit on five different datasets representing two different cell lines, two brain structures, two species, and three different technologies. We perform rigorous statistical assessment of discovered co-localization patterns, find supporting evidence from databases and RNA interactions, and identify associated subcellular domains. We uncover several cell type and region-specific gene co-localizations within the brain. Intra-cellular spatial patterns discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and shared sub-cellular localization or function, providing a rich compendium of testable hypotheses regarding molecular functions.
Collapse
Affiliation(s)
- Anurendra Kumar
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bhavay Aggarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - JuYeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Saurabh Sinha
- H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Weingarten DJ, Shrestha A, Orlin DJ, Le Moing CL, Borchardt LA, Jackman SL. Synaptotagmins 3 and 7 mediate the majority of asynchronous release from synapses in the cerebellum and hippocampus. Cell Rep 2024; 43:114595. [PMID: 39116209 PMCID: PMC11410144 DOI: 10.1016/j.celrep.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel J Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Chloé L Le Moing
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luke A Borchardt
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. A minimal presynaptic protein machinery mediating synchronous and asynchronous exocytosis and short-term plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589559. [PMID: 38659918 PMCID: PMC11042279 DOI: 10.1101/2024.04.15.589559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic Ca2+ influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically-relevant conditions to delineate the minimal protein machinery sufficient to account for different modes of Ca2+-triggered vesicle fusion and short-term facilitation. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin, synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon Ca2+ activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of Ca2+-triggered fusion clamp reversal, govern the kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal Ca2+ concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the Ca2+-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Manindra Bera
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Cell Biology, Yale University School of Medicine, New Haven, USA
| | - Chris A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Cell Biology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Shyam S Krishnakumar
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
6
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
7
|
Wu Z, Kusick GF, Berns MMM, Raychaudhuri S, Itoh K, Walter AM, Chapman ER, Watanabe S. Synaptotagmin 7 docks synaptic vesicles to support facilitation and Doc2α-triggered asynchronous release. eLife 2024; 12:RP90632. [PMID: 38536730 PMCID: PMC10972563 DOI: 10.7554/elife.90632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manon MM Berns
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Alexander M Walter
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
- Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, FMP im CharitéCrossOverBerlinGermany
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
8
|
Jung JW, Kim H, Park J, Woo J, Jeon E, Lee G, Park M, Kim S, Seo H, Cheon S, Dan K, Lee J, Ryu H, Han D. In-depth proteome analysis of brain tissue from Ewsr1 knockout mouse by multiplexed isobaric tandem mass tag labeling. Sci Rep 2023; 13:15261. [PMID: 37709831 PMCID: PMC10502055 DOI: 10.1038/s41598-023-42161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
EWS RNA binding protein 1 (EWSR1) is a multifunctional protein whose epigenetic signatures contribute to the pathogenesis of various human diseases, such as neurodegenerative disorders, skin development, and tumorigenic processes. However, the specific cellular functions and physiological characteristics of EWSR1 remain unclear. In this study, we used quantitative mass spectrometry-based proteomics with tandem mass tag labeling to investigate the global proteome changes in brain tissue in Ewsr1 knockout and wild-type mice. From 9115 identified proteins, we selected 118 differentially expressed proteins, which is common to three quantitative data processing strategies including only protein level normalizations and spectrum-protein level normalization. Bioinformatics analysis of these common differentially expressed proteins revealed that proteins up-regulated in Ewsr1 knockout mouse are mostly related to the positive regulation of bone remodeling and inflammatory response. The down-regulated proteins were associated with the regulation of neurotransmitter levels or amino acid metabolic processes. Collectively, these findings provide insight into the physiological function and pathogenesis of EWSR1 on protein level. Better understanding of EWSR1 and its protein interactions will advance the field of clinical research into neuronal disorders. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026994.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Joonho Park
- Department of Pharmacology, CHA University College of Medicine, Pocheon-si, 11160, South Korea
| | - Jongmin Woo
- Center for Translational Biomedical Research, North Carolina Research Campus, University of North Carolina at Greensboro, Kannapolis, NC, 28081, USA
| | - Eunji Jeon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Geeeun Lee
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03082, South Korea
| | - Minseo Park
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Sarang Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03082, South Korea
| | - Hoseok Seo
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, South Korea.
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03082, South Korea.
- Department of Medicine, College of Medicine, Seoul National University, Seoul, 03082, South Korea.
| |
Collapse
|
9
|
Caballero-Florán RN, Bendahmane M, Gupta JP, Chen X, Wu X, Morales A, Anantharam A, Jenkins PM. Synaptotagmin-7 facilitates acetylcholine release in splanchnic nerve-chromaffin cell synapses during nerve activity. Neurosci Lett 2023; 800:137129. [PMID: 36796621 PMCID: PMC10145958 DOI: 10.1016/j.neulet.2023.137129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Disturbances that threaten homeostasis elicit activation of the sympathetic nervous system (SNS) and the adrenal medulla. The effectors discharge as a unit to drive global and immediate changes in whole-body physiology. Descending sympathetic information is conveyed to the adrenal medulla via preganglionic splanchnic fibers. These fibers pass into the gland and synapse onto chromaffin cells, which synthesize, store, and secrete catecholamines and vasoactive peptides. While the importance of the sympatho-adrenal branch of the autonomic nervous system has been appreciated for many decades, the mechanisms underlying transmission between presynaptic splanchnic neurons and postsynaptic chromaffin cells have remained obscure. In contrast to chromaffin cells, which have enjoyed sustained attention as a model system for exocytosis, even the Ca2+ sensors that are expressed within splanchnic terminals have not yet been identified. This study shows that a ubiquitous Ca2+-binding protein, synaptotagmin-7 (Syt7), is expressed within the fibers that innervate the adrenal medulla, and that its absence can alter synaptic transmission in the preganglionic terminals of chromaffin cells. The prevailing impact in synapses that lack Syt7 is a decrease in synaptic strength and neuronal short-term plasticity. Evoked excitatory postsynaptic currents (EPSCs) in Syt7 KO preganglionic terminals are smaller in amplitude than in wild-type synapses stimulated in an identical manner. Splanchnic inputs also display robust short-term presynaptic facilitation, which is compromised in the absence of Syt7. These data reveal, for the first time, a role for any synaptotagmin at the splanchnic-chromaffin cell synapse. They also suggest that Syt7 has actions at synaptic terminals that are conserved across central and peripheral branches of the nervous system.
Collapse
Affiliation(s)
- René N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Mounir Bendahmane
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Xiaohuan Chen
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Xiaojun Wu
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Alina Morales
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Arun Anantharam
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
10
|
Mendonça PRF, Tagliatti E, Langley H, Kotzadimitriou D, Zamora-Chimal CG, Timofeeva Y, Volynski KE. Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone. Nat Commun 2022; 13:3497. [PMID: 35715404 PMCID: PMC9206079 DOI: 10.1038/s41467-022-31070-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.
Collapse
Affiliation(s)
- Philipe R F Mendonça
- University College London Institute of Neurology, London, UK. .,Department of Physiology and Biophysics, Federal University of Minas Gerais, Gerais, Brazil.
| | - Erica Tagliatti
- University College London Institute of Neurology, London, UK
| | - Helen Langley
- University College London Institute of Neurology, London, UK
| | | | | | - Yulia Timofeeva
- University College London Institute of Neurology, London, UK. .,Department of Computer Science, University of Warwick, Coventry, UK.
| | | |
Collapse
|
11
|
Müller NIC, Paulußen I, Hofmann LN, Fisch JO, Singh A, Friauf E. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness. J Physiol 2022; 600:2461-2497. [PMID: 35439328 DOI: 10.1113/jp280403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young-adult ages (P38) employing deaf mice lacking otoferlin (KO). We analyzed neurotransmission at single MNTB-LSO fibers in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz|60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision, and action potential robustness. Between P11-P38, several synaptic parameters increased substantially in WTs, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience. ABSTRACT Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibers upon sustained electrical stimulation (1-200 Hz|60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11-P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles (SVs) and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤ 100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modeling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. Abstract figure legend MNTB-LSO inputs are a major component of the mammalian auditory brainstem. Reliable neurotransmission at these inputs requires both failure-free conduction of action potentials and robust synaptic transmission. The development of reliable neurotransmission depends crucially on functional hearing, as demonstrated in a time series and by the fact that deafness - upon loss of the protein otoferlin - results in severely impaired synaptic release and replenishment machineries. These findings from animal research may have some implications towards optimizing cochlear implant strategies on newborn humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Isabelle Paulußen
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Lina N Hofmann
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Jonas O Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Abhyudai Singh
- 3Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| |
Collapse
|
12
|
Weyrer C, Turecek J, Harrison B, Regehr WG. Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse. Cell Rep 2021; 36:109719. [PMID: 34551307 PMCID: PMC9152841 DOI: 10.1016/j.celrep.2021.109719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022] Open
Abstract
Synaptotagmin 7 (Syt7) is a high-affinity calcium sensor that is implicated in multiple aspects of synaptic transmission. Here, we study the influence of Syt7 on the climbing fiber (CF) to Purkinje cell (PC) synapse. We find that small facilitation and prominent calcium-dependent recovery from depression at this synapse do not rely on Syt7 and that Syt7 is not normally present in CFs. We expressed Syt7 in CFs to assess the consequences of introducing Syt7 to a synapse that normally lacks Syt7. Syt7 expression does not promote asynchronous release or accelerate recovery from depression. Syt7 decreases the excitatory postsynaptic current (EPSC) magnitude, consistent with a decrease in the initial probability of release (PR). Syt7 also increases synaptic facilitation to such a large extent that it could not arise solely as an indirect consequence of decreased PR. Thus, the primary consequence of Syt7 expression in CFs, which normally lack Syt7, is to promote synaptic facilitation.
Collapse
Affiliation(s)
- Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bailey Harrison
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Zempolich GW, Brown ST, Holla M, Raman IM. Simple and complex spike responses of mouse cerebellar Purkinje neurons to regular trains and omissions of somatosensory stimuli. J Neurophysiol 2021; 126:763-776. [PMID: 34346760 DOI: 10.1152/jn.00170.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebellar Purkinje neurons help compute absolute subsecond timing, but how their firing is affected during repetitive sensory stimulation with consistent subsecond intervals remains unaddressed. Here, we investigated how simple and complex spikes of Purkinje cells change during regular application of air puffs (3.3 Hz for ∼4 min) to the whisker pad of awake, head-fixed female mice. Complex spike responses fell into two categories: those in which firing rates increased (at ∼50 ms) and then fell [complex spike elevated (CxSE) cells] and those in which firing rates decreased (at ∼70 ms) and then rose [complex spike reduced (CxSR) cells]. Both groups had indistinguishable rates of basal complex (∼1.7 Hz) and simple (∼75 Hz) spikes and initially responded to puffs with a well-timed sensory response, consisting of a short-latency (∼15 ms), transient (4 ms) suppression of simple spikes. CxSE more than CxSR cells, however, also showed a longer-latency increase in simple spike rate, previously shown to reflect motor command signals. With repeated puffs, basal simple spike rates dropped greatly in CxSR but not CxSE cells; complex spike rates remained constant, but their temporal precision rose in CxSR cells and fell in CxSE cells. Also over time, transient simple spike suppression gradually disappeared in CxSE cells, suggesting habituation, but remained stable in CxSR cells, suggesting reliable transmission of sensory stimuli. During stimulus omissions, both categories of cells showed complex spike suppression with different latencies. The data indicate two modes by which Purkinje cells transmit regular repetitive stimuli, distinguishable by their climbing fiber signals.NEW & NOTEWORTHY Responses of cerebellar Purkinje cells in awake mice form two categories defined by complex spiking during regular trains of brief, somatosensory stimuli. Cells in which complex spike probability first increases or decreases show simple spike suppressions that habituate or persist, respectively. Stimulus omissions alter complex spiking. The results provide evidence for differential suppression of olivary cells during sensory stimulation and omissions and illustrate that climbing fiber innervation defines Purkinje cell responses to repetitive stimuli.
Collapse
Affiliation(s)
- Grant W Zempolich
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Meghana Holla
- Department of Neurobiology, Northwestern University, Evanston, Illinois.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, Illinois.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois
| |
Collapse
|
14
|
Kay Y, Herring BE. An optogenetic method for investigating presynaptic molecular regulation. Sci Rep 2021; 11:11329. [PMID: 34059719 PMCID: PMC8166971 DOI: 10.1038/s41598-021-90244-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
While efficient methods are well established for studying postsynaptic protein regulation of glutamatergic synapses in the mammalian central nervous system, similarly efficient methods are lacking for studying proteins regulating presynaptic function. In the present study, we introduce an optical/electrophysiological method for investigating presynaptic molecular regulation. Here, using an optogenetic approach, we selectively stimulate genetically modified presynaptic CA3 pyramidal neurons in the hippocampus and measure optically-induced excitatory postsynaptic currents produced in unmodified postsynaptic CA1 pyramidal neurons. While such use of optogenetics is not novel, previous implementation methods do not allow basic quantification of the changes in synaptic strength produced by genetic manipulations. We find that incorporating simultaneous recordings of fiber volley amplitude provides a control for optical stimulation intensity and, as a result, creates a metric of synaptic efficacy that can be compared across experimental conditions. In the present study, we utilize our new method to demonstrate that inhibition of synaptotagmin 1 expression in CA3 pyramidal neurons leads to a significant reduction in Schaffer collateral synapse function, an effect that is masked with conventional electrical stimulation. Our hope is that this method will expedite our understanding of molecular regulatory pathways that govern presynaptic function.
Collapse
Affiliation(s)
- Yuni Kay
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Bruce E Herring
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca 2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 2021; 109:1314-1332.e5. [PMID: 33711258 PMCID: PMC8068669 DOI: 10.1016/j.neuron.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Elena Nosyreva
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ok-Ho Shin
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Hua Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA,FOE Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.,Vanderbilt Brain Institute.,Corresponding author: Ege T. Kavalali, Ph.D., Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, 7130A MRBIII, PMB407933 Nashville, TN 37240-7933, phone: 615-343-5480,
| |
Collapse
|
16
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
18
|
Fujii T, Sakurai A, Littleton JT, Yoshihara M. Synaptotagmin 7 switches short-term synaptic plasticity from depression to facilitation by suppressing synaptic transmission. Sci Rep 2021; 11:4059. [PMID: 33603074 PMCID: PMC7892890 DOI: 10.1038/s41598-021-83397-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/22/2021] [Indexed: 01/25/2023] Open
Abstract
Short-term synaptic plasticity is a fast and robust modification in neuronal presynaptic output that can enhance release strength to drive facilitation or diminish it to promote depression. The mechanisms that determine whether neurons display short-term facilitation or depression are still unclear. Here we show that the Ca2+-binding protein Synaptotagmin 7 (Syt7) determines the sign of short-term synaptic plasticity by controlling the initial probability of synaptic vesicle (SV) fusion. Electrophysiological analysis of Syt7 null mutants at Drosophila embryonic neuromuscular junctions demonstrate loss of the protein converts the normally observed synaptic facilitation response during repetitive stimulation into synaptic depression. In contrast, overexpression of Syt7 dramatically enhanced the magnitude of short-term facilitation. These changes in short-term plasticity were mirrored by corresponding alterations in the initial evoked response, with SV release probability enhanced in Syt7 mutants and suppressed following Syt7 overexpression. Indeed, Syt7 mutants were able to display facilitation in lower [Ca2+] where release was reduced. These data suggest Syt7 does not act by directly sensing residual Ca2+ and argues for the existence of a distinct Ca2+ sensor beyond Syt7 that mediates facilitation. Instead, Syt7 normally suppresses synaptic transmission to maintain an output range where facilitation is available to the neuron.
Collapse
Affiliation(s)
- Takaaki Fujii
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan
| | - Akira Sakurai
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Motojiro Yoshihara
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan.
| |
Collapse
|
19
|
Turecek J, Regehr WG. Cerebellar and vestibular nuclear synapses in the inferior olive have distinct release kinetics and neurotransmitters. eLife 2020; 9:e61672. [PMID: 33259288 PMCID: PMC7707816 DOI: 10.7554/elife.61672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023] Open
Abstract
The inferior olive (IO) is composed of electrically-coupled neurons that make climbing fiber synapses onto Purkinje cells. Neurons in different IO subnuclei are inhibited by synapses with wide ranging release kinetics. Inhibition can be exclusively synchronous, asynchronous, or a mixture of both. Whether the same boutons, neurons or sources provide these kinetically distinct types of inhibition was not known. We find that in mice the deep cerebellar nuclei (DCN) and vestibular nuclei (VN) are two major sources of inhibition to the IO that are specialized to provide inhibitory input with distinct kinetics. DCN to IO synapses lack fast synaptotagmin isoforms, release neurotransmitter asynchronously, and are exclusively GABAergic. VN to IO synapses contain fast synaptotagmin isoforms, release neurotransmitter synchronously, and are mediated by combined GABAergic and glycinergic transmission. These findings indicate that VN and DCN inhibitory inputs to the IO are suited to control different aspects of IO activity.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
20
|
Jin H, Pang Q, Fang M, Wang Y, Man Z, Tan Y, Liu H. Syt-7 overexpression predicts poor prognosis and promotes cell proliferation in hepatocellular carcinoma. Future Oncol 2020; 16:2809-2819. [PMID: 33052751 DOI: 10.2217/fon-2020-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: To explore the prognostic significance of Syt-7 in hepatocellular carcinoma (HCC) and the potential mechanisms. Methods: Immunohistochemistry was used to examine the expression of Syt-7. Overall survival and disease-free survival were compared between Syt-7 positive and negative groups. The effects of Syt-7 knockdown on BEL-7404 cells were further evaluated. Results: Syt-7 expression was significantly higher in HCC tumorous tissues compared with paracancerous tissues. Syt-7 was closely associated with α-fetoprotein tumor size, vascular invasion, tumor node metastasis stage and tumor differentiation. Syt-7 was an independent risk factor for overall survival and disease-free survival. Additionally, Syt-7 knockdown inhibited proliferation and colony formation and induced cell cycle arrest in HCC cells. Conclusion: Syt-7 overexpression forecasts unfavorable prognosis and promotes cell proliferation in HCC.
Collapse
Affiliation(s)
- Hao Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Meifang Fang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Yong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Zhongran Man
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| | - Huichun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR China
| |
Collapse
|
21
|
Tsentsevitsky AN, Zakyrjanova GF, Petrov AM. Cadmium desynchronizes neurotransmitter release in the neuromuscular junction: Key role of ROS. Free Radic Biol Med 2020; 155:19-28. [PMID: 32445865 DOI: 10.1016/j.freeradbiomed.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Cd2+ is one of the most widespread environmental pollutants and its accumulation in central and peripheral nervous systems leads to neurotoxicity as well as aggravation of common neurodegenerative diseases. Mechanism of the Cd2+ toxicity is far from being resolved. Here, using microelectrode recordings of postsynaptic responses and fluorescent redox indicators we studied the effect of Cd2+ in the submicromolar range on timing of neurotransmitter release and oxidative status in two functionally different compartments of the same frog motor nerve terminal. Cd2+ (0.1-1 μM) acting as typical voltage-gated Ca2+channel (VGCC) antagonist decreased neurotransmitter release in both distal and proximal parts of the nerve terminal, but in contrast to the VGCC blockers Cd2+(0.1-0.5 μM) desynchronized the release selectively in the distal region. The latter action of Cd2+ was completely prevented by inhibitor of NADPH-oxidase and antioxidants, including mitochondrial specific, as well as redox-sensitive TRPV1 channel blocker. Cd2+ markedly increased levels of mitochondrial reactive oxygen species (ROS) in both the distal and proximal compartments of the nerve terminal, which was associated with lipid peroxidation mainly in the distal region. Zn2+, whose transport systems translocate Cd2+, markedly enhanced the effects of Cd2+ on both the mitochondrial ROS levels and timing of neurotransmitter release. Furthermore, in the presence of Zn2+ ions, Cd2+ also desynchronized the neurotransmitter release in the proximal region. Thus, in synapses Cd2+ at very low concentrations can increase mitochondrial ROS, lipid peroxidation and disturb the timing of neurotransmitter release via a ROS/TRPV-dependent mechanism. Desynchronization of neurotransmitter release and synaptic oxidative stress could be early events in Cd2+ neurotoxicity.
Collapse
Affiliation(s)
- A N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - G F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - A M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
22
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Banerjee A, Lee J, Nemcova P, Liu C, Kaeser PS. Synaptotagmin-1 is the Ca 2+ sensor for fast striatal dopamine release. eLife 2020; 9:58359. [PMID: 32490813 PMCID: PMC7319770 DOI: 10.7554/elife.58359] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Dopamine powerfully controls neural circuits through neuromodulation. In the vertebrate striatum, dopamine adjusts cellular functions to regulate behaviors across broad time scales, but how the dopamine secretory system is built to support fast and slow neuromodulation is not known. Here, we set out to identify Ca2+-triggering mechanisms for dopamine release. We find that synchronous dopamine secretion is abolished in acute brain slices of conditional knockout mice in which Synaptotagmin-1 is removed from dopamine neurons. This indicates that Synaptotagmin-1 is the Ca2+ sensor for fast dopamine release. Remarkably, dopamine release induced by strong depolarization and asynchronous release during stimulus trains are unaffected by Synaptotagmin-1 knockout. Microdialysis further reveals that these modes and action potential-independent release provide significant amounts of extracellular dopamine in vivo. We propose that the molecular machinery for dopamine secretion has evolved to support fast and slow signaling modes, with fast release requiring the Ca2+ sensor Synaptotagmin-1.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jinoh Lee
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Paulina Nemcova
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
25
|
Huson V, Regehr WG. Diverse roles of Synaptotagmin-7 in regulating vesicle fusion. Curr Opin Neurobiol 2020; 63:42-52. [PMID: 32278209 DOI: 10.1016/j.conb.2020.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
Synaptotagmin 7 (Syt7) is a multifunctional calcium sensor expressed throughout the body. Its high calcium affinity makes it well suited to act in processes triggered by modest calcium increases within cells. In synaptic transmission, Syt7 has been shown to mediate asynchronous neurotransmitter release, facilitation, and vesicle replenishment. In this review we provide an update on recent developments, and the newly emerging roles of Syt7 in frequency invariant synaptic transmission and in suppressing spontaneous release. Additionally, we discuss Syt7's regulation of membrane fusion in non-neuronal cells, and its involvement in disease. How such diversity of functions is regulated remains an open question. We discuss several potential factors including temperature, presynaptic calcium signals, the localization of Syt7, and its interaction with other Syt isoforms.
Collapse
|
26
|
Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex. Neuron 2020; 105:522-533.e4. [DOI: 10.1016/j.neuron.2019.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
|
27
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
28
|
Fawley JA, Andresen MC. Distinct Calcium Sources Define Compartmentalized Synaptic Signaling Domains. Neuroscientist 2019; 25:408-419. [PMID: 31375041 DOI: 10.1177/1073858419863771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nervous system communication relies on neurotransmitter release for synaptic transmission between neurons. Neurotransmitter is contained within vesicles in presynaptic terminals and intraterminal calcium governs the fundamental step of their release into the synaptic cleft. Despite a common dependence on calcium, synaptic transmission and its modulation varies highly across the nervous system. The precise mechanisms that underlie this heterogeneity, however, remain unclear. The present review highlights recent data that reveal vesicles sourced from separate pools define discrete modes of release. A rich diversity of regulatory machinery may further distinguish the different forms of vesicle release, including presynaptic proteins involved in trafficking, alignment, and exocytosis. These multiple vesicle release mechanisms and vesicle pools likely depend on the arrangement of vesicles in relation to specific calcium entry pathways that create compartmentalized spheres of calcium influence (i.e., domains). This diversity permits release specialization. This review details examples of how individual neurons rely on multiple calcium sources and unique regulatory schemes to provide differential release and discrete modulation of neurotransmitter release from specific vesicle pools-as part of network signal integration.
Collapse
Affiliation(s)
- Jessica A Fawley
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|