1
|
Li S, He M, He Y, Jin T, Chen J, Peng J, Hu W, He F. Icariin Supplementation Alleviates Cognitive Impairment Induced by d-Galactose via Modulation of the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:15138-15154. [PMID: 40481799 DOI: 10.1021/acs.jafc.5c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Aging-related cognitive impairment seriously diminishes individuals' life quality. Icariin (ICA), a natural flavonoid separated from the herb Epimedium, is applied in the food industry to bolster immunity and cognitive function in Chinese culture, demonstrating considerable potential in alleviating aging-related cognitive impairment. However, the mechanisms by which ICA mitigates aging-related cognitive impairment have yet to be elucidated. In the study, an 8 week ICA administration strongly improved spatial learning and memory ability, reduced neural damage, and restored hippocampal mitochondrial ultrastructure in mice subjected to d-galactose (d-gal) induction. Mechanically, ICA alleviated colonic pathology and upregulated the expression of tight junction proteins. Moreover, ICA reshaped microbial composition, enriched short-chain fatty acid (SCFA)-producing genera, and upregulated microbiota-derived SCFA contents. Additionally, ICA enhanced cognitively related anti-inflammatory properties and antioxidant capacity. Intriguingly, SCFAs regulated by ICA mitigated mitochondrial dysfunction in vitro, namely, reversing inflammatory cytokine levels and antioxidant capacity, elevating ATP contents, and mitochondrial membrane potential. Furthermore, SCFAs regulated by ICA alleviated mitochondrial dysfunction by enhancing the oxidative phosphorylation pathway and upregulating mRNA expression of genes related to mitochondrial respiratory chain, thus improving cognitive function. The findings suggest that ICA alleviates d-gal-induced cognitive impairment via modulation of the gut-brain axis and mitochondrial function. The investigation underscores the potential therapeutic benefits of incorporating an ICA-enriched diet for cognitive enhancement.
Collapse
Affiliation(s)
- Siju Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Menghui He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Tingting Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jianwen Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junkang Peng
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Boen R, Villalón-Reina JE, Kushan L, O’Hora KP, Fung H, Parker N, Akkouh IA, Alnæs D, O’Hara R, Marzelli MJ, Foland-Ross L, Chick CF, Cotto I, Reiss AL, Hallmayer J, Thompson PM, Andreassen OA, Sønderby IE, Bearden CE. Gene dosage effects of 22q11.2 copy number variants on in-vivo measures of white matter axonal density and dispersion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.29.656839. [PMID: 40501680 PMCID: PMC12154836 DOI: 10.1101/2025.05.29.656839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
22q11.2 deletion (22qDel) and duplication (22qDup) carriers have an increased risk of neurodevelopmental disorders and exhibit altered brain structure, including white matter microstructure. However, the underlying cellular architecture and age-related changes contributing to these white matter alterations remain poorly understood. Neurite orientation dispersion and density imaging (NODDI) was used on mixed cross-sectional and longitudinal data to examine group differences and age-related trajectories in measures of axonal density (i.e., intracellular volume fraction; ICVF), axonal orientation (orientation dispersion index; ODI) and free water diffusion (isotropic volume fraction; ISO) in 50 22qDel (n scans = 69, mean age = 21.7, age range = 7.4-51.1, 65.2% female) and 24 22qDup (n scans = 34, mean age = 23.3, age range = 8.3-49.4, 55.0% female) carriers, and 890 controls (n scans = 901, mean age = 21.9, age range = 7.8-51.1, 54.5%). The results showed widespread gene dosage effects, with higher ICVF in 22qDel and lower ICVF in 22qDup compared to controls, and region-specific effects of the 22qDel and 22qDup on ODI and ISO measures. However, 22qDel and 22qDup carriers did not exhibit an altered age-related trajectory relative to controls. Observed differences in ICVF suggest higher white matter axonal density in 22qDel and lower axonal density in 22qDup compared to controls. Conversely, differences in ODI are highly localized, indicating region-specific effects on axonal dispersion in white matter. We do not find evidence for altered developmental trajectories of axonal density or dispersion among 22q11.2 CNV carriers, suggesting stable disruptions to neurodevelopmental events before childhood.
Collapse
Affiliation(s)
- Rune Boen
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Julio E. Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathleen P. O’Hora
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Hoki Fung
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - Ibrahim A. Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - Ruth O’Hara
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Isabelle Cotto
- Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L. Reiss
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - Ida E. Sønderby
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Villarin JM, Kellendonk C. An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology. Mol Psychiatry 2025:10.1038/s41380-025-03060-7. [PMID: 40405017 DOI: 10.1038/s41380-025-03060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
In applying model organisms to study the neurobiology of mental disorders, rodents offer unique potential for probing, with high spatiotemporal resolution, the neural and molecular mechanisms underlying behavior in a mammalian system. Furthermore, investigators can wield exceptional power to manipulate genes, molecules, and circuits in mice to pin down causal relationships. While these advantages have allowed us to understand much more deeply than ever before the brain mechanisms regulating complex behaviors, the impact of rodent models on developing therapeutic strategies for psychiatric disorders has remained thus far limited. Herein, we will discuss the opportunities and limits of using mouse models in the context of schizophrenia, a complex psychiatric disorder with strong genetic basis that poses various unmet clinical needs calling out for basic science research. We review approaches for employing behavioral, genetic, and circuit-based methods in rodents to inform schizophrenia symptomatology, pathophysiology, and, ultimately, treatment.
Collapse
Affiliation(s)
- Joseph M Villarin
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
| | - Christoph Kellendonk
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Cao T, Xu B, Li S, Qiu Y, Chen J, Wu H, Cai H. Bioenergetic biomarkers as predictive indicators and their relationship with cognitive function in newly diagnosed, drug-naïve patients with bipolar disorder. Transl Psychiatry 2025; 15:148. [PMID: 40229236 PMCID: PMC11997040 DOI: 10.1038/s41398-025-03367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Mitochondrial dysfunction and disrupted bioenergetic processes are critical in the pathogenesis of bipolar disorder (BD), with cognitive impairment being a prominent symptom linked to mitochondrial anomalies. The tricarboxylic acid (TCA) cycle, integral to mitochondrial energy production, may be implicated in this cognitive dysfunction, yet its specific association with BD remains underexplored. In this cross-sectional study, 144 first-episode, drug-naive BD patients and 51 healthy controls were assessed. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), serum TCA cycle metabolites were quantified, and cognitive function was evaluated through the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop color-word test. The study found that BD patients exhibited significantly elevated serum levels of several TCA metabolites compared to healthy controls, alongside lower cognitive function scores. Correlational analyses revealed that certain bioenergetic metabolites were significantly positively associated with anxiety and negatively correlated with cognitive performance in BD patients. Notably, succinic acid, α-Ketoglutaric acid (α-KG), and malic acid emerged as independent risk factors for BD, with their combined profile demonstrating diagnostic utility. These findings underscore the potential of serum bioenergetic metabolites as biomarkers for BD, providing insights into the mitochondrial dysfunction underlying cognitive impairment and offering a basis for early diagnosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - BaoYan Xu
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - SuJuan Li
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Qiu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, China
| | - JinDong Chen
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiShan Wu
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China.
| |
Collapse
|
5
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
6
|
Lai J, Demirbas D, Phillips K, Zhao B, Wallace H, Seferian M, Nakayama T, Harris H, Chatzipli A, Lee EA, Yu TW. Multi-omic analysis of the ciliogenic transcription factor RFX3 reveals a role in promoting activity-dependent responses via enhancing CREB binding in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640588. [PMID: 40060598 PMCID: PMC11888390 DOI: 10.1101/2025.02.27.640588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Heterozygous loss-of-function (LoF) variants in RFX3, a transcription factor known to play key roles in ciliogenesis, result in autism spectrum disorder (ASD) and neurodevelopmental delay. RFX binding motifs are also enriched upstream of genes found to be commonly dysregulated in transcriptomic analyses of brain tissue from individuals with idiopathic ASD. Still, the precise functions of RFX3 in the human brain is unknown. Here, we studied the impact of RFX3 deficiency using human iPSC-derived neurons and forebrain organoids. Biallelic loss of RFX3 disrupted ciliary gene expression and delayed neuronal differentiation, while monoallelic loss of RFX3 did not. Instead, transcriptomic and DNA binding analyses demonstrated that monoallelic RFX3 loss disrupted synaptic target gene expression and diminished neuronal activity-dependent gene expression. RFX3 binding sites co-localized with CREB binding sites near activity-dependent genes, and RFX3 deficiency led to decreased CREB binding and impaired induction of CREB targets in response to neuronal depolarization. This study demonstrates a novel role of the ASD-associated gene RFX3 in shaping neuronal synaptic development and plasticity.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kaitlyn Phillips
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Harrison Wallace
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Megan Seferian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Holly Harris
- Department of Pediatrics, Baylor College of Medicine and Meyer Center for Developmental Pediatrics, Texas Children's Hospital, Houston, Texas, 77054, USA
| | - Aikaterini Chatzipli
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Wang Z, Wang C, Yuan B, Liu L, Zhang H, Zhu M, Chai H, Peng J, Huang Y, Zhou S, Liu J, Wu L, Wang W. Akkermansia muciniphila and its metabolite propionic acid maintains neuronal mitochondrial division and autophagy homeostasis during Alzheimer's disease pathologic process via GPR41 and GPR43. MICROBIOME 2025; 13:16. [PMID: 39833898 PMCID: PMC11744907 DOI: 10.1186/s40168-024-02001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disease (ND). In recent years, multiple clinical and animal studies have shown that mitochondrial dysfunction may be involved in the pathogenesis of AD. In addition, short-chain fatty acids (SCFA) produced by intestinal microbiota metabolism have been considered to be important factors affecting central nervous system (CNS) homeostasis. Among the main mediators of host-microbe interactions, volatile fatty acids play a crucial role. Nevertheless, the influence and pathways of microorganisms and their metabolites on Alzheimer's disease (AD) remain uncertain. RESULTS In this study, we present distinctions in blood and fecal SCFA levels and microbiota composition between healthy individuals and those diagnosed with AD. We found that AD patients showed a decrease in the abundance of Akkermansia muciniphila and a decrease in propionic acid both in fecal and in blood. In order to further reveal the effects and the mechanisms of propionic acid on AD prevention, we systematically explored the effects of propionic acid administration on AD model mice and cultured hippocampal neuronal cells. Results showed that oral propionate supplementation ameliorated cognitive impairment in AD mice. Propionate downregulated mitochondrial fission protein (DRP1) via G-protein coupled receptor 41 (GPR41) and enhanced PINK1/PARKIN-mediated mitophagy via G-protein coupled receptor 43 (GPR43) in AD pathophysiology which contribute to maintaining mitochondrial homeostasis both in vivo and in vitro. Administered A. muciniphila to AD mice before disease onset showed improved cognition, mitochondrial division and mitophagy in AD mice. CONCLUSIONS Taken together, our results demonstrate that A. muciniphila and its metabolite propionate protect against AD-like pathological events in AD mouse models by targeting mitochondrial homeostasis, making them promising therapeutic candidates for the prevention and treatment of AD. Video Abstract.
Collapse
Affiliation(s)
- Zifan Wang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 110866, China
| | - Cai Wang
- Internal Medicine Ward, Zhanlan Road Hospital, Xicheng District, Beijing, 100044, China
| | - Boyu Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haoming Zhang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Mingqiang Zhu
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Hongxia Chai
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Jie Peng
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Yanhua Huang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Shuo Zhou
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Juxiong Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wei Wang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China.
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
9
|
Schleifer CH, Chang SE, Amir CM, O'Hora KP, Fung H, Kang JWD, Kushan-Wells L, Daly E, Di Fabio F, Frascarelli M, Gudbrandsen M, Kates WR, Murphy D, Addington J, Anticevic A, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Walker E, Woods SW, Uddin LQ, Kumar K, Hoftman GD, Bearden CE. Unique Functional Neuroimaging Signatures of Genetic Versus Clinical High Risk for Psychosis. Biol Psychiatry 2025; 97:178-187. [PMID: 39181389 PMCID: PMC12186773 DOI: 10.1016/j.biopsych.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22qDel) is a copy number variant that is associated with psychosis and other neurodevelopmental disorders. Adolescents who are at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped the results to biological pathways. METHODS We analyzed 2 large multisite cohorts with resting-state functional magnetic resonance imaging data: 1) a 22qDel cohort (n = 164, 47% female) and typically developing (TD) control participants (n = 134, 56% female); and 2) a cohort of CHR individuals (n = 240, 41% female) and TD control participants (n = 149, 46% female) from the NAPLS-2 (North American Prodrome Longitudinal Study-2). We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions and tested case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. RESULTS BSV, LC, and GBC were significantly disrupted in individuals with 22qDel compared with TD control participants (false discovery rate-corrected q < .05). Spatial maps of BSV and LC differences were highly correlated with each other, unlike GBC. In the CHR group, only LC was significantly altered versus the control group, with a different spatial pattern than the 22qDel group. Group differences mapped onto biological gradients, with 22qDel effects being strongest in regions with high predicted blood flow and metabolism. CONCLUSIONS 22qDel carriers and CHR individuals exhibited different effects on functional magnetic resonance imaging temporal variability and multiscale functional connectivity. In 22qDel carriers, strong and convergent disruptions in BSV and LC that were not seen in CHR individuals suggest distinct functional brain alterations.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Sarah E Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Jee Won D Kang
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fabio Di Fabio
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Research in Psychological Wellbeing, School of Psychology, University of Roehampton, London, United Kingdom
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alan Anticevic
- Manifest Technologies, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco and Veterans Affairs San Francisco Health Care System, San Francisco, California
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elaine Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Kuldeep Kumar
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
10
|
LaMantia AS. Polygenicity in a box: Copy number variants, neural circuit development, and neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102917. [PMID: 39305678 PMCID: PMC11611645 DOI: 10.1016/j.conb.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Clinically defined neurodevelopmental disorders (cd-NDDs), including Autistic Spectrum Disorder (ASD) and Schizophrenia (Scz), are primarily polygenic: Multiple risk genes distributed across the genome, in potentially infinite combinations, account for variable pathology. Polygenicity raises a fundamental question: Can "core" cd-NDD pathogenic mechanisms be identified given this genomic complexity? With the right models and analytic targets, a distinct class of polygenic mutations-Copy Number Variants (CNVs): contiguous gene deletions or duplications associated with cd-NDD risk-provide a singular opportunity to define cd-NDD pathology. CNVs orthologous to those that confer cd-NDD risk have been engineered in animals as well as human stem cells. Using these tools, one can determine how altered function of multiple genes cause serial stumbles over cell biological steps typically taken to build optimal "polygenic" neural circuits. Thus, cd-NDD pathology may be a consequence of polygenic deviations-stumbles-that exceed limits of adaptive variation for key developmental steps.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061, United States.
| |
Collapse
|
11
|
Wang G, Liu S, Fan X, Li J, Xue Q, Liu K, Li X, Yang Y, Wang X, Song M, Shao M, Li W, Han Y, Lv L, Su X. Mitochondrial Dysfunction and Cognitive Impairment in Schizophrenia: The Role of Inflammation. Schizophr Bull 2024:sbae196. [PMID: 39535935 DOI: 10.1093/schbul/sbae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The complex immune-brain interactions and the regulatory role of mitochondria in the immune response suggest that mitochondrial damage reported in schizophrenia (SZ) may be related to abnormalities observed in immune and brain functions. STUDY DESIGN Mitochondrial DNA copy number (mtDNA CN), a biomarker of mitochondrial function, was assessed in peripheral blood leukocytes (PBLs) of 121 healthy individuals and 118 SZ patients before and after 8 weeks of antipsychotic treatment, and a meta-analysis related to blood mtDNA CN was conducted. Plasma C-reactive protein (CRP) levels in SZ patients were obtained from the medical record system. Spearman correlation analysis and hierarchical linear regression were used to analyze the relationships among mtDNA CN, CRP levels, and cognitive function. A mediation model was constructed using the PROCESS program. STUDY RESULTS Our results revealed the decreased mtDNA CN in PBLs from SZ patients (P = .05). The meta-analysis supported the decreased blood mtDNA CN in SZ patients (P < .01). The mtDNA CN in PBL was positively correlated with working memory (P = .02) and negatively correlated with plasma CRP levels (P = .039). Furthermore, a lower mtDNA CN in PBL in SZ patients was a significant predictor of worse working memory (P = .006). CRP acted as a mediator with an 8.0% effect. CONCLUSIONS This study revealed an association between peripheral mitochondrial dysfunction and cognitive impairment in SZ, with inflammation acting as a mediating effect. Therefore, mitochondrial dysfunction might provide novel targets for new treatments for cognitive impairment in SZ.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Senqi Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xiaoyun Fan
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Jinming Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Qianzi Xue
- The Second Clinical College of Xinxiang Medical University, Xinxiang 453003, China
| | - Kang Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xue Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| |
Collapse
|
12
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 PMCID: PMC12180538 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
13
|
Ali D, Laighneach A, Corley E, Patlola SR, Mahoney R, Holleran L, McKernan DP, Kelly JP, Corvin AP, Hallahan B, McDonald C, Donohoe G, Morris DW. Direct targets of MEF2C are enriched for genes associated with schizophrenia and cognitive function and are involved in neuron development and mitochondrial function. PLoS Genet 2024; 20:e1011093. [PMID: 39259737 PMCID: PMC11419381 DOI: 10.1371/journal.pgen.1011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Myocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene that influences cognition and risk for neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic induced neurons (iNs), which represented early and late neurodevelopmental stages. For these cellular models, MEF2C function had previously been disrupted, either by direct or indirect mutation, and gene expression assayed using RNA-seq. We integrated these RNA-seq data with MEF2C ChIP-seq data to identify dysregulated direct target genes of MEF2C in the NSCs and iNs models. Several MEF2C direct target gene-sets were enriched for SNP-based heritability for intelligence, educational attainment and SCZ, as well as being enriched for genes containing rare de novo mutations reported in ASD and/or developmental disorders. These gene-sets are enriched in both excitatory and inhibitory neurons in the prenatal and adult brain and are involved in a wide range of biological processes including neuron generation, differentiation and development, as well as mitochondrial function and energy production. We observed a trans expression quantitative trait locus (eQTL) effect of a single SNP at MEF2C (rs6893807, which is associated with IQ) on the expression of a target gene, BNIP3L. BNIP3L is a prioritized risk gene from the largest genome-wide association study of SCZ and has a function in mitophagy in mitochondria. Overall, our analysis reveals that either direct or indirect disruption of MEF2C dysregulates sets of genes that contain multiple alleles associated with SCZ risk and cognitive function and implicates neuron development and mitochondrial function in the etiology of these phenotypes.
Collapse
Affiliation(s)
- Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Emma Corley
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Rebecca Mahoney
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Declan P. McKernan
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
14
|
Oliver BG, Huang X, Yarak R, Bai X, Wang Q, Zakarya R, Reddy KD, Donovan C, Kim RY, Morkaya J, Wang B, Lung Chan Y, Saad S, Faiz A, Reyk DV, Verkhratsky A, Yi C, Chen H. Chronic maternal exposure to low-dose PM 2.5 impacts cognitive outcomes in a sex-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 191:108971. [PMID: 39180775 DOI: 10.1016/j.envint.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Rochelle Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Qi Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Razia Zakarya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Karosham D Reddy
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Richard Y Kim
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - James Morkaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Sonia Saad
- Renal Group, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia
| | - Alen Faiz
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, Leioa 48940, Bizkaia, Spain; IKERBASQUE Basque Foundation for Science, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
15
|
Feng S, Gong Y, Xia L, Lang Y, Shen Y, Li H, Feng W, Chen F, Chen Y. Calcium Hexacyanoferrate (III) Nanocatalyst Enables Redox Homeostasis for Autism Spectrum Disorder Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405655. [PMID: 39096109 DOI: 10.1002/adma.202405655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder with considerable heterogeneity, in which over-generated reactive oxygen species (ROS) induce a cascade of pathological changes, including cellular apoptosis and inflammatory responses. Given the complex etiology of ASD, no effective treatment is available for ASD. In this work, a specific catalytic nanoenzyme, calcium hexacyanoferrate (III) nanocatalysts (CaH NCs), is designed and engineered for efficient ASD treatment. CaH NCs can mimic the activities of natural enzymes including superoxide dismutase, peroxidase, catalase, and glutathione peroxidase, which mitigates intracellular excessive ROS and regulates redox equilibrium. These CaH NCs modulate mitochondrial membrane potential, elevate B-cell lymphoma-2 levels, and suppress pro-apoptotic proteins, including Caspase-3 and B-cell lymphoma-2-associated X, thus effectively reducing cellular apoptosis. Importantly, CaH NCs alleviate inflammation by upregulating anti-inflammatory cytokine interleukin-10 and downregulating pro-inflammatory factors, resulting in attenuated activation of microglial and astrocytic and subsequent reduction in neuroinflammation. Subsequently, CaH NCs enhance social abilities, decrease anxiety levels, ameliorate repetitive behaviors, and improve learning and memory in ASD animal models through inflammation regulation and apoptosis inhibition. The CaH NCs in managing and preventing ASD represents a paradigm shift in autism treatment, paving the alternative but efficient way for clinical interventions in neurological conditions.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yan Gong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yue Lang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
16
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
17
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
18
|
Liu X, Hong E, Xie J, Li J, Ding B, Chen Y, Xia Z, Jiang W, Lv H, Yang B, Chen Y. Txnrd2 Attenuates Early Brain Injury by Inhibition of Oxidative Stress and Endoplasmic Reticulum Stress via Trx2/Prx3 Pathway after Intracerebral Hemorrhage in Rats. Neuroscience 2024; 545:158-170. [PMID: 38513765 DOI: 10.1016/j.neuroscience.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.
Collapse
Affiliation(s)
- Xuanbei Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Jiu Jiang No.1 People's Hospital, Jiu Jiang, China
| | - Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Jiangwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Boyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yongsheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhennan Xia
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hongzhu Lv
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Bo Yang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
20
|
Lanfranchi M, Yandiev S, Meyer-Dilhet G, Ellouze S, Kerkhofs M, Dos Reis R, Garcia A, Blondet C, Amar A, Kneppers A, Polvèche H, Plassard D, Foretz M, Viollet B, Sakamoto K, Mounier R, Bourgeois CF, Raineteau O, Goillot E, Courchet J. The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions. Nat Commun 2024; 15:2487. [PMID: 38514619 PMCID: PMC10958033 DOI: 10.1038/s41467-024-46146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.
Collapse
Affiliation(s)
- Marine Lanfranchi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sozerko Yandiev
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Salma Ellouze
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn Kerkhofs
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Raphael Dos Reis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Audrey Garcia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Camille Blondet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Alizée Amar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Anita Kneppers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Rémi Mounier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Evelyne Goillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France.
| |
Collapse
|
21
|
Zong P, Feng J, Li CX, Jellison ER, Yue Z, Miller B, Yue L. Activation of endothelial TRPM2 exacerbates blood-brain barrier degradation in ischemic stroke. Cardiovasc Res 2024; 120:188-202. [PMID: 37595268 PMCID: PMC10936752 DOI: 10.1093/cvr/cvad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS Damage of the blood-brain barrier (BBB) is a hallmark of brain injury during the early stages of ischemic stroke. The subsequent endothelial hyperpermeability drives the initial pathological changes and aggravates neuronal death. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable nonselective cation channel activated by oxidative stress. However, whether TRPM2 is involved in BBB degradation during ischemic stroke remains unknown. We aimed to investigate the role of TRPM2 in BBB degradation during ischemic stroke and the underlying molecular mechanisms. METHODS AND RESULTS Specific deletion of Trpm2 in endothelial cells using Cdh5 Cre produces a potent protective effect against brain injury in mice subjected to middle cerebral artery occlusion (MCAO), which is characterized by reduced infarction size, mitigated plasma extravasation, suppressed immune cell invasion, and inhibited oxidative stress. In vitro experiments using cultured cerebral endothelial cells (CECs) demonstrated that either Trpm2 deletion or inhibition of TRPM2 activation attenuates oxidative stress, Ca2+ overload, and endothelial hyperpermeability induced by oxygen-glucose deprivation (OGD) and CD36 ligand thrombospondin-1 (TSP1). In transfected HEK293T cells, OGD and TSP1 activate TRPM2 in a CD36-dependent manner. Noticeably, in cultured CECs, deleting Trpm2 or inhibiting TRPM2 activation also suppresses the activation of CD36 and cellular dysfunction induced by OGD or TSP1. CONCLUSIONS In conclusion, our data reveal a novel molecular mechanism in which TRPM2 and CD36 promote the activation of each other, which exacerbates endothelial dysfunction during ischemic stroke. Our study suggests that TRPM2 in endothelial cells is a promising target for developing more effective and safer therapies for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Barbara Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
22
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
23
|
Zong P, Feng J, Legere N, Li Y, Yue Z, Li CX, Mori Y, Miller B, Hao B, Yue L. TRPM2 enhances ischemic excitotoxicity by associating with PKCγ. Cell Rep 2024; 43:113722. [PMID: 38308841 PMCID: PMC11023021 DOI: 10.1016/j.celrep.2024.113722] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 01/13/2024] [Indexed: 02/05/2024] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR)-mediated glutamate excitotoxicity significantly contributes to ischemic neuronal death and post-recanalization infarction expansion. Despite tremendous efforts, targeting NMDARs has proven unsuccessful in clinical trials for mitigating brain injury. Here, we show the discovery of an interaction motif for transient receptor potential melastatin 2 (TRPM2) and protein kinase Cγ (PKCγ) association and demonstrate that TRPM2-PKCγ uncoupling is an effective therapeutic strategy for attenuating NMDAR-mediated excitotoxicity in ischemic stroke. We demonstrate that the TRPM2-PKCγ interaction allows TRPM2-mediated Ca2+ influx to promote PKCγ activation, which subsequently enhances TRPM2-induced potentiation of extrasynaptic NMDAR (esNMDAR) activity. By identifying the PKCγ binding motif on TRPM2 (M2PBM), which directly associates with the C2 domain of PKCγ, an interfering peptide (TAT-M2PBM) is developed to disrupt TRPM2-PKCγ interaction without compromising PKCγ function. M2PBM deletion or TRPM2-PKCγ dissociation abolishes both TRPM2-PKCγ and TRPM2-esNMDAR couplings, resulting in reduced excitotoxic neuronal death and attenuated ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Barbara Miller
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA.
| |
Collapse
|
24
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
25
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T. Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun 2023; 14:7388. [PMID: 37968289 PMCID: PMC10651874 DOI: 10.1038/s41467-023-42964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
The ability to distinguish sensations that are self-generated from those caused by external events is disrupted in schizophrenia patients. However, the neural circuit abnormalities underlying this sensory impairment and its relationship to the risk factors for the disease is not well understood. To address this, we examined the processing of self-generated sounds in male Df(16)A+/- mice, which model one of the largest genetic risk factors for schizophrenia, the 22q11.2 microdeletion. We find that auditory cortical neurons in Df(16)A+/- mice fail to attenuate their responses to self-generated sounds, recapitulating deficits seen in schizophrenia patients. Notably, the auditory cortex of Df(16)A+/- mice displayed weaker motor-related signals and received fewer inputs from the motor cortex, suggesting an anatomical basis underlying the sensory deficit. These results provide insights into the mechanisms by which a major genetic risk factor for schizophrenia disrupts the top-down processing of sensory information.
Collapse
Affiliation(s)
- Brian P Rummell
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
| | - Solmaz Bikas
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Susanne S Babl
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Departments of Physiology, Neuroscience and Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
27
|
Li Y, Ma L, Deng Y, Du Z, Guo B, Yue J, Liu X, Zhang Y. The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model. Neuropharmacology 2023; 239:109682. [PMID: 37543138 DOI: 10.1016/j.neuropharm.2023.109682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yanan Deng
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Bingqian Guo
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Jianing Yue
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Xianxian Liu
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
28
|
Raven EP, Veraart J, Kievit RA, Genc S, Ward IL, Hall J, Cunningham A, Doherty J, van den Bree MBM, Jones DK. In vivo evidence of microstructural hypo-connectivity of brain white matter in 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:4342-4352. [PMID: 37495890 PMCID: PMC7615578 DOI: 10.1038/s41380-023-02178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rogier A Kievit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Isobel L Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jessica Hall
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Adam Cunningham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Joanne Doherty
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Liu Y, Fu LL, Xu HZ, Zheng YM, Li WX, Qian GH, Lu WH, Lv HT. Insufficiency of Mrpl40 disrupts testicular structure and semen parameters in a murine model. Asian J Androl 2023; 25:627-631. [PMID: 36891938 PMCID: PMC10521951 DOI: 10.4103/aja2022119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/13/2023] [Indexed: 03/10/2023] Open
Abstract
Approximately 31% of patients with 22q11.2 deletion syndrome (22q11.2DS) have genitourinary system disorders and 6% of them have undescended testes. Haploinsufficiency of genes on chromosome 22q11.2 might contribute to the risk of 22q11.2DS. In this study, we used mice with single-allele deletion in mitochondrial ribosomal protein L40 ( Mrpl40 +/- ) as models to investigate the function of Mrpl40 in testes and spermatozoa development. The penetrance of cryptorchidism in Mrpl40 +/- mice was found to be higher than that in wild-type (WT) counterparts. Although the weight of testes was not significantly different between the WT and Mrpl40 +/- mice, the structure of seminiferous tubules and mitochondrial morphology was altered in the Mrpl40 +/- mice. Moreover, the concentration and motility of spermatozoa were significantly decreased in the Mrpl40 +/- mice. In addition, data-independent acquisition mass spectrometry indicated that the expression of genes associated with male infertility was altered in Mrpl40 +/- testes. Our study demonstrated the important role of Mrpl40 in testicular structure and spermatozoa motility and count. These findings suggest that Mrpl40 is potentially a novel therapeutic target for cryptorchidism and decreased motility and count of spermatozoa.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Long-Long Fu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Hui-Zhong Xu
- Institute for Advanced Study and School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yi-Ming Zheng
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Wei-Xi Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Guang-Hui Qian
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Wen-Hong Lu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Hai-Tao Lv
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou 215025, China
| |
Collapse
|
30
|
Guan PP, Ge TQ, Wang P. As a Potential Therapeutic Target, C1q Induces Synapse Loss Via Inflammasome-activating Apoptotic and Mitochondria Impairment Mechanisms in Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:267-284. [PMID: 37386257 DOI: 10.1007/s11481-023-10076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
C1q, the initiator of the classical pathway of the complement system, is activated during Alzheimer's disease (AD) development and progression and is especially associated with the production and deposition of β-amyloid protein (Aβ) and phosphorylated tau in β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Activation of C1q is responsible for induction of synapse loss, leading to neurodegeneration in AD. Mechanistically, C1q could activate glial cells, which results in the loss of synapses via regulation of synapse pruning and phagocytosis in AD. In addition, C1q induces neuroinflammation by inducing proinflammatory cytokine secretion, which is partially mediated by inflammasome activation. Activation of inflammasomes might mediate the effects of C1q on induction of synapse apoptosis. On the other hand, activation of C1q impairs mitochondria, which hinders the renovation and regeneration of synapses. All these actions of C1q contribute to the loss of synapses during neurodegeneration in AD. Therefore, pharmacological, or genetic interventions targeting C1q may provide potential therapeutic strategies for combating AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Tong-Qi Ge
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China.
| |
Collapse
|
31
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation. Mol Psychiatry 2023; 28:3769-3781. [PMID: 37794116 PMCID: PMC10730408 DOI: 10.1038/s41380-023-02272-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Microdeletion of a 3Mb region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes individuals to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Single mutant analysis shows that both mrpl40 and prodha mutants display aberrant neural stem and progenitor cell proliferation, with each gene regulating distinct cell populations. Finally, double mutants for both mrpl40 and prodha display aggravated behavioral phenotypes and neural stem and progenitor cell analysis reveals a previously unrecognized partially redundant role for mrpl40 and prodha in regulating radial glia-like cell proliferation. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isaiah Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Lu D, Wang Y, Liu G, Wang S, Duan A, Wang Z, Wang J, Sun X, Wu Y, Wang Z. Armcx1 attenuates secondary brain injury in an experimental traumatic brain injury model in male mice by alleviating mitochondrial dysfunction and neuronal cell death. Neurobiol Dis 2023:106228. [PMID: 37454781 DOI: 10.1016/j.nbd.2023.106228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
33
|
D'Antoni C, Mautone L, Sanchini C, Tondo L, Grassmann G, Cidonio G, Bezzi P, Cordella F, Di Angelantonio S. Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10762. [PMID: 37445940 DOI: 10.3390/ijms241310762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara D'Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Greta Grassmann
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., 00165 Rome, Italy
| |
Collapse
|
34
|
Arioka Y, Okumura H, Sakaguchi H, Ozaki N. Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of iPS cell technology. Psychiatry Clin Neurosci 2023; 77:308-314. [PMID: 36929185 PMCID: PMC11488641 DOI: 10.1111/pcn.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Collapse
Affiliation(s)
- Yuko Arioka
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Center for Advanced Medicine and Clinical ResearchNagoya University HospitalNagoyaJapan
| | - Hiroki Okumura
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Hospital PharmacyNagoya University HospitalNagoyaJapan
| | - Hideya Sakaguchi
- BDR‐Otsuka Pharmaceutical Collaboration Center, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityNagoyaJapan
| |
Collapse
|
35
|
Zheng Z, Han L, Li Y, Chen Z, Yang W, Liu C, Tao M, Jiang Y, Ke X, Liu Y, Guo X. Phospholipase A2-activating protein induces mitophagy trough anti-apoptotic MCL1-mediated NLRX1 oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023:119487. [PMID: 37211156 DOI: 10.1016/j.bbamcr.2023.119487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Mitochondrial protein homeostasis is fine-tuned by diverse physiological processes such as mitochondria-associated degradation (MAD), which is regulated by valosin-containing protein (VCP) and its cofactors. As a cofactor of VCP, the mutation of phospholipase A-2-activating protein (PLAA) is the genetic cause of PLAA-associated neurodevelopmental disorder (PLAAND). However, the physiological and pathological roles of PLAA in mitochondria remain unclear. Here, we demonstrate that PLAA partially associates with mitochondria. Deficiency in PLAA increases mitochondrial reactive oxygen species (ROS) production, reduces mitochondrial membrane potential, inhibits mitochondrial respiratory activity and causes excessive mitophagy. Mechanically, PLAA interacts with myeloid cell leukemia-1 (MCL1) and facilitates its retro-translocation and proteasome-dependent degradation. The upregulation of MCL1 promotes the oligomerization of NLR family member X1 (NLRX1) and activation of mitophagy. Whereas downregulating NLRX1 abolishes MCL1 induced mitophagy. In summary, our data identify PLAA as a novel mediator of mitophagy by regulating MCL1-NLRX1 axis. We propose mitophagy as a target for therapeutic intervention in PLAAND.
Collapse
Affiliation(s)
- Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lu Han
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangju Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyue Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
36
|
Ito G, Tatara Y, Itoh K, Yamada M, Yamashita T, Sakamoto K, Nozaki T, Ishida K, Wake Y, Kaneko T, Fukuda T, Sugano E, Tomita H, Ozaki T. Novel dicarbonyl metabolic pathway via mitochondrial ES1 possessing glyoxalase III activity. BBA ADVANCES 2023; 3:100092. [PMID: 37250100 PMCID: PMC10209487 DOI: 10.1016/j.bbadva.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.
Collapse
Affiliation(s)
- Ginga Ito
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Miwa Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yui Wake
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takehito Kaneko
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomokazu Fukuda
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| |
Collapse
|
37
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
38
|
Javani G, Babri S, Farajdokht F, Ghaffari-Nasab A, Mohaddes G. Mitotherapy restores hippocampal mitochondrial function and cognitive impairment in aged male rats subjected to chronic mild stress. Biogerontology 2023; 24:257-273. [PMID: 36626036 DOI: 10.1007/s10522-022-10014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days. The Aged + Mit and Aged + stress + Mit groups were treated with intracerebroventricular injection (10 µl) of fresh mitochondria harvested from the young rats' brains, and other groups received 10 µl mitochondria storage buffer. Spatial and episodic-like memories were assessed via the Barnes maze and novel object recognition tests. Indoleamine 2,3-dioxygenase (IDO) expression and activity, Kyn, Tryptophan (TRY), ATP levels, and mitochondrial membrane potential (MMP) were measured in the hippocampus region. Golgi-Cox staining was also performed to assess the dendritic branching pattern and dendritic spines in the hippocampal CA1 subfield. The results showed that mitotherapy markedly improved both spatial and episodic memories in the Aged + Stress + Mit group compared to the Aged + Stress. Moreover, mitotherapy decreased IDO protein expression and activity and Kyn levels, while it increased ATP levels and improved MMP in the hippocampus of the Aged + Stress + Mit group. Besides, mitotherapy restored dendritic atrophy and loss of spine density in the hippocampal neurons of the stress-exposed aged rats. These findings provide evidence for the therapeutic effect of mitotherapy against stress-induced cognitive deterioration in aged rats by improving hippocampal mitochondrial function and modulation of the Kyn pathway.
Collapse
Affiliation(s)
- Gonja Javani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
39
|
Li J, Hui Y, Xu Z, Tan J, Yin K, Kuang L, Tang Y, Wei J, Zhong Q, Zheng T. Non-canonical function of DPP4 promotes cognitive impairment through ERp29-associated mitochondrial calcium overload in diabetes. iScience 2023; 26:106271. [PMID: 36936785 PMCID: PMC10014273 DOI: 10.1016/j.isci.2023.106271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/15/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
DPP4 has been shown to induce diabetes-associated mitochondrial dysfunction and cognitive impairment through its non-canonical function. Here, we report that enhanced DPP4 expression in diabetes contributes to IP3R2-mediated mitochondria-associated ER membrane (MAM) formation, mitochondria calcium overload, and cognitive impairment, and its knockdown showed opposite effects. Mechanistically, DPP4 binds to PAR2 in hippocampal neurons and activates ERK1/2/CEBPB signaling, which upregulates ERp29 expression and promotes its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting MAM formation, mitochondria calcium overload, and cognitive impairment. Meanwhile, targeting DPP4-mediated PAR2/ERK1/2/CEBPB/ERp29 signaling achieved satisfactory therapeutic effects on MAM formation, mitochondria calcium overload, and cognitive impairment. Notably, DPP4 activates this pathway in an enzymatic activity-independent manner, suggesting the non-canonical role of DPP4 in the pathogenesis of mitochondria calcium overload and cognitive impairment in diabetes. Together, these results identify DPP4-mediated PAR2/ERK1/2/CEBPB/ERp29 signaling as a promising therapeutic target for the treatment of cognitive impairment in type 2 diabetes.
Collapse
Affiliation(s)
- Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Junjie Wei
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Qiongsui Zhong
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Corresponding author
| |
Collapse
|
40
|
Anitha A, Thanseem I, Iype M, Thomas SV. Mitochondrial dysfunction in cognitive neurodevelopmental disorders: Cause or effect? Mitochondrion 2023; 69:18-32. [PMID: 36621534 DOI: 10.1016/j.mito.2023.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Mitochondria have a crucial role in brain development and neurogenesis, both in embryonic and adult brains. Since the brain is the highest energy consuming organ, it is highly vulnerable to mitochondrial dysfunction. This has been implicated in a range of brain disorders including, neurodevelopmental conditions, psychiatric illnesses, and neurodegenerative diseases. Genetic variations in mitochondrial DNA (mtDNA), and nuclear DNA encoding mitochondrial proteins, have been associated with several cognitive disorders. However, it is not yet clear whether mitochondrial dysfunction is a primary cause of these conditions or a secondary effect. Our review article deals with this topic, and brings out recent advances in mitochondria-oriented therapies. Mitochondrial dysfunction could be involved in the pathogenesis of a subset of disorders involving cognitive impairment. In these patients, mitochondrial dysfunction could be the cause of the condition, rather than the consequence. There are vast areas in this topic that remains to be explored and elucidated.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India.
| | - Ismail Thanseem
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Dept. of Pediatric Neurology, Government Medical College, Thiruvananthapuram 695 011, Kerala, India; Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| | - Sanjeev V Thomas
- Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| |
Collapse
|
41
|
Neuroinflammation and Oxidative Stress in Individuals Affected by DiGeorge Syndrome. Int J Mol Sci 2023; 24:ijms24044242. [PMID: 36835652 PMCID: PMC9965448 DOI: 10.3390/ijms24044242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
DiGeorge syndrome (DGS) is a rare genetic disease caused by microdeletions of the 22q11.2 region (DGS1). A haploinsufficiency at 10p level has been proposed also as a DGS cause (DGS2). Clinical manifestations are variable. The most frequent features are thymic hypoplasia or aplasia with consequent immune deficiency, cardiac malformations, hypoparathyroidism, facial and palatine abnormalities, variable degrees of cognitive impairment and psychiatric disorders. The specific aim of this descriptive report is to discuss the correlation between oxidative stress and neuroinflammation in DGS patients with microdeletions of the 22q11.2 region. The deleted chromosomic region maps various genes involved in mitochondrial metabolisms, such as DGCR8 and TXNRD2, that could lead to reactive oxygen species (ROS) increased production and antioxidant depletion. Furthermore, increased levels of ROS in mitochondria would lead to the destruction of the projection neurons in the cerebral cortex with consequent neurocognitive impairment. Finally, the increase in modified protein belonging to the family of sulfoxide compounds and hexoses, acting as inhibitors of the IV and V mitochondria complex, could result in direct ROS overproduction. Neuroinflammation in DGS individuals could be directly related to the development of the syndrome's characteristic psychiatric and cognitive disorders. In patients with psychotic disorders, the most frequent psychiatric manifestation in DGS, Th-17, Th-1 and Th-2 cells are increased with consequent elevation of proinflammatory cytokine IL-6 and IL1β. In patients with anxiety disorders, both CD3 and CD4 are increased. Some patients with autism spectrum disorders (ASDs) have an augmented level of proinflammatory cytokines IL-12, IL-6 and IL-1β, while IFNγ and the anti-inflammatory cytokine IL-10 seem to be reduced. Other data proposed that altered synaptic plasticity could be directly involved in DGS cognitive disorders. In conclusion, the use of antioxidants for restoring mitochondrial functionality in DGS could be a useful tool to protect cortical connectivity and cognitive behavior.
Collapse
|
42
|
Deng P, Zhang H, Wang L, Jie S, Zhao Q, Chen F, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Long-term cadmium exposure impairs cognitive function by activating lnc-Gm10532/m6A/FIS1 axis-mediated mitochondrial fission and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159950. [PMID: 36336035 DOI: 10.1016/j.scitotenv.2022.159950] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental contaminant, is deemed a possible aetiological cause of cognitive disorders in humans. Nevertheless, the exact mechanism by which chronic exposure to Cd causes neurotoxicity is not fully understood. In this study, mouse neuroblastoma cells (Neuro-2a cells) and primary hippocampal neurons were exposed to low-dose (1, 2, and 4 μM for Neuro-2a cells or 0.5, 1, and 1.5 μM for hippocampal neurons) cadmium chloride (CdCl2) for 72 h (h), and male mice (C57BL/6J, 8 weeks) were orally administered CdCl2 (0.6 mg/L, approximately equal to 2.58 μg/kg·bw/d) for 6 months to investigate the effects and mechanism of chronic Cd-induced neurotoxicity. Here, chronic exposure to Cd impaired mitochondrial function by promoting excess reactive oxygen species (ROS) production, altering mitochondrial membrane potential (Δψm) and reducing adenosine triphosphate (ATP) content, contributing to neuronal cell death. Specifically, microarray analysis revealed that the long noncoding RNA Gm10532 (lnc-Gm10532) was most highly expressed in Neuro-2a cells exposed to 4 μM CdCl2 for 72 h compared with controls, and inhibition of lnc-Gm10532 significantly antagonized CdCl2-induced mitochondrial dysfunction and neurotoxicity. Mechanistically, lnc-Gm10532 increased Fission 1 (FIS1) expression and mitochondrial fission by recruiting the m6A writer methyltransferase-like 14 (METTL14) and enhancing m6A modification of Fis1 mRNA. Moreover, lnc-Gm10532 was also required for chronic Cd-induced mitochondrial dysfunction and memory deficits in a rodent model. Therefore, data of this study reveal a new epigenetic mechanism of chronic Cd neurotoxicity.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Sheng Jie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Qi Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Fengqiong Chen
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Wang W, Fu P. Gut Microbiota Analysis and In Silico Biomarker Detection of Children with Autism Spectrum Disorder across Cohorts. Microorganisms 2023; 11:microorganisms11020291. [PMID: 36838256 PMCID: PMC9958793 DOI: 10.3390/microorganisms11020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The study of human gut microbiota has attracted increasing interest in the fields of life science and healthcare. However, the complicated and interconnected associations between gut microbiota and human diseases are still difficult to determine in a predictive fashion. Artificial intelligence such as machine learning (ML) and deep learning can assist in processing and interpreting biological datasets. In this study, we aggregated data from different studies based on the species composition and relative abundance of gut microbiota in children with autism spectrum disorder (ASD) and typically developed (TD) individuals and analyzed the commonalities and differences of ASD-associated microbiota across cohorts. We established a predictive model using an ML algorithm to explore the diagnostic value of the gut microbiome for the children with ASD and identify potential biomarkers for ASD diagnosis. The results indicated that the Shenzhen cohort achieved a higher area under the receiver operating characteristic curve (AUROC) value of 0.984 with 97% accuracy, while the Moscow cohort achieved an AUROC value of 0.81 with 67% accuracy. For the combination of the two cohorts, the average prediction results had an AUROC of 0.86 and 80% accuracy. The results of our cross-cohort analysis suggested that a variety of influencing factors, such as population characteristics, geographical region, and dietary habits, should be taken into consideration in microbial transplantation or dietary therapy. Collectively, our prediction strategy based on gut microbiota can serve as an enhanced strategy for the clinical diagnosis of ASD and assist in providing a more complete method to assess the risk of the disorder.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Correspondence:
| |
Collapse
|
44
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
45
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522615. [PMID: 36711666 PMCID: PMC9881859 DOI: 10.1101/2023.01.03.522615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha , encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Finally, we show that both mrpl40 and prodha mutants display neural stem and progenitor cell phenotypes, with each gene regulating different neural stem cell populations. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D. Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Isaiah Lee
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Michael Granato
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| |
Collapse
|
46
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
49
|
Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci Biobehav Rev 2022; 142:104892. [PMID: 36181925 DOI: 10.1016/j.neubiorev.2022.104892] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
Abstract
Here we discuss the role of diverse environmental manipulations affecting cognition with special regard to psychiatric conditions. We present evidence supporting a direct causal correlation between the valence of the environmental stimulation and some psychopathological traits and how the environment influences brain structure and function with special regard to oxidative stress and mitochondrial activity. Increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. In this review we discuss the role of diverse environmental manipulations to affect cognition with special regard to psychiatric conditions. How the environment influences brain structure and function, and the interactions between rearing conditions, oxidative stress and mitochondrial activity are fundamental questions that are still poorly understood. As will be discussed, increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. The brain requires considerable mitochondrial reserve not only to sustain basal neuronal needs but a also to provide increasing energy demands during stress. Consistently with these high energetic requirements, it is reasonable to hypothesise that the brain is particularly vulnerable to mitochondrial defects. Thus, even subtle metabolic alterations might have a substantial impact on cognitive functions. Over the last decade, several experimental evidence supported the hypothesis that a suboptimal mitochondrial function, which could be of genetic origin or acquired following adverse life events, is a key vulnerability factor for stress-related psychopathologies. Chronic psychological stress is a major promoter of anxiety as well as of oxidative damage, as shown in several studies. Recent evidence from mouse models harbouring mutations in mitochondrial genes demonstrated the role of mitochondria in modulating the response to acute psychological stress. However, it has yet to be determined whether mitochondrial dysfunctions are the cause or the consequence of anxiety. In this review, we discuss how adverse psychosocial environments can impact mitochondrial bioenergetics at the molecular level and we gather evidence from several studies linking energy metabolism and stress resilience/vulnerability. Moreover, we review recent findings supporting that metabolic dysfunction can underlie deficits in complex social behaviours. As will be discussed, aberrations in mitochondrial functionality have been found in the nucleus accumbens of highly anxious mice and mediate low social competitiveness. In addition, alterations in sociability can be reversed by enhancing mitochondrial functions. Recent evidence also demonstrated that a specific mutation in mitochondrial DNA, previously linked to autism spectrum disorder, produces autistic endophenotypes in mice by altering respiration chain and reactive oxygen species (ROS) production. Finally, we discuss a "Negative Enrichment" model that can explain some of the psychopathological conditions relevant to humans. Evidence of a direct causal correlation of valence of environmental stimulation and psychopathological traits will be presented, and possible molecular mechanisms that focus on oxidative stress. Collectively, the findings described here have been achieved with a wide set of behavioural and cognitive tasks with translational validity. Thus, they will be useful for future work aimed to elucidate the fine metabolic alterations in psychopathologies and devise novel approaches targeting mitochondria to alleviate these conditions.
Collapse
|
50
|
Zhang P, Chen Y, Zhang S, Chen G. Mitochondria-Related Ferroptosis Drives Cognitive Deficits in Neonatal Mice Following Sevoflurane Administration. Front Med (Lausanne) 2022; 9:887062. [PMID: 35935755 PMCID: PMC9355652 DOI: 10.3389/fmed.2022.887062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sevoflurane exposure may result in cognitive deficits in neonatal animals. This study attempted to investigate the potential mechanism of sevoflurane-induced neurotoxicity in developing hippocampus. Neonatal animals received sevoflurane anesthesia, then the behavioral tests and Golgi-Cox staining were employed to detect the effect of sevoflurane inhalation in adult mice. And the mitochondrial function was evaluated using MitoSOX staining, Fluo calcium indicators, mitochondrial permeability transition pore (mPTP) assay, and JC-1 probe after sevoflurane administration. Meanwhile, mitochondrial lipid hydroperoxide and ferroptosis were measured by MitoPeDPP and Mito-FerroGreen signals following sevoflurane exposure. Moreover, the ferroptosis and behavioral performance were assessed after deferiprone (DFP) treatment. The results showed that sevoflurane administration induced cognitive impairment accompanied by reducing dendritic length, density, and nodes. Additionally, sevoflurane exposure elevated mitochondrial ROS production and cytoplasm calcium levels, triggered the opening of mPTP, and decreased the mitochondrial membrane potential (MMP). However, supplement of elamipretide (SS-31) effectively reversed mitochondrial dysfunction. Mitochondrial lipid hydroperoxide production was increased after sevoflurane administration, whereas Fer-1 treatment reduced lipid hydroperoxide formation. Sevoflurane exposure induced mitochondrial iron overload, whereas Mito-Tempo treatment reduced iron accumulation. Prussian blue staining showed that the hippocampal iron deposition was apparently increased after sevoflurane inhalation. Additionally, the ferroptosis-related protein expression (including ACSL4, COX2, GPX4, and FTH1) was significantly changed, whereas DFP effectively suppressed ferroptosis and enhanced sevoflurane-induced behavioral malfunction. These findings demonstrated that sevoflurane administration elicited mitochondrial dysfunction and iron dyshomeostasis and eventually resulted in cognitive impairments, whereas protecting mitochondrial function and chelating neurotoxic iron effectively reversed these pathological processes.
Collapse
Affiliation(s)
- Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - ShuXia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|