1
|
Sun B, Xue T, Gao AN, Wang XY, Wu S, Liu XM, Zhang LH, Li MH, Zou DF, Gao Y, Wang CZ. The CB1R of mPFC is involved in anxiety-like behavior induced by 0.8/2.65 GHz dual-frequency electromagnetic radiation. Front Mol Neurosci 2025; 18:1534324. [PMID: 40144805 PMCID: PMC11937075 DOI: 10.3389/fnmol.2025.1534324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
As mobile phones and communication base stations become more widespread, concerns have arisen regarding the potential risks of environmental exposure to multi-frequency electromagnetic radiation (EMR) and its effects on mental health. To address these concerns, our study established a dual-frequency EMR mouse model at 0.8/2.65 GHz to explore potential molecular mechanisms and intervention targets. Our results revealed that exposure to this dual-frequency EMR significantly induced anxiety-like behavior in mice. Molecular experiments further showed a significant decrease in cannabinoid receptor type 1 (CB1R) levels in the medial prefrontal cortex (mPFC) of the mice, along with a notable reduction in the endogenous cannabinoids 2-arachidonoylglycerol and anandamide. This led to a downregulation of the entire endocannabinoid system (ECS). Additional confirmation was obtained by overexpressing and knocking down CB1R in the mPFC. We found that increasing mPFC CB1R levels could effectively reduce anxiety-like behavior, while decreasing mPFC CB1R levels exacerbated it. Furthermore, we found dual-frequency EMR induced the change of ECS in the basolateral amygdala (BLA). Notably, female mice exhibited similar behavioral phenotypes and molecular mechanisms in response to dual-frequency EMR. In summary, our study demonstrates that anxiety induced by dual-frequency EMR is closely linked to the function of the ECS in the mPFC and BLA, and that CB1R expression in the mPFC plays a significant role in modulating emotional behavior in mice.
Collapse
Affiliation(s)
- Bin Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Xue
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - An-ning Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin-yu Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-man Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-hui Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng-hua Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Dong-fang Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | | |
Collapse
|
2
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
4
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
5
|
Furriel BCRS, Furriel GP, Cunha Xavier Pinto M, Lemos RP. Computational modeling of fear and stress responses: validation using consolidated fear and stress protocols. Front Syst Neurosci 2024; 18:1454336. [PMID: 39776892 PMCID: PMC11703847 DOI: 10.3389/fnsys.2024.1454336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering. To advance the understanding of fear and stress, this study presents a biologically and behaviorally plausible computational architecture that integrates several subregions of key brain structures, such as the amygdala, hippocampus, and medial prefrontal cortex. Additionally, the model incorporates stress hormone curves and employs spiking neural networks with conductance-based integrate-and-fire neurons. The proposed approach was validated using the well-established Contextual Fear Conditioning paradigm and subsequently tested with IED and SEFL protocols. The results confirmed that higher intensity aversive stimuli result in more robust and persistent fear memories, making extinction more challenging. They also underscore the importance of the timing of extinction and the significant influence of stress. To our knowledge, this is the first instance of computational modeling being applied to IED and SEFL protocols. This study validates our computational model's complexity and biological realism in analyzing responses to fear and stress through fear conditioning, IED, and SEFL protocols. Rather than providing new biological insights, the primary contribution of this work lies in its methodological innovation, demonstrating that complex, biologically plausible neural architectures can effectively replicate established findings in fear and stress research. By simulating protocols typically conducted in vivo-often involving significant pain and suffering-in an insilico environment, our model offers a promising tool for studying fear-related mechanisms. These findings support the potential of computational models to reduce the reliance on animal testing while setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Brunna Carolinne Rocha Silva Furriel
- Instituto Federal de Goiás, Goiânia, Brazil
- Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil
- Imaging Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Rodrigo Pinto Lemos
- Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil
| |
Collapse
|
6
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
7
|
Quadir SG, Danyal Zaidi S, Cone MG, Patel S. Alcohol Withdrawal Alters the Inhibitory Landscape of the Prelimbic Cortex in an Interneuron- and Sex-specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624401. [PMID: 39605607 PMCID: PMC11601661 DOI: 10.1101/2024.11.19.624401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alcohol use disorder (AUD) is highly prevalent and associated with substantial morbidity and high mortality among substance use disorders. While there are currently three FDA-approved medications for treating AUDs, none specifically target the withdrawal/negative affect stage of AUD, underscoring the need to understand the underlying neurobiology during this critical stage of the addiction cycle. One key region involved in alcohol withdrawal and negative affect is the prelimbic cortex, a subregion of the medial prefrontal cortex. While previous studies have examined alcohol-related adaptations in prefrontal cortical principal glutamatergic neurons, here we used male and female PV:Ai14, SOM:Ai14 and VIP:Ai14 mice to examine synaptic adaptations in all three major classes of prelimbic cortex interneurons following 72 hour withdrawal from a continuous access to two bottle choice model of EtOH drinking in male and female mice. We found that alcohol withdrawal increased excitability of prelimbic PV interneurons in males, but decreased excitability in prelimbic VIP interneurons in females. Additionally, alcohol withdrawal reduced GABA release onto PV interneurons in males while increasing glutamate release onto VIP interneurons in females. In SOM interneurons, alcohol withdrawal had no effect on excitability, but decreased glutamate release onto SOM interneurons in males. Together, our studies identified sex-specific alcohol withdrawal-induced synaptic plasticity in three different types of interneurons and could provide insight into the cellular substrates of negative affective states associated with alcohol withdrawal.
Collapse
|
8
|
Gom RC, George AG, Harris SA, Wickramarachchi P, Bhatt D, Acharjee S, Pittman QJ, Hill MN, Colangeli R, Teskey GC. Emotional comorbidities in epilepsy result from seizure-induced corticosterone activity. Neurobiol Stress 2024; 33:100678. [PMID: 39497812 PMCID: PMC11533717 DOI: 10.1016/j.ynstr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
People with epilepsy often have psychiatric comorbidities that can significantly impair their quality of life. We previously reported that repeated seizure activity persistently alters endocannabinoid (eCB) signaling in the amygdala which accounts for comorbid emotional dysregulation in rats, however, the mechanism by which these alterations in eCB signaling within the epileptic brain occur is unclear. Endocannabinoid signaling is influenced by corticosterone (CORT) to modulate cognitive and emotional processes and a hyperactive hypothalamic-pituitary-adrenal (HPA) axis occurs in both people with epilepsy and nonhuman animal models of epilepsy. We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, behavioural paradigms and biochemical assays in amygdala kindled adult male Long-Evans rats. We aimed to determine whether seizures induce hypersecretion of CORT and the role this plays in eCB system dysregulation, impaired fear memory, and anxiety-like behaviours associated with seizure activity. Plasma CORT levels were significantly and consistently elevated following seizures over the course of kindling. Pre-seizure administration with the CORT synthesis inhibitor metyrapone prevented this seizure-induced CORT increase, prevented amygdala anandamide downregulation, and synaptic alteration induced by seizure activity. Moreover, treatment with metyrapone or combined glucocorticoid receptor (GR)/mineralocorticoid receptor (MR) antagonists prior to each elicited seizure were equally effective in preventing chronically altered anxiety-like behaviour and fear memory responses. Inhibiting seizure-induced corticosterone synthesis, or directly blocking the effects of CORT at GR/MR prevents deleterious changes in emotional processing and could be a treatment option for emotional comorbidities in epilepsy.
Collapse
Affiliation(s)
- Renaud C. Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Antis G. George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Sydney A. Harris
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shaona Acharjee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Quentin J. Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - G. Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
9
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. Neuropsychopharmacology 2024; 49:1861-1871. [PMID: 38773314 PMCID: PMC11473522 DOI: 10.1038/s41386-024-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.
Collapse
Affiliation(s)
- Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilah D Jordan
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lily G Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Chen XX, Wang B, Cai W, Zhang YH, Shen L, Zhu YY, Wang T, Meng XH, Wang H, Xu DX. Exposure to 1-nitropyrene after weaning induces anxiety-like behavior partially by inhibiting steroid hormone synthesis in prefrontal cortex. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134911. [PMID: 38889457 DOI: 10.1016/j.jhazmat.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
1-Nitropyrene (1-NP) is a neurodevelopmental toxicant. This study was to evaluate the impact of exposure to 1-NP after weaning on anxiety-like behavior. Five-week-old mice were administered with 1-NP (0.1 or 1 mg/kg) daily for 4 weeks. Anxiety-like behaviour was measured using elevated-plus maze (EPM) and open field test (OFT). In EPM test, time spending in open arm and times entering open arm were reduced in 1-NP-treated mice. In OFT test, time spent in the center region and times entering the center region were diminished in 1-NP-treated mice. Prefrontal dendritic length and number of dendrite branches were decreased in 1-NP-treated mice. Prefrontal PSD95, an excitatory postsynaptic membrane protein, and gephyrin, an inhibitory postsynaptic membrane protein, were downregulated in 1-NP-treated mice. Further analysis showed that peripheral steroid hormones, including serum testosterone (T) and estradiol (E2), testicular T, and ovarian E2, were decreased in 1-NP-treated mice. Interestingly, T and E2 were diminished in 1-NP-treated prefrontal cortex. Prefrontal T and E2 synthases were diminished in 1-NP-treated mice. Mechanistically, GCN2-eIF2α, a critical pathway that regulates ribosomal protein translation, was activated in 1-NP-treated prefrontal cortex. These results indicate that exposure to 1-NP after weaning induces anxiety-like behaviour partially by inhibiting steroid hormone synthesis in prefrontal cortex.
Collapse
Affiliation(s)
- Xiao-Xi Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Wei Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Hao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Li Shen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; The Second Affiliated Hospital of Anhui Medical University, Hefei 230032 China.
| |
Collapse
|
11
|
Lorenzetti V, McTavish E, Broyd S, van Hell H, Thomson D, Ganella E, Kottaram AR, Beale C, Martin J, Galettis P, Solowij N, Greenwood LM. Daily Cannabidiol Administration for 10 Weeks Modulates Hippocampal and Amygdalar Resting-State Functional Connectivity in Cannabis Users: A Functional Magnetic Resonance Imaging Open-Label Clinical Trial. Cannabis Cannabinoid Res 2024; 9:e1108-e1121. [PMID: 37603080 DOI: 10.1089/can.2022.0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Introduction: Cannabis use is associated with brain functional changes in regions implicated in prominent neuroscientific theories of addiction. Emerging evidence suggests that cannabidiol (CBD) is neuroprotective and may reverse structural brain changes associated with prolonged heavy cannabis use. In this study, we examine how an ∼10-week exposure of CBD in cannabis users affected resting-state functional connectivity in brain regions functionally altered by cannabis use. Materials and Methods: Eighteen people who use cannabis took part in a ∼10 weeks open-label pragmatic trial of self-administered daily 200 mg CBD in capsules. They were not required to change their cannabis exposure patterns. Participants were assessed at baseline and post-CBD exposure with structural magnetic resonance imaging (MRI) and a functional MRI resting-state task (eyes closed). Seed-based connectivity analyses were run to examine changes in the functional connectivity of a priori regions-the hippocampus and the amygdala. We explored if connectivity changes were associated with cannabinoid exposure (i.e., cumulative cannabis dosage over trial, and plasma CBD concentrations and Δ9-tetrahydrocannabinol (THC) plasma metabolites postexposure), and mental health (i.e., severity of anxiety, depression, and positive psychotic symptom scores), accounting for cigarette exposure in the past month, alcohol standard drinks in the past month and cumulative CBD dose during the trial. Results: Functional connectivity significantly decreased pre-to-post the CBD trial between the anterior hippocampus and precentral gyrus, with a strong effect size (d=1.73). Functional connectivity increased between the amygdala and the lingual gyrus pre-to-post the CBD trial, with a strong effect size (d=1.19). There were no correlations with cannabinoids or mental health symptom scores. Discussion: Prolonged CBD exposure may restore/reduce functional connectivity differences reported in cannabis users. These new findings warrant replication in a larger sample, using robust methodologies-double-blind and placebo-controlled-and in the most vulnerable people who use cannabis, including those with more severe forms of Cannabis Use Disorder and experiencing worse mental health outcomes (e.g., psychosis, depression).
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Samantha Broyd
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Hendrika van Hell
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Eleni Ganella
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
- Orygen, the National Center of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Akhil Raja Kottaram
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
| | - Camilla Beale
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jennifer Martin
- John Hunter Hospital, Newcastle, New South Wales, Australia
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Peter Galettis
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Lisa-Marie Greenwood
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
- Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
12
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
13
|
Fu X, Tasker JG. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front Cell Neurosci 2024; 18:1421617. [PMID: 38994327 PMCID: PMC11236696 DOI: 10.3389/fncel.2024.1421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
Collapse
Affiliation(s)
- Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
14
|
Wang H, Flores RJ, Yarur HE, Limoges A, Bravo-Rivera H, Casello SM, Loomba N, Enriquez-Traba J, Arenivar M, Wang Q, Ganley R, Ramakrishnan C, Fenno LE, Kim Y, Deisseroth K, Or G, Dong C, Hoon MA, Tian L, Tejeda HA. Prefrontal cortical dynorphin peptidergic transmission constrains threat-driven behavioral and network states. Neuron 2024; 112:2062-2078.e7. [PMID: 38614102 PMCID: PMC11250624 DOI: 10.1016/j.neuron.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Collapse
Affiliation(s)
- Huikun Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Columbia University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector Bravo-Rivera
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M Casello
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Loomba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Brown University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Queenie Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ganley
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Kim
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Grace Or
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mark A Hoon
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hugo A Tejeda
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
16
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
17
|
Ornelas LC, Besheer J. Predator odor stress reactivity, alcohol drinking and the endocannabinoid system. Neurobiol Stress 2024; 30:100634. [PMID: 38623398 PMCID: PMC11016807 DOI: 10.1016/j.ynstr.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
18
|
Girella A, Di Bartolomeo M, Dainese E, Buzzelli V, Trezza V, D'Addario C. Fatty Acid Amide Hydrolase and Cannabinoid Receptor Type 1 Genes Regulation is Modulated by Social Isolation in Rats. Neurochem Res 2024; 49:1278-1290. [PMID: 38368587 DOI: 10.1007/s11064-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.
Collapse
Affiliation(s)
- Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | | | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Patel RR, Patarino M, Kim K, Pamintuan R, Taschbach FH, Li H, Lee CR, van Hoek A, Castro R, Cazares C, Miranda RL, Jia C, Delahanty J, Batra K, Keyes LR, Libster A, Wichmann R, Pereira TD, Benna MK, Tye KM. Social isolation recruits amygdala-cortical circuitry to escalate alcohol drinking. RESEARCH SQUARE 2024:rs.3.rs-4033115. [PMID: 38562728 PMCID: PMC10984017 DOI: 10.21203/rs.3.rs-4033115/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and computer vision pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.
Collapse
Affiliation(s)
- Reesha R. Patel
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Psychiatric Neuroscience, Northwestern University, Chicago, IL, USA
| | | | - Kelly Kim
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
| | | | - Felix H. Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Hao Li
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Psychiatric Neuroscience, Northwestern University, Chicago, IL, USA
| | - Christopher R. Lee
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Aniek van Hoek
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rogelio Castro
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | | | - Raymundo L. Miranda
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Caroline Jia
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | | | - Kanha Batra
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Laurel R. Keyes
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
| | - Avraham Libster
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Romy Wichmann
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
- Howard Hughes Investigator and Wylie Vale Professor at Salk Institute, La Jolla, CA, USA
- Kavli Institute for the Brain and Mind, La Jolla, CA, USA
| |
Collapse
|
20
|
Fabian CB, Jordan ND, Cole RH, Carley LG, Thompson SM, Seney ML, Joffe ME. Parvalbumin interneuron mGlu 5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567903. [PMID: 38045379 PMCID: PMC10690210 DOI: 10.1101/2023.11.20.567903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. Proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. Activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5-/- mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol's stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant for alcohol use.
Collapse
Affiliation(s)
- Carly B. Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Nilah D. Jordan
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Lily G. Carley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Shannon M. Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
21
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Wang H, Flores RJ, Yarur HE, Limoges A, Bravo-Rivera H, Casello SM, Loomba N, Enriquez-Traba J, Arenivar M, Wang Q, Ganley R, Ramakrishnan C, Fenno LE, Kim Y, Deisseroth K, Or G, Dong C, Hoon MA, Tian L, Tejeda HA. Prefrontal cortical dynorphin peptidergic transmission constrains threat-driven behavioral and network states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574700. [PMID: 38283686 PMCID: PMC10822088 DOI: 10.1101/2024.01.08.574700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and mal-adaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Collapse
Affiliation(s)
- Huikun Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J. Flores
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector E. Yarur
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Columbia University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector Bravo-Rivera
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M. Casello
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Loomba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Brown University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Queenie Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ganley
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Current affiliation: Departments of Psychiatry and Neuroscience, University of Texas, Austin, Dell Medical School, Austin, TX, USA
| | - Yoon Kim
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Grace Or
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mark A. Hoon
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hugo A. Tejeda
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Petrie GN, Balsevich G, Füzesi T, Aukema RJ, Driever WPF, van der Stelt M, Bains JS, Hill MN. Disruption of tonic endocannabinoid signalling triggers cellular, behavioural and neuroendocrine responses consistent with a stress response. Br J Pharmacol 2023; 180:3146-3159. [PMID: 37482931 DOI: 10.1111/bph.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid (eCB) signalling gates many aspects of the stress response, including the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is controlled by corticotropin releasing hormone (CRH) producing neurons in the paraventricular nucleus of the hypothalamus (PVN). Disruption of eCB signalling increases drive to the HPA axis, but the mechanisms subserving this process are poorly understood. EXPERIMENTAL APPROACH Using an array of cellular, endocrine and behavioural readouts associated with activation of CRH neurons in the PVN, we evaluated the contributions of tonic eCB signalling to the generation of a stress response. KEY RESULTS The CB1 receptor antagonist/inverse agonist AM251, neutral antagonist NESS243 and NAPE PLD inhibitor LEI401 all uniformly increased Fos in the PVN, unmasked stress-linked behaviours, such as grooming, and increased circulating CORT, recapitulating the effects of stress. Similar effects were also seen after direct administration of AM251 into the PVN, while optogenetic inhibition of PVN CRH neurons ameliorated stress-like behavioural changes produced by disruption of eCB signalling. CONCLUSIONS AND IMPLICATIONS These data indicate that under resting conditions, constitutive eCB signalling restricts activation of the HPA axis through local regulation of CRH neurons in the PVN.
Collapse
Affiliation(s)
- Gavin N Petrie
- Neuroscience Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert J Aukema
- Neuroscience Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Wouter P F Driever
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Kondev V, Najeed M, Yasmin F, Morgan A, Loomba N, Johnson K, Adank DN, Dong A, Delpire E, Li Y, Winder D, Grueter BA, Patel S. Endocannabinoid release at ventral hippocampal-amygdala synapses regulates stress-induced behavioral adaptation. Cell Rep 2023; 42:113027. [PMID: 37703881 PMCID: PMC10846613 DOI: 10.1016/j.celrep.2023.113027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known. Here, we utilized in vivo optogenetic- and biosensor-based approaches to determine the temporal dynamics of activity-dependent and stress-induced eCB release at vHPC-BLA synapses. Furthermore, we demonstrate that genetic deletion of cannabinoid type-1 receptors selectively at vHPC-BLA synapses decreases active stress coping and exacerbates stress-induced avoidance and anhedonia phenotypes. These data establish the in vivo determinants of eCB release at limbic synapses and demonstrate that eCB signaling within vHPC-BLA circuitry serves to counteract adverse behavioral consequences of stress.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda Morgan
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Keenan Johnson
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGoverrn Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGoverrn Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Danny Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Becker LJ, Fillinger C, Waegaert R, Journée SH, Hener P, Ayazgok B, Humo M, Karatas M, Thouaye M, Gaikwad M, Degiorgis L, Santin MDN, Mondino M, Barrot M, Ibrahim EC, Turecki G, Belzeaux R, Veinante P, Harsan LA, Hugel S, Lutz PE, Yalcin I. The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nat Commun 2023; 14:2198. [PMID: 37069164 PMCID: PMC10110607 DOI: 10.1038/s41467-023-37878-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.
Collapse
Affiliation(s)
- Léa J Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Anesthesiology, Center for Clinical Pharmacology Washington University in St. Louis, St. Louis, MO, USA
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Robin Waegaert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Hener
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Beyza Ayazgok
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Biochemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Muris Humo
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Meltem Karatas
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Mithil Gaikwad
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Laetitia Degiorgis
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Marie des Neiges Santin
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Mary Mondino
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Gustavo Turecki
- Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raoul Belzeaux
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Department of Psychiatry, CHU de Montpellier, Montpellier, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Laura A Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
28
|
Liu WZ, Huang SH, Wang Y, Wang CY, Pan HQ, Zhao K, Hu P, Pan BX, Zhang WH. Medial prefrontal cortex input to basolateral amygdala controls acute stress-induced short-term anxiety-like behavior in mice. Neuropsychopharmacology 2023; 48:734-744. [PMID: 36513871 PMCID: PMC10066275 DOI: 10.1038/s41386-022-01515-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Anxiety is a normal and transitory emotional state that allows the organisms to cope well with the real or perceived threats, while excessive or prolonged anxiety is a key characteristic of anxiety disorders. We have recently revealed that prolonged anxiety induced by chronic stress is associated with the circuit-varying dysfunction of basolateral amygdala projection neurons (BLA PNs). However, it is not yet known whether similar mechanisms also emerge for acute stress-induced, short-lasting increase of anxiety. Here, using a mouse model of acute restraint stress (ARS), we found that ARS mice showed increased anxiety-like behavior at 2 h but not 24 h after stress, and this effect was accompanied by a transient increase of the activity of BLA PNs. Specifically, ex vivo patch-clamp recordings revealed that the increased BLA neuronal activity did not differ among the distinct BLA neuronal populations, regardless of their projection targets being the dorsomedial prefrontal cortex (dmPFC) or elsewhere. We further demonstrated that such effects were mainly mediated by the enhanced presynaptic glutamate release in dmPFC-to-BLA synapses but not lateral amygdala-to-BLA ones. Furthermore, while optogenetically weakening the presynaptic glutamate release in dmPFC-to-BLA synapses ameliorated ARS-induced anxiety-like behavior, strengthening the release increased in unstressed mice. Together, these findings suggest that acute stress causes short-lasting increase in anxiety-like behavior by facilitating synaptic transmission from the prefrontal cortex to the amygdala in a circuit-independent fashion.
Collapse
Affiliation(s)
- Wei-Zhu Liu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shou-He Huang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yu Wang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chun-Yan Wang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Han-Qing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ke Zhao
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ping Hu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China.
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China.
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
29
|
Winters ND, Kondev V, Loomba N, Delpire E, Grueter BA, Patel S. Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission. Cell Rep 2023; 42:112159. [PMID: 36842084 PMCID: PMC10846612 DOI: 10.1016/j.celrep.2023.112159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
The lateral habenula (LHb) encodes aversive states, and its dysregulation is implicated in neuropsychiatric disorders, including depression. The endocannabinoid (eCB) system is a neuromodulatory signaling system that broadly serves to counteract the adverse effects of stress; however, CB1 receptor signaling within the LHb can paradoxically promote anxiogenic- and depressive-like effects. Current reports of synaptic actions of eCBs in the LHb are conflicting and lack systematic investigation of eCB regulation of excitatory and inhibitory transmission. Here, we report that eCBs differentially regulate glutamatergic and GABAergic transmission in the LHb, exhibiting canonical and circuit-specific inhibition of both systems and an opposing potentiation of synaptic glutamate release mediated via activation of CB1 receptors on astrocytes. Moreover, simultaneous depression of GABA and potentiation of glutamate release increases the net excitation-inhibition ratio onto LHb neurons, suggesting a potential cellular mechanism by which cannabinoids may promote LHb activity and subsequent anxious- and depressive-like aversive states.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Lei H, Shu H, Xiong R, He T, Lv J, Liu J, Pi G, Ke D, Wang Q, Yang X, Wang JZ, Yang Y. Poststress social isolation exerts anxiolytic effects by activating the ventral dentate gyrus. Neurobiol Stress 2023; 24:100537. [PMID: 37081927 PMCID: PMC10112178 DOI: 10.1016/j.ynstr.2023.100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
After aversive stress, people either choose to return to their previously familiar social environment or tend to adopt temporary social withdrawal to buffer negative emotions. However, which behavior intervention is more appropriate and when remain elusive. Here, we unexpectedly found that stressed mice experiencing social isolation exhibited less anxiety than those experiencing social contact. Within the first 24 h after returning to their previous social environment, mice experienced acute restraint stress (ARS) displayed low social interest but simultaneously received excessive social disturbance from their cage mates, indicating a critical time window for social isolation to balance the conflict. To screen brain regions that were differentially activated between the poststress social isolation and poststress social contact groups, we performed ΔFosB immunostaining and found that ΔFosB + signals were remarkably increased in the vDG of poststress social isolation group compared with poststress social contact group. There were no significant differences between the two groups in the other anxiety- and social-related brain regions, such as prelimbic cortex, infralimbic cortex, nucleus accumbens, etc. These data indicate that vDG is closely related to the differential phenotypes between the poststress social isolation and poststress social contact groups. Electrophysiological recording, further, revealed a higher activity of vDG in the poststress social isolation group than the poststress social contact group. Chemogenetically inhibiting vDG excitatory neurons within the first 24 h after ARS completely abolished the anxiolytic effects of poststress social isolation, while stimulating vDG excitatory neurons remarkably reduced anxiety-like behaviors in the poststress social contact group. Together, these data suggest that the activity of vDG excitatory neurons is essential and sufficient to govern the anxiolytic effect of poststress social isolation. To the best of our knowledge, this is the first report to uncover a beneficial role of temporal social isolation in acute stress-induced anxiety. In addition to the critical 24-h time window, activation of vDG is crucial for ameliorating anxiety through poststress social isolation.
Collapse
Affiliation(s)
- Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
- Corresponding author. Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Corresponding author.
| |
Collapse
|
31
|
2-AG-Mediated Control of GABAergic Signaling Is Impaired in a Model of Epilepsy. J Neurosci 2023; 43:571-583. [PMID: 36460464 PMCID: PMC9888507 DOI: 10.1523/jneurosci.0541-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Repeated seizures result in a persistent maladaptation of endocannabinoid (eCB) signaling, mediated part by anandamide signaling deficiency in the basolateral amygdala (BLA) that manifests as aberrant synaptic function and altered emotional behavior. Here, we determined the effect of repeated seizures (kindling) on 2-arachidonoylglycerol (2-AG) signaling on GABA transmission by directly measuring tonic and phasic eCB-mediated retrograde signaling in an in vitro BLA slice preparation from male rats. We report that both activity-dependent and muscarinic acetylcholine receptor (mAChR)-mediated depression of GABA synaptic transmission was reduced following repeated seizure activity. These effects were recapitulated in sham rats by preincubating slices with the 2-AG synthesizing enzyme inhibitor DO34. Conversely, preincubating slices with the 2-AG degrading enzyme inhibitor KML29 rescued activity-dependent 2-AG signaling, but not mAChR-mediated synaptic depression, over GABA transmission in kindled rats. These effects were not attributable to a change in cannabinoid type 1 (CB1) receptor sensitivity or altered 2-AG tonic signaling since the application of the highly selective CB1 receptor agonist CP55,940 provoked a similar reduction in GABA synaptic activity in both sham and kindled rats, while no effect of either DO34 or of the CB1 inverse agonist AM251 was observed on frequency and amplitude of spontaneous IPSCs in either sham or kindled rats. Collectively, these data provide evidence that repeated amygdala seizures persistently alter phasic 2-AG-mediated retrograde signaling at BLA GABAergic synapses, probably by impairing stimulus-dependent 2-AG synthesis/release, which contributes to the enduring aberrant synaptic plasticity associated with seizure activity.SIGNIFICANCE STATEMENT The plastic reorganization of endocannabinoid (eCB) signaling after seizures and during epileptogenesis may contribute to the negative neurobiological consequences associated with seizure activity. Therefore, a deeper understanding of the molecular basis underlying the pathologic long-term eCB signaling remodeling following seizure activity will be crucial to the development of novel therapies for epilepsy that not only target seizure activity, but, most importantly, the epileptogenesis and the comorbid conditions associated with epilepsy.
Collapse
|
32
|
Turco F, Brugnatelli V, Abalo R. Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health. Med Cannabis Cannabinoids 2023; 6:130-137. [PMID: 37920559 PMCID: PMC10618907 DOI: 10.1159/000534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023] Open
Abstract
The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.
Collapse
Affiliation(s)
| | | | - Raquel Abalo
- Depar High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
- R & D & I Unit Associated with the Institute of Medicinal Chemistry (IQM), Spanish National Research-Council (CSIC), Madrid, Spain
- Spanish Pain Society Working Groups on Basic Sciences in Pain and Analgesia and on Cannabinoids, Madrid, Spain
| |
Collapse
|
33
|
Kondev V, Bluett R, Najeed M, Rosas-Vidal LE, Grueter BA, Patel S. Ventral hippocampal diacylglycerol lipase-alpha deletion decreases avoidance behaviors and alters excitation-inhibition balance. Neurobiol Stress 2022; 22:100510. [PMID: 36594052 PMCID: PMC9803955 DOI: 10.1016/j.ynstr.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The endogenous cannabinoid, 2-arachidonoylglycerol (2-AG), plays a key role in the regulation of anxiety- and stress-related behavioral phenotypes and may represent a novel target for the treatment of anxiety disorders. However, recent studies have suggested a more complex role for 2-AG signaling in the regulation of stress responsivity, including increases in acute fear responses after 2-AG augmentation under some conditions. Thus, 2-AG signaling within distinct brain regions and circuits could regulate anxiety-like behavior and stress responsivity in opposing manners. The ventral hippocampus (vHPC) is a critical region for emotional processing, anxiety-like behaviors, and stress responding. Here, we use a conditional knock-out of the 2-AG synthesis enzyme, diacylglycerol lipase α (DAGLα), to study the role of vHPC 2-AG signaling in the regulation of affective behavior. We show that vHPC DAGLα deletion decreases avoidance behaviors both basally and following an acute stress exposure. Genetic deletion of vHPC DAGLα also promotes stress resiliency, with no effect on fear acquisition, expression, or contextual fear generalization. Using slice electrophysiology, we demonstrate that vHPC DAGLα deletion shifts vHPC activity towards enhanced inhibition. Together, these data indicate endogenous 2-AG signaling in the vHPC promotes avoidance and increases stress reactivity, confirming the notion that 2-AG signaling within distinct brain regions may exert divergent effects on anxiety states and stress adaptability.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rebecca Bluett
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Luis E. Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA,Corresponding author. Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
34
|
Cambiaghi M, Infortuna C, Gualano F, Elsamadisi A, Malik W, Buffelli M, Han Z, Solhkhah R, P. Thomas F, Battaglia F. High-frequency rTMS modulates emotional behaviors and structural plasticity in layers II/III and V of the mPFC. Front Cell Neurosci 2022; 16:1082211. [PMID: 36582213 PMCID: PMC9792489 DOI: 10.3389/fncel.2022.1082211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique, and it has been increasingly used as a nonpharmacological intervention for the treatment of various neurological and neuropsychiatric diseases, including depression. In humans, rTMS over the prefrontal cortex is used to induce modulation of the neural circuitry that regulates emotions, cognition, and depressive symptoms. However, the underlying mechanisms are still unknown. In this study, we investigated the effects of a short (5-day) treatment with high-frequency (HF) rTMS (15 Hz) on emotional behavior and prefrontal cortex morphological plasticity in mice. Mice that had undergone HF-rTMS showed an anti-depressant-like activity as evidenced by decreased immobility time in both the Tail Suspension Test and the Forced Swim Test along with increased spine density in both layer II/III and layer V apical and basal dendrites. Furthermore, dendritic complexity assessed by Sholl analysis revealed increased arborization in the apical portions of both layers, but no modifications in the basal dendrites branching. Overall, these results indicate that the antidepressant-like activity of HF-rTMS is paralleled by structural remodeling in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmenrita Infortuna
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesca Gualano
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Amir Elsamadisi
- Department of Psychiatry, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Wasib Malik
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Zhiyong Han
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Ramon Solhkhah
- Department of Psychiatry, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Florian P. Thomas
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States,Department of Neurology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Fortunato Battaglia
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States,Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States,*Correspondence: Fortunato Battaglia
| |
Collapse
|
35
|
Patel S, Johnson K, Adank D, Rosas-Vidal LE. Longitudinal monitoring of prefrontal cortical ensemble dynamics reveals new insights into stress habituation. Neurobiol Stress 2022; 20:100481. [PMID: 36160815 PMCID: PMC9489534 DOI: 10.1016/j.ynstr.2022.100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
The prefrontal cortex is highly susceptible to the detrimental effects of stress and has been implicated in the pathogenesis of stress-related psychiatric disorders. It is not well understood, however, how stress is represented at the neuronal level in the prefrontal cortical neuronal ensembles. Even less understood is how the representation of stress changes over time with repeated exposure. Here we show that the prelimbic prefrontal neuronal ensemble representation of foot shock stress exhibits rapid spatial drift within and between sessions. Despite this rapid spatial drift of the ensemble, the representation of the stressor itself stabilizes over days. Our results suggest that stress is represented by rapidly drifting ensembles and despite this rapid drift, important features of the neuronal representation are stabilized, suggesting a neural correlate of stress habituation is present within prefrontal cortical neuron populations.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Luis E. Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
36
|
Patel RR, Wolfe SA, Borgonetti V, Gandhi PJ, Rodriguez L, Snyder AE, D'Ambrosio S, Bajo M, Domissy A, Head S, Contet C, Dayne Mayfield R, Roberts AJ, Roberto M. Ethanol withdrawal-induced adaptations in prefrontal corticotropin releasing factor receptor 1-expressing neurons regulate anxiety and conditioned rewarding effects of ethanol. Mol Psychiatry 2022; 27:3441-3451. [PMID: 35668157 PMCID: PMC9708587 DOI: 10.1038/s41380-022-01642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal circuits are thought to underlie aberrant emotion contributing to relapse in abstinence; however, the discrete cell-types and mechanisms remain largely unknown. Corticotropin-releasing factor and its cognate type-1 receptor, a prominent brain stress system, is implicated in anxiety and alcohol use disorder (AUD). Here, we tested the hypothesis that medial prefrontal cortex CRF1-expressing (mPFCCRF1+) neurons comprise a distinct population that exhibits neuroadaptations following withdrawal from chronic ethanol underlying AUD-related behavior. We found that mPFCCRF1+ neurons comprise a glutamatergic population with distinct electrophysiological properties and regulate anxiety and conditioned rewarding effects of ethanol. Notably, mPFCCRF1+ neurons undergo unique neuroadaptations compared to neighboring neurons including a remarkable decrease in excitability and glutamatergic signaling selectively in withdrawal, which is driven in part by the basolateral amygdala. To gain mechanistic insight into these electrophysiological adaptations, we sequenced the transcriptome of mPFCCRF1+ neurons and found that withdrawal leads to an increase in colony-stimulating factor 1 (CSF1) in this population. We found that selective overexpression of CSF1 in mPFCCRF1+ neurons is sufficient to decrease glutamate transmission, heighten anxiety, and abolish ethanol reinforcement, providing mechanistic insight into the observed mPFCCRF1+ synaptic adaptations in withdrawal that drive these behavioral phenotypes. Together, these findings highlight mPFCCRF1+ neurons as a critical site of enduring adaptations that may contribute to the persistent vulnerability to ethanol misuse in abstinence, and CSF1 as a novel target for therapeutic intervention for withdrawal-related negative affect.
Collapse
Affiliation(s)
- Reesha R Patel
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vittoria Borgonetti
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università degli Studi di Firenze, 50139, Firenze (FI), Italy
| | - Pauravi J Gandhi
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Larry Rodriguez
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Angela E Snyder
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shannon D'Ambrosio
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Michal Bajo
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alain Domissy
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Steven Head
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Candice Contet
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - R Dayne Mayfield
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Amanda J Roberts
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
37
|
Yan L, Wei J, Yang F, Wang M, Wang S, Cheng T, Liu X, Jia Y, So K, Zhang L. Physical Exercise Prevented Stress-Induced Anxiety via Improving Brain RNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105731. [PMID: 35642952 PMCID: PMC9404392 DOI: 10.1002/advs.202105731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Indexed: 06/12/2023]
Abstract
Physical exercise is effective in alleviating mental disorders by improving synaptic transmission; however, the link between body endurance training and neural adaptation has not yet been completely resolved. In this study, the authors investigated the role of RNA N6 -methyladenosine (m6A), an emerging epigenetic mechanism, in improved resilience against chronic restraint stress. A combination of molecular, behavioral, and in vivo recording data demonstrates exercise-mediated restoration of m6A in the mouse medial prefrontal cortex, whose activity is potentiated to exert anxiolytic effects. Furthermore, it is revealed that hepatic biosynthesis of one methyl donor is necessary for exercise to improve brain RNA m6A to counteract environmental stress. This novel liver-brain axis provides an explanation for brain network changes upon exercise training and provides new insights into the diagnosis and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Lan Yan
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
| | - Ji‐an Wei
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
| | - Fengzhen Yang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
| | - Mei Wang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
| | - Siqi Wang
- College of Life Science and TechnologyJinan UniversityGuangzhou510632P. R. China
| | - Tong Cheng
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
| | - Xuanjun Liu
- Department of Psychiatry, The First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Yanbin Jia
- Department of Psychiatry, The First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
- Institute of Clinical Research for Mental Health, The First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Kwok‐Fai So
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
- Institute of Clinical Research for Mental Health, The First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARP. R. China
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhou510515P. R. China
- Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsu226019P. R. China
- Neuroscience and Neurorehabilitation InstituteUniversity of Health and Rehabilitation SciencesQingdao266000P. R. China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632P. R. China
- Institute of Clinical Research for Mental Health, The First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhou510515P. R. China
- Neuroscience and Neurorehabilitation InstituteUniversity of Health and Rehabilitation SciencesQingdao266000P. R. China
| |
Collapse
|
38
|
Ferranti AS, Johnson KA, Winder DG, Conn PJ, Joffe ME. Prefrontal cortex parvalbumin interneurons exhibit decreased excitability and potentiated synaptic strength after ethanol reward learning. Alcohol 2022; 101:17-26. [PMID: 35227826 PMCID: PMC9117490 DOI: 10.1016/j.alcohol.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) is intimately associated with behavioral characteristics of alcohol use disorders, including high motivation to drink and difficulty with moderation. Thus, continued mechanistic research investigating PFC cells and targets altered by ethanol experiences should inform translational efforts to craft new, efficacious treatments. Inhibitory interneurons expressing parvalbumin (PV-INs) comprise only a minor fraction of cells within the PFC, yet these cells are indispensable for coordinating PFC ensemble function, oscillatory activity, and subcortical output. Based on this, PV-INs represent an exciting target for the rational design of breakthrough treatments for alcohol use disorders. Here, we assessed experience-dependent physiological adaptations via ethanol place conditioning. By manipulating the timing of administration relative to conditioning sessions, equivalent ethanol exposure can form either rewarding or aversive memories in different individuals. Here, we found that female mice and male mice on a C57BL/6J background display conditioned place preference (CPP) or aversion (CPA) to an intoxicating dose of ethanol (2 g/kg, intraperitoneal [i.p.]) without overt differences between sexes. Ethanol reward learning was associated with decreased PV-IN excitability in deep layer prelimbic PFC, whereas PV-INs from CPA mice were not different from controls. Furthermore, PV-INs from mice in the CPP group, but not the CPA group, displayed potentiated excitatory synaptic strength that emerged during 1 week of abstinence. Taken together, these findings illustrate that synaptic and intrinsic adaptations associated with ethanol can depend on an individual's experience. These studies provide further context and support for PFC PV-INs as intriguing targets for modulating alcohol associations.
Collapse
Affiliation(s)
| | - Kari A. Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Addiction Research, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - P. Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Addiction Research, Nashville, TN
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
39
|
Zieglgänsberger W, Brenneisen R, Berthele A, Wotjak CT, Bandelow B, Tölle TR, Lutz B. Chronic Pain and the Endocannabinoid System: Smart Lipids - A Novel Therapeutic Option? Med Cannabis Cannabinoids 2022; 5:61-75. [PMID: 35702403 PMCID: PMC9149512 DOI: 10.1159/000522432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 08/05/2023] Open
Abstract
The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).
Collapse
Affiliation(s)
| | | | | | | | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
40
|
Acute stress and alcohol exposure during adolescence result in an anxious phenotype in adulthood: Role of altered glutamate/endocannabinoid transmission mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110460. [PMID: 34695542 DOI: 10.1016/j.pnpbp.2021.110460] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Stressful episodes and high alcohol consumption during adolescence are considered major risk factors for the development of psychiatric disorders in adulthood. Identification of mechanisms underlying these early events, which enhanced vulnerability to mental illness, is essential for both their prevention and treatment. METHODS Male Wistar rats were used to investigate the long-term effects of early restraint stress and intermittent alcohol exposure (intragastric administration of 3 g/kg ethanol; 4 days/week for 4 weeks during adolescence) on anxiety-like behavior and the expression of signaling systems associated with emotional behaviors [e.g., corticosterone, fatty acid-derived molecules and endocannabinoid enzymes, glutamate receptor subunits, corticotropin releasing hormone receptors (CRHR1 and CRHR2) and neuropeptide Y receptors (NPY1R and NPYR2)] in the blood and amygdala. RESULTS Overall, both stress and alcohol exposure during adolescence induced anxiogenic-like behaviors, increased plasma levels of corticosterone and increases in the amygdalar expression of the cannabinoid CB2 receptor and certain subunits of glutamate receptors (i.e., mGluR1, mGluR5 and NMDAR1) in young adult rats. In addition, there were specific main effects of alcohol exposure on the expression of the cannabinoid CB1 receptor, monoacylglycerol lipase (MAGL) and NPY2R in the amygdala, and significant increases were observed in rats exposed to alcohol. Interestingly, there were significant interaction effects between restraint stress and alcohol exposure on the expression of plasma 2-arachidonoyl glycerol (2-AG), and both CRHR1,2 and NPY1R in the amygdala. Thus, the restraint stress was associated with increased 2-AG levels, which was not observed in rats exposed to alcohol. The alcohol exposure was associated with an increased expression of CRHR1,2 but the restraint stress prevented these increases (stress alcohol rats). In contrast, NPY1R was only increased in rats exposed to stress and alcohol. Finally, we did not observe any potentiation of the behavioral and molecular effects by the combination of stress and alcohol, which is concordant with an overall ceiling effect on some of the variables. CONCLUSION Separate and combined early stress and alcohol induced a common anxious phenotype with increased corticosterone in adulthood. However, there were differences in the amygdalar expression of signaling systems involved in maladaptive changes in emotional behavior. Therefore, our results suggest the existence of partially different mechanisms for stress and alcohol exposures.
Collapse
|
41
|
Zhou CH, Xue F, Shi QQ, Xue SS, Zhang T, Ma XX, Yu LS, Liu C, Wang HN, Peng ZW. The Impact of Electroacupuncture Early Intervention on the Brain Lipidome in a Mouse Model of Post-traumatic Stress Disorder. Front Mol Neurosci 2022; 15:812479. [PMID: 35221914 PMCID: PMC8866946 DOI: 10.3389/fnmol.2022.812479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroprotective effect of electroacupuncture (EA) treatment has been well studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of post-traumatic stress disorder (PTSD) and may be a target for treatment. However, the influence of early EA intervention on brain lipid composition in patients with PTSD has never been investigated. Using a modified single prolonged stress (mSPS) model in mice, we assessed the anti-PTSD-like effects of early intervention using EA and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. mSPS induced changes in lipid composition in the hippocampus, notably in the content of sphingolipids, glycerolipids, and fatty acyls. These lipid changes were more robust than those observed in the PFC. Early intervention with EA after mSPS ameliorated PTSD-like behaviors and partly normalized mSPS-induced lipid changes, notably in the hippocampus. Cumulatively, our data suggest that EA may reverse mSPS-induced PTSD-like behaviors due to region-specific regulation of the brain lipidome, providing new insights into the therapeutic mechanism of EA.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Qing-Qing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xin-Xu Ma
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Li-Sheng Yu
- Department of General Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Chuang Liu
- Department of Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
42
|
Manz KM, Coleman BC, Jameson AN, Ghose DG, Patel S, Grueter BA. Cocaine restricts nucleus accumbens feedforward drive through a monoamine-independent mechanism. Neuropsychopharmacology 2022; 47:652-663. [PMID: 34545194 PMCID: PMC8782870 DOI: 10.1038/s41386-021-01167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Parvalbumin-expressing fast-spiking interneurons (PV-INs) within feedforward microcircuits in the nucleus accumbens (NAc) coordinate goal-directed motivational behavior. Feedforward inhibition of medium spiny projection neurons (MSNs) is initiated by glutamatergic input from corticolimbic brain structures. While corticolimbic synapses onto MSNs are targeted by the psychostimulant, cocaine, it remains unknown whether cocaine also exerts acute neuromodulatory actions at collateralizing synapses onto PV-INs. Using whole-cell patch-clamp electrophysiology, optogenetics, and pharmacological tools in transgenic reporter mice, we found that cocaine decreases thalamocortical glutamatergic drive onto PV-INs by engaging a monoamine-independent mechanism. This mechanism relies on postsynaptic sigma-1 (σ1) activity, leading to the mobilization of intracellular Ca2+ stores that trigger retrograde endocannabinoid signaling at presynaptic type-1 cannabinoid receptors (CB1R). Cocaine-evoked CB1R activity occludes the expression of CB1R-dependent long-term depression (LTD) at this synaptic locus. These findings provide evidence that acute cocaine exposure targets feedforward microcircuits in the NAc and extend existing models of cocaine action on mesolimbic reward circuits.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alexis N Jameson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Dipanwita G Ghose
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
43
|
Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology 2022; 47:247-259. [PMID: 34545196 PMCID: PMC8617299 DOI: 10.1038/s41386-021-01155-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder can be viewed as a disorder of fear dysregulation. An abundance of research suggests that the prefrontal cortex is central to fear processing-that is, how fears are acquired and strategies to regulate or diminish fear responses. The current review covers foundational research on threat or fear acquisition and extinction in nonhuman animals, healthy humans, and patients with posttraumatic stress disorder, through the lens of the involvement of the prefrontal cortex in these processes. Research harnessing advances in technology to further probe the role of the prefrontal cortex in these processes, such as the use of optogenetics in rodents and brain stimulation in humans, will be highlighted, as well other fear regulation approaches that are relevant to the treatment of posttraumatic stress disorder and involve the prefrontal cortex, namely cognitive regulation and avoidance/active coping. Despite the large body of translational research, many questions remain unanswered and posttraumatic stress disorder remains difficult to treat. We conclude by outlining future research directions related to the role of the prefrontal cortex in fear processing and implications for the treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- M. Alexandra Kredlow
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| | - Robert J. Fenster
- grid.38142.3c000000041936754XDivision of Depression and Anxiety, McLean Hospital; Department of Psychiatry, Harvard Medical School, Cambridge, MA USA
| | - Emma S. Laurent
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| | - Kerry J. Ressler
- grid.38142.3c000000041936754XDivision of Depression and Anxiety, McLean Hospital; Department of Psychiatry, Harvard Medical School, Cambridge, MA USA
| | - Elizabeth A. Phelps
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| |
Collapse
|
44
|
Dao NC, Brockway DF, Suresh Nair M, Sicher AR, Crowley NA. Somatostatin neurons control an alcohol binge drinking prelimbic microcircuit in mice. Neuropsychopharmacology 2021; 46:1906-1917. [PMID: 34112959 PMCID: PMC8429551 DOI: 10.1038/s41386-021-01050-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Somatostatin (SST) neurons have been implicated in a variety of neuropsychiatric disorders such as depression and anxiety, but their role in substance use disorders, including alcohol use disorder (AUD), is not fully characterized. Here, we found that repeated cycles of alcohol binge drinking via the Drinking-in-the-Dark (DID) model led to hypoactivity of SST neurons in the prelimbic (PL) cortex by diminishing their action potential firing capacity and excitatory/inhibitory transmission dynamic. We examined their role in regulating alcohol consumption via bidirectional chemogenetic manipulation. Both hM3Dq-induced excitation and KORD-induced silencing of PL SST neurons reduced alcohol binge drinking in males and females, with no effect on sucrose consumption. Alcohol binge drinking disinhibited pyramidal neurons by augmenting SST neurons-mediated GABA release and synaptic strength onto other GABAergic populations and reducing spontaneous inhibitory transmission onto pyramidal neurons. Pyramidal neurons additionally displayed increased intrinsic excitability. Direct inhibition of PL pyramidal neurons via hM4Di was sufficient to reduce alcohol binge drinking. Together these data revealed an SST-mediated microcircuit in the PL that modulates the inhibitory dynamics of pyramidal neurons, a major source of output to subcortical targets to drive reward-seeking behaviors and emotional response.
Collapse
Affiliation(s)
- Nigel C Dao
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Dakota F Brockway
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA
| | - Malini Suresh Nair
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Avery R Sicher
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
45
|
Shallcross J, Wu L, Wilkinson CS, Knackstedt LA, Schwendt M. Increased mGlu5 mRNA expression in BLA glutamate neurons facilitates resilience to the long-term effects of a single predator scent stress exposure. Brain Struct Funct 2021; 226:2279-2293. [PMID: 34175993 PMCID: PMC10416208 DOI: 10.1007/s00429-021-02326-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) develops in a subset of individuals exposed to a trauma with core features being increased anxiety and impaired fear extinction. To model the heterogeneity of PTSD behavioral responses, we exposed male Sprague-Dawley rats to predator scent stress once for 10 min and then assessed anxiety-like behavior 7 days later using the elevated plus maze and acoustic startle response. Rats displaying anxiety-like behavior in both tasks were classified as stress Susceptible, and rats exhibiting behavior no different from un-exposed Controls were classified as stress Resilient. In Resilient rats, we previously found increased mRNA expression of mGlu5 in the amygdala and prefrontal cortex (PFC) and CB1 in the amygdala. Here, we performed fluorescent in situ hybridization (FISH) to determine the subregion and cell-type-specific expression of these genes in Resilient rats 3 weeks after TMT exposure. Resilient rats displayed increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and the infralimbic and prelimbic regions of the PFC and increased BLA CB1 mRNA. These increases were limited to glutamatergic cells. To test the necessity of mGlu5 for attenuating TMT-conditioned contextual fear 3 weeks after TMT conditioning, intra-BLA infusions of the mGlu5 negative allosteric modulator MTEP were administered prior to context re-exposure. In TMT-exposed Resilient rats, but not Controls, MTEP increased freezing on the day of administration, which extinguished over two additional un-drugged sessions. These results suggest that increased mGlu5 expression in BLA glutamate neurons contributes to the behavioral flexibility observed in stress-Resilient animals by facilitating a capacity for extinguishing contextual fear associations.
Collapse
Affiliation(s)
- John Shallcross
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Lizhen Wu
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Courtney S Wilkinson
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Lori A Knackstedt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Marek Schwendt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA.
| |
Collapse
|
46
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
47
|
Winters ND, Bedse G, Astafyev AA, Patrick TA, Altemus M, Morgan AJ, Mukerjee S, Johnson KD, Mahajan VR, Uddin MJ, Kingsley PJ, Centanni SW, Siciliano CA, Samuels DC, Marnett LJ, Winder DG, Patel S. Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models. J Clin Invest 2021; 131:146861. [PMID: 34292886 PMCID: PMC8409586 DOI: 10.1172/jci146861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Nathan D. Winters
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
| | | | | | | | | | - Snigdha Mukerjee
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | | | | | - Md Jashim Uddin
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Philip J. Kingsley
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Cody A. Siciliano
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Vanderbilt Brain Institute, and
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J. Marnett
- Department of Pharmacology
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| |
Collapse
|
48
|
Brugnatelli V, Facco E, Zanette G. Lifestyle Interventions Improving Cannabinoid Tone During COVID-19 Lockdowns May Enhance Compliance With Preventive Regulations and Decrease Psychophysical Health Complications. Front Psychiatry 2021; 12:565633. [PMID: 34335317 PMCID: PMC8322115 DOI: 10.3389/fpsyt.2021.565633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
Studies investigating the psychosomatic effects of social isolation in animals have shown that one of the physiologic system that gets disrupted by this environment-affective change is the Endocannabinoid System. As the levels of endocannabinoids change in limbic areas and prefrontal cortex during stressful times, so is the subject more prone to fearful and negative thoughts and aggressive behavior. The interplay of social isolation on the hypothalamic-pituitary-adrenal axis and cannabinoid tone triggers a vicious cycle which further impairs the natural body's homeostatic neuroendocrine levels and provokes a series of risk factors for developing health complications. In this paper, we explore the psychosomatic impact of prolonged quarantine in healthy individuals, and propose management and coping strategies that may improve endocannabinoid tone, such as integration of probiotics, cannabidiol, meditation, and physical exercise interventions with the aim of supporting interpersonal, individual, and professional adherence with COVID-19 emergency public measures whilst minimizing their psycho-physical impact.
Collapse
|
49
|
Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, Yu H, Love SL, Hillard CJ, Liu QS. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 2021; 26:3178-3191. [PMID: 33093652 PMCID: PMC8060365 DOI: 10.1038/s41380-020-00905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Collapse
Affiliation(s)
- Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meng-Ming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Santidra L Love
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
50
|
Salviato BZ, Raymundi AM, Rodrigues da Silva T, Salemme BW, Batista Sohn JM, Araújo FS, Guimarães FS, Bertoglio LJ, Stern CA. Female but not male rats show biphasic effects of low doses of Δ 9-tetrahydrocannabinol on anxiety: can cannabidiol interfere with these effects? Neuropharmacology 2021; 196:108684. [PMID: 34181978 DOI: 10.1016/j.neuropharm.2021.108684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) is the main phytocannabinoid present in the Cannabis sativa. It can produce dose-dependent anxiolytic or anxiogenic effects in males. THC effects on anxiety have scarcely been studied in females, despite their higher prevalence of anxiety disorders. Cannabidiol, another phytocannabinoid, has been reported to attenuate anxiety and some THC-induced effects. The present study aimed to investigate the behavioral and neurochemical effects of THC administered alone or combined with CBD in naturally cycling female rats tested in the elevated plus-maze. Systemically administered THC produced biphasic effects in females, anxiolytic at low doses (0.075 or 0.1 mg/kg) and anxiogenic at a higher dose (1.0 mg/kg). No anxiety changes were observed in males treated with the same THC dose range. The anxiogenic effect of THC was prevented by co-administration of CBD (1.0 or 3.0 mg/kg). CBD (3.0 mg/kg) caused an anxiolytic effect. At a lower dose (1.0 mg/kg), it facilitated the anxiolytic effect of the low THC dose. The anxiogenic effect of THC was accompanied by increased dopamine levels in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). In contrast, its anxiolytic effect was associated with increased mPFC serotonin concentrations. The anxiolytic effect of CBD was accompanied by increased mPFC serotonin turnover. Together, these results indicate that female rats are susceptible to the biphasic effects of low THC doses on anxiety. These effects could depend on mPFC and NAc dopaminergic and serotoninergic neurotransmissions. CBD could minimize potential THC high-dose side effects whereas enhancing the anxiolytic action of its low doses in females.
Collapse
Affiliation(s)
| | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | | - Leandro José Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|