1
|
Kuijer EJ, Bailey SJ, Heal DJ, Smith S, Wonnacott S, Bailey CP. Electrophysiological analysis of paraventricular thalamic neurons co-expressing kappa and mu opioid receptors. Neuropharmacology 2025; 272:110407. [PMID: 40074169 DOI: 10.1016/j.neuropharm.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
The paraventricular thalamus (PVT) is a central node in the integration of stress- and reward-related information that may serve as a pivotal site for opioid receptors to exert their effects. Kappa opioid receptors (KOPrs) and mu opioid receptors (MOPrs) have dissociable and opposing roles in circuits of stress and reward. Interestingly, both are highly expressed in the PVT, however it is not known how aversive KOPr and rewarding MOPr signalling converges to dictate PVT activity and, by proxy, whole brain effects. We have investigated the function of KOPrs and MOPrs in single PVT neurons using whole-cell voltage-clamp recordings in brain slices from female and male mice (4-8 weeks). The majority of PVT neurons (69 %) co-expressed KOPr and MOPr. Activation of either receptor produced outward K+ currents, with no age and sex differences. In neurons co-expressing both opioid receptors, the MOPr-induced K+ current reversed around the theoretical equilibrium potential, whilst the KOPr current did not reverse at any holding potential tested. Furthermore, investigation of apparent inward currents produced by MOPr inverse agonists suggested the presence of tonically active MOPrs, predominantly in the anterior PVT. Activation of both KOPrs and MOPrs decreased glutamatergic input to PVT neurons by around 40 %, whereas only KOPr activation decreased GABAergic input, by 46 %. Together these data suggest that the balance of activation of KOPrs and MOPrs in the PVT plays a critical role in integrating stress- and reward-related signals.
Collapse
Affiliation(s)
- E J Kuijer
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - S J Bailey
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - D J Heal
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom; DevelRx Ltd, BioCity, Nottingham, NG1 1GF, United Kingdom
| | - S Smith
- DevelRx Ltd, BioCity, Nottingham, NG1 1GF, United Kingdom
| | - S Wonnacott
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - C P Bailey
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
2
|
Xu L, Zhao D, Wang M, Xu L, Cao Y, Meng F, Liu J, Di Z, Wang W, Zhang M, Li C, Jiang S. Control of Methamphetamine-Induced Place Preference Behavior by the Glutamatergic Neural Projections from IC to BLA in Mice. Brain Res Bull 2025:111395. [PMID: 40409603 DOI: 10.1016/j.brainresbull.2025.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Drug addiction is closely related to the dysregulation of complex neural circuits. However, the neural pathways underlying methamphetamine (METH)-induced addiction remain unclear. Firstly, we performed ∆FosB (Delta FBJ murine osteosarcoma viral oncogene homolog B) immunofluorescence and fiber-optic recording experiments to assess the neural activity of glutamatergic neurons in the anterior insular cortex (IC) in METH-treated mice. Then, we evaluated the effect of activation or inhibition of glutaminergic neurons in IC on METH-induced conditioned place preference (CPP) behavior through chemogenetic manipulation. Finally, we used adeno-associated virus (AAV)-mediated neural tracing to verify the projections connectivity from IC to the basolateral amygdala (BLA) and investigated their blocking role in METH-mediated CPP behavior using chemogenetic and neural ablation strategies. We found that glutamatergic neurons in the IC were activated by METH. Activation of these neurons enhanced METH-mediated CPP behavior, whereas inhibition of their activity attenuated the CPP expression. Furthermore, we observed robust projections from IC neurons to the BLA. Activation of IC neurons projecting to the BLA enhanced METH-mediated CPP behavior, whereas ablation of BLA neurons receiving projections from IC significantly impaired METH-mediated CPP performance. These results highlight the IC glutaminergic neurons are a major target of METH addiction, with the IC-BLA glutaminergic neural projection playing an important role in regulating METH-mediated CPP behavior. This pathway may provide new insights into the pathophysiology of METH addiction and serve as a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Lei Xu
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Di Zhao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Meiqin Wang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lihong Xu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Yifan Cao
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Zhao Di
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Mengdi Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China.
| |
Collapse
|
3
|
Li Y, Chen S, Huang S, Du Z, Huang Q, Lin S, Wen X, Wang C, Liu T, Shen H, Wang X, Yuan K. Altered resting-state functional connectivity in male individuals with methamphetamine use disorder at two different withdrawal periods: spotlight on the paraventricular thalamic nucleus. Brain Imaging Behav 2025:10.1007/s11682-025-01008-7. [PMID: 40289188 DOI: 10.1007/s11682-025-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Preclinical research highlights the paraventricular thalamic nucleus as important in various stages of substance use disorder. However, there is limited research on it in relation to methamphetamine, especially regarding its functional changes after long-term abstinence. This study aims to understand the alterations in functional connectivity of the paraventricular thalamic nucleus in methamphetamine abstainers and its correlation with drug craving at two different withdrawal periods. A total of 49 subjects were allocated to the short-term withdrawal group, 44 to the long-term withdrawal group, and 42 to the healthy control group, all of whom are male and adult. Craving scores were assessed using a visual analogue scale. Functional connectivity was evaluated through resting-state functional MRI, which reflects the correlation between connectivity in different brain regions. Significant differences in functional connectivity between the paraventricular thalamic nucleus and the left caudate nucleus were observed across the three groups. The healthy control group exhibited the strongest connectivity, followed by the long-term withdrawal group, while the short-term withdrawal group demonstrated the weakest connectivity. Within the short-term withdrawal group, functional connectivity of the paraventricular thalamic nucleus with both the left parahippocampal gyrus (r = -0.45, p = 0.001) and the left inferior temporal gyrus (r = -0.43, p = 0.002) was significantly correlated with craving scores. This study confirms abnormalities in the paraventricular thalamic nucleus among male methamphetamine abstainers, emphasizes its potential role in regulating methamphetamine use disorder and craving mechanisms, and offers insights into long-term changes in brain function after abstinence.
Collapse
Affiliation(s)
- Yifan Li
- Department of Psychiatry, National Center for Mental Disorders, National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, No.139, Renmin Middle Road, 410011, Changsha, China
| | - Shubao Chen
- Department of Psychiatry & Clinical Psychology, The Seventh Affiliated Hospital, Sun Yat- Sen University, Shenzhen, China
| | - Shucai Huang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Zhe Du
- School of Life Science and Technology, Xidian University, No. 266, Xinglong Section, Xifeng Road, Xi'an, China
| | - Qiuping Huang
- Department of Applied Psychology, School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, China
| | - Shuhong Lin
- Department of Psychiatry, National Center for Mental Disorders, National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, No.139, Renmin Middle Road, 410011, Changsha, China
| | - Xinwen Wen
- School of Life Science and Technology, Xidian University, No. 266, Xinglong Section, Xifeng Road, Xi'an, China
| | - Chenhan Wang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tieqiao Liu
- Department of Psychiatry, National Center for Mental Disorders, National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, No.139, Renmin Middle Road, 410011, Changsha, China
| | - Hongxian Shen
- Department of Psychiatry, National Center for Mental Disorders, National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, No.139, Renmin Middle Road, 410011, Changsha, China
| | - Xuyi Wang
- Department of Psychiatry, National Center for Mental Disorders, National Clinical Research Center for Mental Disorders, the Second Xiangya Hospital of Central South University, No.139, Renmin Middle Road, 410011, Changsha, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, No. 266, Xinglong Section, Xifeng Road, Xi'an, China.
| |
Collapse
|
4
|
Yang L, Tang M, Nüssler AK, Liu L, Yang W. Regulation of PVT-CeA Circuit in Deoxynivalenol-Induced Anorexia and Aversive-Like Emotions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417068. [PMID: 40019402 PMCID: PMC12021098 DOI: 10.1002/advs.202417068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Neuronal plasticity in the central amygdala (CeA) is essential for modulating feeding behaviors and emotional responses, potentially influencing reactions to Deoxynivalenol (DON). Acute oral administration of DON elicits a dose-responsive reduction in food intake, accompanied by pronounced alterations in locomotor activity and feeding frequency. This study investigates circuitry adaptations that mediate DON's effects on feeding, by targeting of GABA neurons in the CeA. Following exposure to DON, an increase in connectivity between the paraventricular nucleus of the thalamus (PVT) and CeAGABA neurons is observed, suggesting the involvement of this pathway in DON's adverse effects on feeding and emotional states. Chemogenetic and optogenetic manipulations of CeAGABA neurons resulted in substantial alterations in mice's feeding and overall activity. These findings suggest that CeAGABA neurons are involved in DON-induced anorexia and aversive-like emotional responses. Additionally, the administration of the SCN10A antagonist (A-803467) effectively mitigated DON-induced anorexia and aversive-like emotions, highlighting the pivotal role of the PVT-CeA circuit and CeAGABA neurons in regulating the physiological and emotional impacts of DON. These findings have significant implications for public health and clinical interventions, offering potential therapeutic strategies to mitigate DON's adverse effects on human health.
Collapse
Affiliation(s)
- Liu‐Nan Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Mingmeng Tang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Andreas K. Nüssler
- Department of TraumatologyBG Trauma CenterUniversity of TübingenSchnarrenbergstr. 9572076TübingenGermany
| | - Liegang Liu
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Wei Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| |
Collapse
|
5
|
Gong W, Li X, Wang L, Yang Q, Tiran‐Cappello A, Liang Z, Samsom J, Liu Q, Lin H, Baunez C, Liu F, Yuan T. Prefrontal FGF1 Signaling is Required for Accumbal Deep Brain Stimulation Treatment of Addiction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413370. [PMID: 40013979 PMCID: PMC12021060 DOI: 10.1002/advs.202413370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Deep brain stimulation (DBS) has emerged as a prospective treatment for psychiatric disorders; for example, DBS targeting the nucleus accumbens (NAc) abolishes addictive behaviors. However, neither the core pathway nor the cellular mechanisms underlying these therapeutic effects are known. Here, morphine-induced conditioned place preference (CPP) in mice as an addiction model and NAc-DBS combined with adeno-associated virus gene delivery for activity-dependent tagging, transgenic and chemogenetic manipulation of recruited neuronal networks are used. It is reported that a cortical-accumbal pathway and local fibroblast growth factor 1 (FGF1) signaling in the medial prefrontal cortex (mPFC) are critical for NAc-DBS to be effective in altering morphine CPP. It is shown that NAc-DBS retrogradely activates mPFC neurons projecting to the NAc, and chemogenetic activation/inhibition of these DBS-activated neuron ensembles in the mPFC reproduces the NAc-DBS effects on CPP. Sustained therapeutic effects accompany reductions in local FGF1 binding to fibroblast growth factor receptor 1 (FGFR1) in these neurons. Additionally, overexpressing FGF1 in the mPFC-NAc pathway abolishes the therapeutic effects of NAc-DBS. These results demonstrate that the mPFC-NAc pathway forms a top-down motif to regulate the therapeutic effects of subcortical DBS on addiction. These results support the potential for addiction treatments involving FGF1 signaling and highlight the mPFC as a target for noninvasive brain stimulation.
Collapse
Affiliation(s)
- Wan‐Kun Gong
- Shanghai Key Laboratory of Psychotic DisordersBrain Health InstituteNational Center for Mental DisordersShanghai Mental Health CenterShanghai Jiaotong University School of Medicine and School of PsychologyShanghai200030China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu226019China
| | - Xue Li
- Department of Clinical Laboratory DiagnosisChanghai HospitalShanghai200433China
| | - Le Wang
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), School of Mental HealthWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Qian Yang
- Shanghai Key Laboratory of Psychotic DisordersBrain Health InstituteNational Center for Mental DisordersShanghai Mental Health CenterShanghai Jiaotong University School of Medicine and School of PsychologyShanghai200030China
| | - Alix Tiran‐Cappello
- Institut de Neurosciences de la TimoneUMR7289 CNRS & Aix‐Marseille UniversitéMarseilleFrance
| | - Zhichao Liang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - James Samsom
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoONM5T1R8Canada
| | - Quanying Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - He Lin
- The Third Research Institute of Ministry of Public SecurityShanghai200438China
| | - Christelle Baunez
- Institut de Neurosciences de la TimoneUMR7289 CNRS & Aix‐Marseille UniversitéMarseilleFrance
| | - Fang Liu
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), School of Mental HealthWenzhou Medical UniversityWenzhouZhejiang325000China
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoONM5T1R8Canada
- Department of Psychiatry, Physiology, Pharmacology and Toxicology and Institutes of Medical ScienceUniversity of TorontoTorontoONM5T 1R8Canada
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic DisordersBrain Health InstituteNational Center for Mental DisordersShanghai Mental Health CenterShanghai Jiaotong University School of Medicine and School of PsychologyShanghai200030China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu226019China
| |
Collapse
|
6
|
Fu Y, Ye T, Chen M, Lai B, Zheng P. Protocol to study the role of medial entorhinal cortex-basolateral amygdala circuit in context-induced retrieval of morphine withdrawal memory in mice. STAR Protoc 2025; 6:103542. [PMID: 39921862 PMCID: PMC11851280 DOI: 10.1016/j.xpro.2024.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 02/10/2025] Open
Abstract
The medial entorhinal cortex (MEC) is crucial for context memory, yet its role in context-induced retrieval of morphine withdrawal memory remains to be investigated. Here, we present a protocol to evaluate the importance of projection neurons from the MEC to the basolateral amygdala (BLA) (MEC-BLA neurons) in mice during context-induced retrieval of morphine withdrawal memory using a conditioned place aversion (CPA) model. We describe steps for surgical procedure and behavioral experiments. Then, we detail procedures of immunofluorescence staining and image analysis. For complete details on the use and execution of this protocol, please refer to Fu et al.1.
Collapse
Affiliation(s)
- Yali Fu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Ting Ye
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Medical College of China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
7
|
Zou Y, He X, Ye Z, Li Z, Guo Q, Zou W, Peng Q. Inhibition of the glutamatergic PVT-NAc projections attenuates local anesthetic-induced neurotoxic behaviors. Reg Anesth Pain Med 2025; 50:243-251. [PMID: 38233353 DOI: 10.1136/rapm-2023-104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Local anesthetic-induced neurotoxicity contributes to perioperative nerve damage; however, the underlying mechanisms remain unclear. Here, we investigated the role of the paraventricular thalamus (PVT)-nucleus accumbens (NAc) projections in neurotoxicity induced by ropivacaine, a local anesthetic agent. METHODS Ropivacaine (58 mg/kg, intraperitoneal administration) was used to construct the local anesthetic systemic toxicity (LAST) mice model. We first identified neural projections from the PVT to the NAc through the expression of a retrograde tracer and virus. The inhibitory viruses (rAAV-EF1α-DIO-hm4D(Gi)-mCherry-WPREs: AAV2/retro and rAAV-CaMKII-CRE-WPRE-hGh: AAV2/9) were injected into the mice model to assess the effects of the specific inhibition of the PVT-NAc pathway on neurological behaviors in the presence of clozapine-N-oxide. The inhibition of the PVT-NAc pathway was evaluated by immunofluorescence staining of c-Fos-positive neurons and Ca2+ signals in CaMKIIa neurons. RESULTS We successfully identified a circuit connecting the PVT and NAc in C57BL/6 mice. Ropivacaine administration induced the activation of the PVT-NAc pathway and seizures. Specific inhibition of NAc-projecting CaMKII neurons in the PVT was sufficient to inhibit the neuronal activity in the NAc, which subsequently decreased ropivacaine-induced neurotoxicity. CONCLUSION These results reveal the presence of a dedicated PVT-NAc circuit that regulates local anesthetic-induced neurotoxicity and provide a potential mechanistic explanation for the treatment and prevention of LAST.
Collapse
Affiliation(s)
- Yu Zou
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xin He
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Zhiwen Ye
- Department of Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders, Changsha, Hunan Province, China
| | - Zhengyiqi Li
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Wangyuan Zou
- Department of Anesthesia, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan Province, China
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Huang S, Wang X, Zhou F. Comparative effects of arecoline, caffeine, and nicotine on transcription level in the nucleus accumbens of mice. Genomics 2025; 117:110986. [PMID: 39761763 DOI: 10.1016/j.ygeno.2025.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
Though widely consumed, current research on the neural mechanisms of arecoline, caffeine, and nicotine remains limited, and the similarities and differences of these substances on the nervous system are still not clear. This study used RNA-seq to analyze the gene expression in the nucleus accumbens (NAc) of mice, and compared the behavioral changes through open field and conditioned place preference (CPP), exploring the effects of different psychoactive substances at transcriptional and behavioral levels. Gene Ontology enrichment analysis revealed that nicotine and caffeine significantly alter biological processes related to synaptic function, and KEGG pathway analysis showed that the differentially expressed genes in the nicotine-treated group were significantly more enriched in pathways related to substance dependence, with arecoline showing the least enrichment. Furthermore, only acute caffeine treatment significantly increased mouse activity, and only nicotine induced CPP. These results provided a scientific basis for evaluating arecoline, caffeine, and nicotine on the nervous system.
Collapse
Affiliation(s)
- Shaofang Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
| | - Xinran Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China.
| |
Collapse
|
9
|
Wang M, Xu L, Zhao D, Wang W, Xu L, Cao Y, Meng F, Liu J, Li C, Jiang S. The glutamatergic projections from the PVT to mPFC govern methamphetamine-induced conditional place preference behaviors in mice. J Affect Disord 2025; 371:289-304. [PMID: 39579874 DOI: 10.1016/j.jad.2024.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Drug addiction is closely related to the dysregulation of complex neural circuits. However, the neural connections underlying the symptoms of methamphetamine (METH)-induced addiction have yet to be elucidated. METHODS We conducted ΔFosB (Delta FBJ murine osteosarcoma viral oncogene homolog B) associated immunofluorescence and electrophysiological recording experiments to measure the neural activity of paraventricular thalamus (PVT) neurons in METH treated mice. Then, the METH-mediated conditional place preference (CPP) behaviors were evaluated after chemogenetic manipulation of PVT neurons. Additionally, the neural projection from PVT to medial prefrontal cortex (mPFC) was verified through Adeno-associated virus (AAV) mediating neural tracing method, and its role on METH-mediated CPP behaviors was determined using chemogenetic and neural ablation strategies. RESULTS We found that glutamatergic neurons in PVT were activated by METH. Activating the glutamatergic neurons in PVT promoted the METH-mediated CPP behaviors, while inhibiting these neurons attenuated the CPP behaviors. Moreover, we observed PVT neurons showed robust neuronal projections to mPFC, activation of the mPFC→projecting neurons in PVT or the afferent terminals in mPFC derived from PVT enhanced METH-mediated CPP performance, and ablating the mPFC neurons receipting neural projection from PVT impeded these increased METH-mediated CPP phenotypes. LIMITATIONS The underlying molecular mechanism of the dysfunctional PVT neurons after METH treatment and the PVT neurons regulating the activity of mPFC target neurons remains unclear. CONCLUSIONS These results shed light on that PVT is a key METH addiction-controlling nucleus, and PVT → mPFC projection regulated METH-mediated CPP behaviors, which could serve as a vital pathway for morbidity and treatment for METH-mediated addiction.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lei Xu
- Department of Physiology, Binzhou Medical University, Shandong 264003, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Di Zhao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lihong Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Yifan Cao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China.
| |
Collapse
|
10
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. Nat Commun 2025; 16:1590. [PMID: 39939591 PMCID: PMC11822132 DOI: 10.1038/s41467-025-56850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results suggest a unique approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gillian N Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Zhang JS, Yao W, Zhang L, Li ZS, Gong XT, Duan LL, Huang ZX, Chen T, Huang JC, Yang SX, Yu C, Cai P, Chen L. GABAergic Neurons in the Central Amygdala Promote Emergence from Isoflurane Anesthesia in Mice. Anesthesiology 2025; 142:278-297. [PMID: 39466630 PMCID: PMC11723501 DOI: 10.1097/aln.0000000000005279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Recent evidence indicates that general anesthesia and sleep-wake behavior share some overlapping neural substrates. γ-Aminobutyric acid-mediated (GABAergic) neurons in the central amygdala have a high firing rate during wakefulness and play a role in regulating arousal-related behaviors. The objective of this study was to investigate whether central amygdala GABAergic neurons participate in the regulation of isoflurane general anesthesia and uncover the underlying neural circuitry. METHODS Fiber photometry recording was used to determine the changes in calcium signals of central amygdala GABAergic neurons during isoflurane anesthesia in Vgat-Cre mice. Chemogenetic and optogenetic approaches were used to manipulate the activity of central amygdala GABAergic neurons, and a righting reflex test was used to determine the induction and emergence from isoflurane anesthesia. Cortical electroencephalogram (EEG) recording was used to assess the changes in EEG spectral power and burst-suppression ratio during 0.8% and 1.4% isoflurane anesthesia, respectively. Both male and female mice were used in this study. RESULTS The calcium signals of central amygdala GABAergic neurons decreased during the induction of isoflurane anesthesia and were restored during the emergence. Chemogenetic activation of central amygdala GABAergic neurons delayed induction time (mean ± SD, vehicle vs . clozapine-N-oxide: 58.75 ± 5.42 s vs . 67.63 ± 5.01 s; n = 8; P = 0.0017) and shortened emergence time (385.50 ± 66.26 s vs . 214.60 ± 40.21 s; n = 8; P = 0.0017) from isoflurane anesthesia. Optogenetic activation of central amygdala GABAergic neurons produced a similar effect. Furthermore, optogenetic activation decreased EEG delta power (prestimulation vs . stimulation: 46.63 ± 4.40% vs . 34.16 ± 6.47%; n = 8; P = 0.0195) and burst-suppression ratio (83.39 ± 5.15% vs . 52.60 ± 12.98%; n = 8; P = 0.0003). Moreover, optogenetic stimulation of terminals of central amygdala GABAergic neurons in the basal forebrain also promoted cortical activation and accelerated behavioral emergence from isoflurane anesthesia. CONCLUSIONS The results suggest that central amygdala GABAergic neurons play a role in general anesthesia regulation, which facilitates behavioral and cortical emergence from isoflurane anesthesia through the GABAergic central amygdala-basal forebrain pathway.
Collapse
Affiliation(s)
- Jin-Sheng Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Yao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lei Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhang-Shu Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xia-Ting Gong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li-Li Duan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xian Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tong Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jin-Chuang Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shu-Xiang Yang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Wei A, Zhao A, Zheng C, Dong N, Cheng X, Duan X, Zhong S, Liu X, Jian J, Qin Y, Yang Y, Gu Y, Wang B, Gooya N, Huo J, Yao J, Li W, Huang K, Liu H, Mao F, Wang R, Shao M, Wang B, Zhang Y, Chen Y, Song Q, Huang R, Qu Q, Zhang C, Kang X, Xu H, Wang C. Sexually dimorphic dopaminergic circuits determine sex preference. Science 2025; 387:eadq7001. [PMID: 39787240 DOI: 10.1126/science.adq7001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTADA) neurons. In males, VTADA projections to the nucleus accumbens (NAc) mediate female preference, and those to the medial preoptic area mediate male preference. In females, firing-pattern (phasic-like versus tonic-like) alteration of the VTADA-NAc projection determines sociosexual preferences. These findings define VTADA neurons as a key node for social decision-making and reveal the sexually dimorphic DA circuit mechanisms underlying sociosexual preference.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueting Duan
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuaijie Zhong
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jie Jian
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhao Qin
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yuhao Gu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Niki Gooya
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingxiao Huo
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weiwei Li
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Acupuncture, Massage and Rehabilitation, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Kai Huang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haiyao Liu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenghan Mao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ruolin Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingjie Shao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Botao Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yichi Zhang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Rong Huang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Huadong Xu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Minère M, Wilhelms H, Kuzmanovic B, Lundh S, Fusca D, Claßen A, Shtiglitz S, Prilutski Y, Talpir I, Tian L, Kieffer B, Davis J, Kloppenburg P, Tittgemeyer M, Livneh Y, Fenselau H. Thalamic opioids from POMC satiety neurons switch on sugar appetite. Science 2025; 387:750-758. [PMID: 39946455 DOI: 10.1126/science.adp1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/11/2024] [Indexed: 04/23/2025]
Abstract
High sugar-containing foods are readily consumed, even after meals and beyond fullness sensation (e.g., as desserts). Although reward-driven processing of palatable foods can promote overeating, the neurobiological mechanisms that underlie the selective appetite for sugar in states of satiety remain unclear. Hypothalamic pro-opiomelanocortin (POMC) neurons are principal regulators of satiety because they decrease food intake through excitatory melanocortin neuropeptides. We discovered that POMC neurons not only promote satiety in fed conditions but concomitantly switch on sugar appetite, which drives overconsumption. POMC neuron projections to the paraventricular thalamus selectively inhibited postsynaptic neurons through mu-opioid receptor signaling. This opioid circuit was strongly activated during sugar consumption, which was most notable in satiety states. Correspondingly, inhibiting its activity diminished high-sugar diet intake in sated mice.
Collapse
Affiliation(s)
- Marielle Minère
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany
| | - Hannah Wilhelms
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bojana Kuzmanovic
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Debora Fusca
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Alina Claßen
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Stav Shtiglitz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lin Tian
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Brigitte Kieffer
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Jon Davis
- Global Drug Discovery, Novo Nordisk A/S, Lexington, MA, USA
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Henning Fenselau
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Chen Z, Tang S, Xiao X, Hong Y, Fu B, Li X, Shao Y, Chen L, Yuan D, Long Y, Wang H, Hong H. Adiponectin receptor 1-mediated basolateral amygdala-prelimbic cortex circuit regulates methamphetamine-associated memory. Cell Rep 2024; 43:115074. [PMID: 39661515 DOI: 10.1016/j.celrep.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
The association between drug-induced rewards and environmental cues represents a promising strategy to address addiction. However, the neural networks and molecular mechanisms orchestrating methamphetamine (MA)-associated memories remain incompletely characterized. In this study, we demonstrated that AdipoRon (AR), a specific adiponectin receptor (AdipoR) agonist, inhibits the formation of MA-induced conditioned place preference (CPP) in MA-conditioned mice, accompanied by suppression of basolateral amygdala (BLA) CaMKIIα neuron activity. Furthermore, we identified an association between the excitatory circuit from the BLA to the prelimbic cortex (PrL) and the integration of MA-induced rewards with environmental cues. We also determined that the phosphorylated AMPK (p-AMPK)/Cav1.3 signaling pathway mediates the modulatory effects of AdipoR1 in PrL-projecting BLA CaMKIIα neurons on the formation of MA reward memories, a process influenced by physical exercise. These findings highlight the critical function of AdipoR1 in the BLACaMKIIα→PrLCaMKIIα circuit in regulating MA-related memory formation, suggesting a potential target for managing MA use disorders.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Susu Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Boli Fu
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuyi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwei Shao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danhua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Lu Y, Guo Y, Sun L, Liu T, Dong Z, Jia M, Zhuo L, Yin F, Zhu Y, Ma X, Wang Y. Adolescent morphine exposure induced long-term cognitive impairment and prefrontal neurostructural abnormality in adulthood in male mice. Heliyon 2024; 10:e40782. [PMID: 39687140 PMCID: PMC11648215 DOI: 10.1016/j.heliyon.2024.e40782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Opioids abuse in adolescence is becoming a pressing public health issue. While evidence suggests that exposure to opioids during adolescence leads to lasting alterations in brain development, the long-term cognitive implications in adulthood remain uncertain. We developed a male mouse model of adolescent morphine exposure and used the 5-choice serial reaction time task (5-CSRTT), along with the open field, novel object recognition, Y maze and Barnes maze tests, to assess changes in cognitive behavior. We found that exposure to morphine during adolescence led to deficits in multidimensional cognitive functions in mice, including attention, information processing speed, and behavior inhibition. Notable, these impairments persisted into adulthood. Furthermore, the morphine-exposed mice exhibited decreased learning efficiency and spatial memory. Adolescent morphine exposure also induced significant and persistent morphological changes and synaptic abnormalities in medial prefrontal cortex (mPFC) neurons, which may be responsible for cognitive impairments in adulthood. Together, our study suggests that opioid exposure during adolescence profoundly affects cognitive development and emphasizes that opioid-induced disruption of neurons in adolescence may link mPFC-associated cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Ye Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Guo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Lulu Sun
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tong Liu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziqing Dong
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lixia Zhuo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fangyuan Yin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
- Lead Contact, China
| |
Collapse
|
16
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.590306. [PMID: 38826215 PMCID: PMC11142187 DOI: 10.1101/2024.05.23.590306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, 10021, USA
| | - Pasha A. Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Gillian N. Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, 06477, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06511, USA
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
17
|
Hu YB, Deng X, Liu L, Cao CC, Su YW, Gao ZJ, Cheng X, Kong D, Li Q, Shi YW, Wang XG, Ye X, Zhao H. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacology 2024; 49:1827-1838. [PMID: 38730034 PMCID: PMC11473735 DOI: 10.1038/s41386-024-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.
Collapse
Affiliation(s)
- Yu-Bo Hu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Deng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lu Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Can-Can Cao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ya-Wen Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhen-Jie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Deshan Kong
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
18
|
He Y, Ren Y, Chen X, Wang Y, Yu H, Cai J, Wang P, Ren Y, Xie P. Neural and molecular investigation into the paraventricular thalamus for chronic restraint stress induced depressive-like behaviors. J Adv Res 2024:S2090-1232(24)00480-6. [PMID: 39447640 DOI: 10.1016/j.jare.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Disturbance of neural circuits and chronic stress contribute to depression onset. Given the crucial role of paraventricular nucleus of thalamus (PVT) in emotional behaviors, however, the specific neural and molecular mechanism of PVT in depression still unclear. OBJECTIVE Our study aim to explore the neural and molecular mechanism of PVT in depression. METHODS In the present study, we utilize behavioral tests,chemogenetics, RNA-sequence, molecular profiling and pharmacological approaches to investigate the role of PVT in depression. RESULTS We observed that CamkIIα neurons in PVT were inactivated by chronic restraint stress (CRS) with reduced c-Fos positive neurons. Activation of PVTCamkIIα neurons displayed antidepressant-like effect in both naive and CRS mice, whereas inhibition or ablation of these neurons is sufficient to trigger depressive-like behaviors. Moreover, we found that activating PVT → Nucleus accumbens (NAc) circuit attenuated depressive-like behaviors induced by CRS, while inhibiting this circuit directly caused behavioral deficits in mice. Intriguingly, artificially enhancing PVT → Central amygdala (CeA) pathway failed to alleviate depressive-like behaviors. Importantly, increased expression of neuropeptide Y (NPY) and depressive-like behaviors induced by CRS could be ameliorated via antidepressant treatment, manipulation of PVTCamkIIα neurons (or PVT → NAc circuit) and NPY inhibitor. CONCLUSION Taken together, our study uncovered that PVT regulated depressive-like behaviors via PVT → NAc circuit together with NPY, thus shedding light on potential target for preventing depression and promoting clinical translation.
Collapse
Affiliation(s)
- Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yikun Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchao Cai
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
19
|
Dong YG, Gan Y, Fu Y, Shi H, Dai S, Yu R, Li X, Zhang K, Wang F, Yuan TF, Dong Y. Treadmill exercise training inhibits morphine CPP by reversing morphine effects on GABA neurotransmission in D2-MSNs of the accumbens-pallidal pathway in male mice. Neuropsychopharmacology 2024; 49:1700-1710. [PMID: 38714787 PMCID: PMC11399312 DOI: 10.1038/s41386-024-01869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/10/2024]
Abstract
Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.
Collapse
Affiliation(s)
- Yi-Gang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haifeng Shi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shanghua Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ruibo Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ke Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fanglin Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Deng J, Chen L, Liu CC, Liu M, Guo GQ, Wei JY, Zhang JB, Fan HT, Zheng ZK, Yan P, Zhang XZ, Zhou F, Huang SX, Zhang JF, Xu T, Xie JD, Xin WJ. Distinct Thalamo-Subcortical Circuits Underlie Painful Behavior and Depression-Like Behavior Following Nerve Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401855. [PMID: 38973158 PMCID: PMC11425852 DOI: 10.1002/advs.202401855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.
Collapse
Affiliation(s)
- Jie Deng
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Chen
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, 510000, China
| | - Guo-Qing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Bo Zhang
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510630, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou, 515063, China
| | - Pu Yan
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhou
- Department of Neurology, First people's hospital of Foshan, Foshan, Guangdong, 510168, China
| | - Sui-Xiang Huang
- Department of Pain Medicine, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, 510630, China
| | - Ji-Feng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing-Dun Xie
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
21
|
Chen G, Lai S, Jiang S, Li F, Sun K, Wu X, Zhou K, Liu Y, Deng X, Chen Z, Xu F, Xu Y, Wang K, Cao G, Xu F, Bi GQ, Zhu Y. Cellular and circuit architecture of the lateral septum for reward processing. Neuron 2024; 112:2783-2798.e9. [PMID: 38959892 DOI: 10.1016/j.neuron.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shishi Lai
- Yunnan University School of Medicine, Yunnan University, Kunming 650091, China; Southwest United Graduate School, Kunming 650092, China
| | - Shaolei Jiang
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaige Sun
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Normal University, Jinan 250014, China
| | - Xiaocong Wu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kuikui Zhou
- University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yutong Liu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Kunhua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Gang Cao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuqiang Xu
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
22
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
23
|
Alonso-Caraballo Y, Li Y, Constantino NJ, Neal MA, Driscoll GS, Mavrikaki M, Bolshakov VY, Chartoff EH. Sex-specific behavioral and thalamo-accumbal circuit adaptations after oxycodone abstinence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605459. [PMID: 39149276 PMCID: PMC11326127 DOI: 10.1101/2024.08.01.605459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioid use disorder is marked by a progressive change in the motivation to administer the drug even in the presence of negative consequences. After long periods of abstinence, the urge to return to taking the drug intensifies over time, known as incubation of craving. Conditioned responses to drug-related stimuli, can acquire motivational properties and exert control over motivated behaviors leading to relapse. Although, preclinical data suggest that the behavioral expression of opioid use is similar between male and female rodents, we do not have conclusive results on sex differences on craving and relapse across abstinence periods. Here, we investigated the effects of abstinence from oxycodone self-administration on neurotransmission in the paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) pathway in male and female rats. Using optogenetics and ex vivo electrophysiology, we assessed synaptic strength and glutamate release probability in this pathway, as well as NAcSh medium spiny neurons (MSN) intrinsic excitability, in slices from rats which were subjected to either 1 (acute) or 14 (prolonged) days of forced abstinence after self-administration. Our results revealed no sex differences in oxycodone self-administration or somatic withdrawal symptoms following acute abstinence. However, we found a sex-specific enhancement in cue-induced relapse after prolonged, but not acute, abstinence from oxycodone self-administration, with females exhibiting higher relapse rates. Notably, prolonged abstinence led to similar increases in synaptic strength at PVT-NAcSh inputs compared to saline controls in both sexes, which was not observed after acute abstinence. Thus, prolonged abstinence results in a time-dependent increase in PVT-NAcSh synaptic strength and sex-specific effects on cue-induced relapse rates. These findings suggest that prolonged abstinence leads to significant synaptic changes, contributing to heightened relapse vulnerability, highlighting the need for targeted therapeutic strategies in opioid use disorder.
Collapse
Affiliation(s)
- Y Alonso-Caraballo
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience & Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA
| | - Y Li
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - N J Constantino
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - M A Neal
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - G S Driscoll
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Mavrikaki
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - V Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E H Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
24
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 PMCID: PMC11349581 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Kwok CHT, Harding EK, Burma NE, Markovic T, Massaly N, van den Hoogen NJ, Stokes-Heck S, Gambeta E, Komarek K, Yoon HJ, Navis KE, McAllister BB, Canet-Pons J, Fan C, Dalgarno R, Gorobets E, Papatzimas JW, Zhang Z, Kohro Y, Anderson CL, Thompson RJ, Derksen DJ, Morón JA, Zamponi GW, Trang T. Pannexin-1 channel inhibition alleviates opioid withdrawal in rodents by modulating locus coeruleus to spinal cord circuitry. Nat Commun 2024; 15:6264. [PMID: 39048565 PMCID: PMC11269731 DOI: 10.1038/s41467-024-50657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nicole E Burma
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Markovic
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
- Department of Anesthesiology & Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Eder Gambeta
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kristina Komarek
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Kathleen E Navis
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julia Canet-Pons
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Churmy Fan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Rebecca Dalgarno
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | | - Zizhen Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yuta Kohro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Darren J Derksen
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Franco M, Mendonsa B, Martin-Fardon R. Pivotal role of orexin signaling in the posterior paraventricular nucleus of the thalamus during the stress-induced reinstatement of oxycodone-seeking behavior. J Psychopharmacol 2024; 38:647-660. [PMID: 38888086 PMCID: PMC11407285 DOI: 10.1177/02698811241260989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND The orexin (OX) system has received increasing interest as a potential target for treating substance use disorder. OX transmission in the posterior paraventricular nucleus of the thalamus (pPVT), an area activated by highly salient stimuli that are both reinforcing and aversive, mediates cue- and stress-induced reinstatement of reward-seeking behavior. Oral administration of suvorexant (SUV), a dual OX receptor (OXR) antagonist (DORA), selectively reduced conditioned reinstatement of oxycodone-seeking behavior and stress-induced reinstatement of alcohol-seeking behavior in dependent rats. AIMS This study tested whether OXR blockade in the pPVT with SUV reduces oxycodone or sweetened condensed milk (SCM) seeking elicited by conditioned cues or stress. METHODS Male Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i.v., 8 h/day) or SCM (0.1 ml, 2:1 dilution [v/v], 30 min/day). After extinction, we tested the ability of intra-pPVT SUV (15 µg/0.5 µl) to prevent reinstatement of oxycodone or SCM seeking elicited by conditioned cues or footshock stress. RESULTS The rats acquired oxycodone and SCM self-administration, and oxycodone intake correlated with signs of physical opioid withdrawal, confirming dependence. Following extinction, the presentation of conditioned cues or footshock elicited reinstatement of oxycodone- and SCM-seeking behavior. Intra-pPVT SUV blocked stress-induced reinstatement of oxycodone seeking but not conditioned reinstatement of oxycodone or SCM seeking or stress-induced reinstatement of SCM seeking. CONCLUSIONS The results indicate that OXR signaling in the pPVT is critical for stress-induced reinstatement of oxycodone seeking, further corroborating OXRs as treatment targets for opioid use disorder.
Collapse
|
27
|
Kooiker CL, Birnie MT, Floriou-Servou A, Ding Q, Thiagarajan N, Hardy M, Baram TZ. Paraventricular Thalamus Neuronal Ensembles Encode Early-life Adversity and Mediate the Consequent Sex-dependent Disruptions of Adult Reward Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591547. [PMID: 38746198 PMCID: PMC11092514 DOI: 10.1101/2024.04.28.591547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Early-life adversity increases risk for mental illnesses including depression and substance use disorders, disorders characterized by dysregulated reward behaviors. However, the mechanisms by which transient ELA enduringly impacts reward circuitries are not well understood. In mice, ELA leads to anhedonia-like behaviors in males and augmented motivation for palatable food and sex-reward cues in females. Here, the use of genetic tagging demonstrated robust, preferential, and sex-specific activation of the paraventricular nucleus of the thalamus (PVT) during ELA and a potentiated reactivation of these PVT neurons during a reward task in adult ELA mice. Chemogenetic manipulation of specific ensembles of PVT neurons engaged during ELA identified a role for the posterior PVT in ELA-induced aberrantly augmented reward behaviors in females. In contrast, anterior PVT neurons activated during ELA were required for the anhedonia-like behaviors in males. Thus, the PVT encodes adverse experiences early-in life, prior to the emergence of the hippocampal memory system, and contributes critically to the lasting, sex-modulated impacts of ELA on reward behaviors.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Amalia Floriou-Servou
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Qinxin Ding
- School of Biological Sciences, University of California-Irvine, Irvine, CA, USA
| | - Neeraj Thiagarajan
- School of Biological Sciences, University of California-Irvine, Irvine, CA, USA
| | - Mason Hardy
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
28
|
Kawatake-Kuno A, Li H, Inaba H, Hikosaka M, Ishimori E, Ueki T, Garkun Y, Morishita H, Narumiya S, Oishi N, Ohtsuki G, Murai T, Uchida S. Sustained antidepressant effects of ketamine metabolite involve GABAergic inhibition-mediated molecular dynamics in aPVT glutamatergic neurons. Neuron 2024; 112:1265-1285.e10. [PMID: 38377990 PMCID: PMC11031324 DOI: 10.1016/j.neuron.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan; Kyoto University Medical Science and Business Liaison Organization, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
29
|
Liu X, Lu T, Han Y, Lu L. Rebuilding the behavioral inhibition circuit to prevent opioid relapse. Neuron 2024; 112:689-691. [PMID: 38452736 DOI: 10.1016/j.neuron.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
Failure in behavioral suppression is a key feature in substance use disorders, potentially leading to compulsive drug seeking and relapse. In this issue of Neuron, Paniccia et al.1 elucidated a heroin-damaged paraventricular nucleus of the thalamus (PVT)-accumbal circuit and how recovery of PVT function could prevent heroin relapse.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
30
|
Paniccia JE, Vollmer KM, Green LM, Grant RI, Winston KT, Buchmaier S, Westphal AM, Clarke RE, Doncheck EM, Bordieanu B, Manusky LM, Martino MR, Ward AL, Rinker JA, McGinty JF, Scofield MD, Otis JM. Restoration of a paraventricular thalamo-accumbal behavioral suppression circuit prevents reinstatement of heroin seeking. Neuron 2024; 112:772-785.e9. [PMID: 38141605 PMCID: PMC10939883 DOI: 10.1016/j.neuron.2023.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of μ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.
Collapse
Affiliation(s)
- Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa M Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kion T Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophie Buchmaier
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Annaka M Westphal
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel E Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Logan M Manusky
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael R Martino
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy L Ward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph Johnson Veterans Administration, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Song Q, Wei A, Xu H, Gu Y, Jiang Y, Dong N, Zheng C, Wang Q, Gao M, Sun S, Duan X, Chen Y, Wang B, Huo J, Yao J, Wu H, Li H, Wu X, Jing Z, Liu X, Yang Y, Hu S, Zhao A, Wang H, Cheng X, Qin Y, Qu Q, Chen T, Zhou Z, Chai Z, Kang X, Wei F, Wang C. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat Neurosci 2024; 27:272-285. [PMID: 38172439 DOI: 10.1038/s41593-023-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.
Collapse
Affiliation(s)
- Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Xu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Gu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Nan Dong
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Min Gao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xueting Duan
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Huo
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hua Li
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xuanang Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Zexin Jing
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shaoqin Hu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry; Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA.
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China.
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
32
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
33
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
34
|
Shima Y, Skibbe H, Sasagawa Y, Fujimori N, Iwayama Y, Isomura-Matoba A, Yano M, Ichikawa T, Nikaido I, Hattori N, Kato T. Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Rep 2023; 42:113309. [PMID: 37862168 DOI: 10.1016/j.celrep.2023.113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Noriko Fujimori
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Support Unit for Bio-Material Analysis, Research Resource Division, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Minoru Yano
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Takumi Ichikawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Nobutaka Hattori
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Department of Neurology, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Department of Psychiatry, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan.
| |
Collapse
|
35
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
36
|
Rao J, Sun W, Wang X, Li J, Zhang Z, Zhou F. A novel role for astrocytic fragmented mitochondria in regulating morphine addiction. Brain Behav Immun 2023; 113:328-339. [PMID: 37543246 DOI: 10.1016/j.bbi.2023.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Chronic morphine exposure causes the development of addictive behaviors, accompanied by an increase in neuroinflammation in the central nervous system. While previous researches have shown that astrocytes contribute to brain diseases, the role of astrocyte in morphine addiction through induced neuroinflammation remain unexplored. Here we show that morphine-induced inflammation requires the crosstalk among neuron, astrocyte, and microglia. Specifically, astrocytes respond to morphine-induced neuronal activation by increasing glycolytic metabolism. The dysregulation of glycolysis leads to an increased in the generation of mitochondrial reactive oxygen species and causes excessive mitochondrial fragmentation in astrocytes. These fragmented, dysfunctional mitochondria are consequently released into extracellular environment, leading to activation of microglia and release of inflammatory cytokines. We also found that blocking the nicotinamide adenine dinucleotide salvage pathway with FK866 could inhibit astrocytic glycolysis and restore the mitochondrial homeostasis and effectively attenuate neuroinflammatory responses. Importantly, FK866 reversed morphine-induced addictive behaviors in mice. In summary, our findings illustrate an essential role of astrocytic immunometabolism in morphine induced neural and behavioral plasticity, providing a novel insight into the interactions between neurons, astrocytes, and microglia in the brain affected by chronic morphine exposure.
Collapse
Affiliation(s)
- Jie Rao
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Weikang Sun
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xinran Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Jin Li
- Pain Department, Hainan Cancer Hospital, Haikou 570312, China
| | - Zhichun Zhang
- Pain Department, Hainan Cancer Hospital, Haikou 570312, China
| | - Feifan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
37
|
Kooiker CL, Chen Y, Birnie MT, Baram TZ. Genetic Tagging Uncovers a Robust, Selective Activation of the Thalamic Paraventricular Nucleus by Adverse Experiences Early in Life. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:746-755. [PMID: 37881549 PMCID: PMC10593902 DOI: 10.1016/j.bpsgos.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Background Early-life adversity (ELA) is associated with increased risk for mood disorders, including depression and substance use disorders. These disorders are characterized by impaired reward-related behaviors, suggesting compromised operations of reward-related brain circuits. However, the brain regions engaged by ELA that mediate these enduring consequences of ELA remain largely unknown. In an animal model of ELA, we identified aberrant reward-seeking behaviors, a discovery that provides a framework for assessing the underlying circuits. Methods Employing TRAP2 (targeted recombination in active populations) male and female mice, in which neurons activated within a defined time frame are permanently tagged, we compared ELA- and control-reared mice, assessing the quantity and distribution of ELA-related neuronal activation. After validating the TRAP2 results using native c-Fos labeling, we defined the molecular identity of this population of activated neurons. Results We uniquely demonstrated that the TRAP2 system is feasible and efficacious in neonatal mice. Surprisingly, the paraventricular nucleus of the thalamus was robustly and almost exclusively activated by ELA and was the only region distinguishing ELA from typical rearing. Remarkably, a large proportion of ELA-activated paraventricular nucleus of the thalamus neurons expressed CRF1, the receptor for the stress-related peptide, corticotropin-releasing hormone, but these neurons did not express corticotropin-releasing hormone itself. Conclusions The paraventricular nucleus of the thalamus, an important component of reward circuits that is known to encode remote, emotionally salient experiences to influence future motivated behaviors, encodes adverse experiences as remote as those occurring during the early postnatal period and is thus poised to contribute to the enduring deficits in reward-related behaviors consequent to ELA.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California
- Department of Pediatrics, University of California Irvine, Irvine, California
- Department of Neurology, University of California Irvine, Irvine, California
| |
Collapse
|
38
|
Li H, Zhao H, Hu T, Meng L, Mo X, Gong M, Liao Y. The Cdk5 inhibitor β-butyrolactone impairs reconsolidation of heroin-associated memory in the rat basolateral amygdala. Addict Biol 2023; 28:e13326. [PMID: 37644892 DOI: 10.1111/adb.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
The persistence of maladaptive heroin-associated memory, which is triggered by drug-related stimuli that remind the individual of the drug's pleasurable and rewarding effects, can impede abstinence efforts. Cyclin-dependent kinase 5 (Cdk5), a neuronal serine/threonine protein kinase that plays a role in multiple neuronal functions, has been demonstrated to be involved in drug addiction and learning and memory. Here, we aimed to investigate the role of cdk5 activity in the basolateral amygdala (BLA) in relapse to heroin seeking, using a self-administration rat model. Male rats underwent 10 days of heroin self-administration training, during which an active nose poke resulted in an intravenous infusion of heroin that was accompanied by a cue. The rats then underwent nose poke extinction for 10 days, followed by subsequent tests of heroin-seeking behaviour. We found that intra-BLA infusion of β-butyrolactone (100 ng/side), a Cdk5 inhibitor, administered 5 min after reactivation, led to a subsequent decrease in heroin-seeking behaviour. Further experiments demonstrated that the effects of β-butyrolactone are dependent on reactivated memories, temporal-specific and long-lasting on relapse of heroin-associated memory. Results provide suggestive evidence that the activity of Cdk5 in BLA is critical for heroin-associated memory and that the specific inhibitor, β-butyrolactone, may hold potential as a substance for the treatment of heroin abuse.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Engeli EJE, Russo AG, Ponticorvo S, Zoelch N, Hock A, Hulka LM, Kirschner M, Preller KH, Seifritz E, Quednow BB, Esposito F, Herdener M. Accumbal-thalamic connectivity and associated glutamate alterations in human cocaine craving: A state-dependent rs-fMRI and 1H-MRS study. Neuroimage Clin 2023; 39:103490. [PMID: 37639901 PMCID: PMC10474092 DOI: 10.1016/j.nicl.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Craving is a core symptom of cocaine use disorder and a major factor for relapse risk. To date, there is no pharmacological therapy to treat this disease or at least to alleviate cocaine craving as a core symptom. In animal models, impaired prefrontal-striatal signalling leading to altered glutamate release in the nucleus accumbens appear to be the prerequisite for cocaine-seeking. Thus, those network and metabolic changes may constitute the underlying mechanisms for cocaine craving and provide a potential treatment target. In humans, there is recent evidence for corresponding glutamatergic alterations in the nucleus accumbens, however, the underlying network disturbances that lead to this glutamate imbalance remain unknown. In this state-dependent randomized, placebo-controlled, double-blinded, cross-over multimodal study, resting state functional magnetic resonance imaging in combination with small-voxel proton magnetic resonance spectroscopy (voxel size: 9.4 × 18.8 × 8.4 mm3) was applied to assess network-level and associated neurometabolic changes during a non-craving and a craving state, induced by a custom-made cocaine-cue film, in 18 individuals with cocaine use disorder and 23 healthy individuals. Additionally, we assessed the potential impact of a short-term challenge of N-acetylcysteine, known to normalize disturbed glutamate homeostasis and to thereby reduce cocaine-seeking in animal models of addiction, compared to a placebo. We found increased functional connectivity between the nucleus accumbens and the dorsolateral prefrontal cortex during the cue-induced craving state. However, those changes were not linked to alterations in accumbal glutamate levels. Whereas we additionally found increased functional connectivity between the nucleus accumbens and a midline part of the thalamus during the cue-induced craving state. Furthermore, obsessive thinking about cocaine and the actual intensity of cocaine use were predictive of cue-induced functional connectivity changes between the nucleus accumbens and the thalamus. Finally, the increase in accumbal-thalamic connectivity was also coupled with craving-related glutamate rise in the nucleus accumbens. Yet, N-acetylcysteine had no impact on craving-related changes in functional connectivity. Together, these results suggest that connectivity changes within the fronto-accumbal-thalamic loop, in conjunction with impaired glutamatergic transmission, underlie cocaine craving and related clinical symptoms, pinpointing the thalamus as a crucial hub for cocaine craving in humans.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Andrea G Russo
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Ponticorvo
- Center for Magnetic Resonance Research, University of Minnesota, Minnesota, United States
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute of Forensic Medicine, Department of Forensic Medicine and Imaging, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Transdiagnostic and Multimodal Neuroimaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Rivera-Irizarry JK, Hámor PU, Rowson SA, Asfouri J, Liu D, Zallar LJ, Garcia AF, Skelly MJ, Pleil KE. Valence and salience encoding by parallel circuits from the paraventricular thalamus to the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547570. [PMID: 37461604 PMCID: PMC10349961 DOI: 10.1101/2023.07.03.547570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The anterior and posterior subregions of the paraventricular thalamus (aPVT and pPVT, respectively) play unique roles in learned behaviors, from fear conditioning to alcohol/drug intake, potentially through differentially organized projections to limbic brain regions including the nucleus accumbens medial shell (mNAcSh). Here, we found that the aPVT projects broadly to the mNAcSh and that the aPVT-mNAcSh circuit encodes positive valence, such that in vivo manipulations of the circuit modulated both innately programmed and learned behavioral responses to positively and negatively valenced stimuli, particularly in females. Further, the endogenous activity of aPVT presynaptic terminals in the mNAcSh was greater in response to positively than negatively valenced stimuli, and the probability of synaptic glutamate release from aPVT neurons in the mNAcSh was higher in females than males. In contrast, we found that the pPVT-mNAcSh circuit encodes stimulus salience regardless of valence. While pPVT-mNAcSh circuit inhibition suppressed behavioral responses in both sexes, circuit activation increased behavioral responses to stimuli only in males. Our results point to circuit-specific stimulus feature encoding by parallel PVT-mNAcSh circuits that have sex-dependent biases in organization and function.
Collapse
|
41
|
Liu A, Cheng Y, Huang J. Neurons innervating both the central amygdala and the ventral tegmental area encode different emotional valences. Front Neurosci 2023; 17:1178693. [PMID: 37214399 PMCID: PMC10196062 DOI: 10.3389/fnins.2023.1178693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.
Collapse
Affiliation(s)
- Anqi Liu
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuelin Cheng
- Jeffrey Trail Middle School, Irvine, CA, United States
| | - Ju Huang
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Amohashemi E, Reisi P, Alaei H. The role of NMDA glutamate receptors in the lateral habenula on morphine-induced conditioned place preference in rats. Synapse 2023. [PMID: 37122079 DOI: 10.1002/syn.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
The lateral habenula (LHb) has received special attention due to its role in modulating motivated behavior, stress response, and rewarding and aversive stimuli through monoamine transmission. In the present study, the involvement of the N-methyl-d-aspartate (NMDA) receptors of the LHb in the expression and acquisition phases of morphine-induced conditioned place preference (CPP) was studied in male rats. Bilateral injections of agonist/antagonist (MK-801) of NMDA receptor were performed during the conditioning sessions of the acquisition phase. In other separate groups, drugs were also injected into the LHb before the test session during the expression phase of CPP. A 5-day CPP bias paradigm was used to study the effect of injections of NMDA and MK-801 into the LHb on morphine reward-related behavior. Different doses of NMDA plus morphine reduced the CPP score during the acquisition phase, whereas MK-801 significantly increased conditioning scores during the acquisition phase of CPP. The injection of agonists and antagonists of NMDA receptors in LHb had no significant effect on CPP scores and locomotion during the expression phase of CPP, whereas the motor activity in the acquisition phase was affected by the drugs. The reduction effect of NMDA on the CPP scores during the acquisition phase was blocked by pretreatment with MK-801. Our findings also suggest that NMDA receptors in the LHb may be involved in the acquisition phase of morphine-induced CPP.
Collapse
Affiliation(s)
- Elahe Amohashemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Hou G, Jiang S, Chen G, Deng X, Li F, Xu H, Chen B, Zhu Y. Opioid Receptors Modulate Firing and Synaptic Transmission in the Paraventricular Nucleus of the Thalamus. J Neurosci 2023; 43:2682-2695. [PMID: 36898836 PMCID: PMC10089236 DOI: 10.1523/jneurosci.1766-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is involved in drug addiction-related behaviors, and morphine is a widely used opioid for the relief of severe pain. Morphine acts via opioid receptors, but the function of opioid receptors in the PVT has not been fully elucidated. Here, we used in vitro electrophysiology to study neuronal activity and synaptic transmission in the PVT of male and female mice. Activation of opioid receptors suppresses the firing and inhibitory synaptic transmission of PVT neurons in brain slices. On the other hand, the involvement of opioid modulation is reduced after chronic morphine exposure, probably because of desensitization and internalization of opioid receptors in the PVT. Overall, the opioid system is essential for the modulation of PVT activities.SIGNIFICANCE STATEMENT Opioid receptors modulate the activities and synaptic transmission in the PVT by suppressing the firing rate and inhibitory synaptic inputs. These modulations were largely diminished after chronic morphine exposure.
Collapse
Affiliation(s)
- Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shaolei Jiang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
44
|
Yang T, Yu K, Zhang X, Xiao X, Chen X, Fu Y, Li B. Plastic and stimulus-specific coding of salient events in the central amygdala. Nature 2023; 616:510-519. [PMID: 37020025 PMCID: PMC10665639 DOI: 10.1038/s41586-023-05910-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
The central amygdala (CeA) is implicated in a range of mental processes including attention, motivation, memory formation and extinction and in behaviours driven by either aversive or appetitive stimuli1-7. How it participates in these divergent functions remains elusive. Here we show that somatostatin-expressing (Sst+) CeA neurons, which mediate much of CeA functions3,6,8-10, generate experience-dependent and stimulus-specific evaluative signals essential for learning. The population responses of these neurons in mice encode the identities of a wide range of salient stimuli, with the responses of separate subpopulations selectively representing the stimuli that have contrasting valences, sensory modalities or physical properties (for example, shock and water reward). These signals scale with stimulus intensity, undergo pronounced amplification and transformation during learning, and are required for both reward and aversive learning. Notably, these signals contribute to the responses of dopamine neurons to reward and reward prediction error, but not to their responses to aversive stimuli. In line with this, Sst+ CeA neuron outputs to dopamine areas are required for reward learning, but are dispensable for aversive learning. Our results suggest that Sst+ CeA neurons selectively process information about differing salient events for evaluation during learning, supporting the diverse roles of the CeA. In particular, the information for dopamine neurons facilitates reward evaluation.
Collapse
Affiliation(s)
- Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Kai Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
45
|
Eacret D, Manduchi E, Noreck J, Tyner E, Fenik P, Dunn AD, Schug J, Veasey SC, Blendy JA. Mu-opioid receptor-expressing neurons in the paraventricular thalamus modulate chronic morphine-induced wake alterations. Transl Psychiatry 2023; 13:78. [PMID: 36869037 PMCID: PMC9984393 DOI: 10.1038/s41398-023-02382-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Disrupted sleep is a symptom of many psychiatric disorders, including substance use disorders. Most drugs of abuse, including opioids, disrupt sleep. However, the extent and consequence of opioid-induced sleep disturbance, especially during chronic drug exposure, is understudied. We have previously shown that sleep disturbance alters voluntary morphine intake. Here, we examine the effects of acute and chronic morphine exposure on sleep. Using an oral self-administration paradigm, we show that morphine disrupts sleep, most significantly during the dark cycle in chronic morphine, with a concomitant sustained increase in neural activity in the Paraventricular Nucleus of the Thalamus (PVT). Morphine binds primarily to Mu Opioid Receptors (MORs), which are highly expressed in the PVT. Translating Ribosome Affinity Purification (TRAP)-Sequencing of PVT neurons that express MORs showed significant enrichment of the circadian entrainment pathway. To determine whether MOR + cells in the PVT mediate morphine-induced sleep/wake properties, we inhibited these neurons during the dark cycle while mice were self-administering morphine. This inhibition decreased morphine-induced wakefulness but not general wakefulness, indicating that MORs in the PVT contribute to opioid-specific wake alterations. Overall, our results suggest an important role for PVT neurons that express MORs in mediating morphine-induced sleep disturbance.
Collapse
Affiliation(s)
- Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Noreck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tyner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amelia D Dunn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Stefaniuk M, Pawłowska M, Barański M, Nowicka K, Zieliński Z, Bijoch Ł, Legutko D, Majka P, Bednarek S, Jermakow N, Wójcik D, Kaczmarek L. Global brain c-Fos profiling reveals major functional brain networks rearrangements after alcohol reexposure. Neurobiol Dis 2023; 178:106006. [PMID: 36682503 DOI: 10.1016/j.nbd.2023.106006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland.
| | - Monika Pawłowska
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Institute of Experimental Physics, Section of Optics, Warsaw University, Warsaw, Poland
| | - Marcin Barański
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | | | - Łukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Laboratory of Neuronal Plasticity, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Diana Legutko
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Daniel Wójcik
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| |
Collapse
|
47
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
48
|
Brown A, Villaruel FR, Chaudhri N. Neural correlates of recall and extinction in a rat model of appetitive Pavlovian conditioning. Behav Brain Res 2023; 440:114248. [PMID: 36496079 DOI: 10.1016/j.bbr.2022.114248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Extinction is a fundamental form of inhibitory learning that is important for adapting to changing environmental contingencies. While numerous studies have investigated the neural correlates of extinction using Pavlovian fear conditioning and appetitive operant reward-seeking procedures, less is known about the neural circuitry mediating the extinction of appetitive Pavlovian responding. Here, we aimed to generate an extensive brain activation map of extinction learning in a rat model of appetitive Pavlovian conditioning. Male Long-Evans rats were trained to associate a conditioned stimulus (CS; 20 s white noise) with the delivery of a 10% sucrose unconditioned stimulus (US; 0.3 ml/CS) to a fluid port. Control groups also received CS presentations, but sucrose was delivered either during the inter-trial interval or in the home-cage. After conditioning, 1 or 6 extinction sessions were conducted in which the CS was presented but sucrose was withheld. We performed Fos immunohistochemistry and network connectivity analyses on a set of cortical, striatal, thalamic, and amygdalar brain regions. Neural activity in the prelimbic cortex, ventral orbitofrontal cortex, nucleus accumbens core, and paraventricular nucleus of the thalamus was greater during recall relative to extinction. Conversely, prolonged extinction following 6 sessions induced increased neural activity in the infralimbic cortex, medial orbitofrontal cortex, and nucleus accumbens shell compared to home-cage controls. All these structures were similarly recruited during recall on the first extinction session. These findings provide novel evidence for the contribution of brain areas and neural networks that are differentially involved in the recall versus extinction of appetitive Pavlovian conditioned responding.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Franz R Villaruel
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
49
|
Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, Kaczmarek L, Beroun A. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023; 13:20. [PMID: 36683039 PMCID: PMC9868126 DOI: 10.1038/s41398-023-02318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Natural rewards, such as food, and sex are appetitive stimuli available for animals in their natural environment. Similarly, addictive rewards such as drugs of abuse possess strong, positive valence, but their action relies on their pharmacological properties. Nevertheless, it is believed that both of these kinds of rewards activate similar brain circuitry. The present study aimed to discover which parts of the brain process the experience of natural and addictive rewards. To holistically address this question, we used a single-cell whole-brain imaging approach to find patterns of activation for acute and prolonged sucrose and cocaine exposure. We analyzed almost 400 brain structures and created a brain-wide map of specific, c-Fos-positive neurons engaged by these rewards. Acute but not prolonged sucrose exposure triggered a massive c-Fos expression throughout the brain. Cocaine exposure on the other hand potentiated c-Fos expression with prolonged use, engaging more structures than sucrose treatment. The functional connectivity analysis unraveled an increase in brain modularity after the initial exposure to both types of rewards. This modularity was increased after repeated cocaine, but not sucrose, intake. To check whether discrepancies between the processing of both types of rewards can be found on a cellular level, we further studied the nucleus accumbens, one of the most strongly activated brain structures by both sucrose and cocaine experience. We found a high overlap between natural and addictive rewards on the level of c-Fos expression. Electrophysiological measurements of cellular correlates of synaptic plasticity revealed that natural and addictive rewards alike induce the accumulation of silent synapses. These results strengthen the hypothesis that in the nucleus accumbens drugs of abuse cause maladaptive neuronal plasticity in the circuitry that typically processes natural rewards.
Collapse
Affiliation(s)
- Łukasz Bijoch
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Klos
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Monika Pawłowska
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland ,grid.12847.380000 0004 1937 1290Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Justyna Wiśniewska
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Diana Legutko
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szachowicz
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
50
|
Nucleus accumbens circuit disinhibits lateral hypothalamus glutamatergic neurons contributing to morphine withdrawal memory in male mice. Nat Commun 2023; 14:71. [PMID: 36604429 PMCID: PMC9814415 DOI: 10.1038/s41467-022-35758-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral hypothalamus (LH) is physiologically critical in brain functions. The LH also plays an important role in drug addiction. However, neural circuits underlying LH involvement of drug addiction remain obscure. In the present study,our results showed that in male mice, during context-induced expression of morphine withdrawal memory, LH glutamatergic neurons played an important role; dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) projecting from the core of nucleus accumbens (NAcC) to the LH were an important upstream circuit to activate LH glutamatergic neurons; D1-MSNs projecting from the NAcC to the LH activated LH glutamatergic neurons through inhibiting LH local gamma-aminobutyric acid (GABA) neurons. These results suggest that disinhibited LH glutamatergic neurons by neural circuits from the NAcC importantly contribute to context-induced the expression of morphine withdrawal memory.
Collapse
|