1
|
Koh M, Anselmi F, Kaushalya SK, Hernandez DE, Bast WG, Villar PS, Chae H, Davis MB, Teja SS, Qu Z, Gradinaru V, Gupta P, Banerjee A, Albeanu DF. Axially decoupled photo-stimulation and two photon readout ( ADePT) for mapping functional connectivity of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639992. [PMID: 40161637 PMCID: PMC11952351 DOI: 10.1101/2025.02.24.639992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
All optical physiology in vivo provides a conduit for investigating the function of neural circuits in 3-D. Here, we report a new strategy for flexible, axially-decoupled photo-stimulation and two photon readout (ADePT) of neuronal activity. To achieve axially-contained widefield optogenetic patterned stimulation, we couple a digital micro-mirror device illuminated by a solid-state laser with a motorized holographic diffuser. In parallel, we use multiphoton imaging of neural activity across different z-planes. We use ADePT to analyze the excitatory and inhibitory functional connectivity of the mouse early olfactory system. Specifically, we control the activity of individual input glomeruli on the olfactory bulb surface, and map the ensuing responses of output mitral and tufted cell bodies in deeper layers. This approach identifies cohorts of sister mitral and tufted cells, whose firing is driven by the same parent glomerulus, and also reveals their differential inhibition by other glomeruli. In addition, selective optogenetic activation of glomerular GABAergic/dopaminergic (DAT+) interneurons triggers dense, but spatially heterogeneous suppression of mitral and tufted cell baseline activity and odor responses, further demonstrating specificity in the inhibitory olfactory bulb connectivity. In summary, ADePT enables high-throughput functional connectivity mapping in optically accessible brain regions.
Collapse
Affiliation(s)
- Matthew Koh
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | | | | | | | - Pablo S. Villar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Martin B. Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sadhu Sai Teja
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhe Qu
- California Institute of Technology, Pasadena, CA, 91125
| | | | - Priyanka Gupta
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Arkarup Banerjee
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Dinu F. Albeanu
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
2
|
Khilkevich A, Lohse M, Low R, Orsolic I, Bozic T, Windmill P, Mrsic-Flogel TD. Brain-wide dynamics linking sensation to action during decision-making. Nature 2024; 634:890-900. [PMID: 39261727 PMCID: PMC11499283 DOI: 10.1038/s41586-024-07908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Perceptual decisions rely on learned associations between sensory evidence and appropriate actions, involving the filtering and integration of relevant inputs to prepare and execute timely responses1,2. Despite the distributed nature of task-relevant representations3-10, it remains unclear how transformations between sensory input, evidence integration, motor planning and execution are orchestrated across brain areas and dimensions of neural activity. Here we addressed this question by recording brain-wide neural activity in mice learning to report changes in ambiguous visual input. After learning, evidence integration emerged across most brain areas in sparse neural populations that drive movement-preparatory activity. Visual responses evolved from transient activations in sensory areas to sustained representations in frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling parallel evidence accumulation. In areas that accumulate evidence, shared population activity patterns encode visual evidence and movement preparation, distinct from movement-execution dynamics. Activity in movement-preparatory subspace is driven by neurons integrating evidence, which collapses at movement onset, allowing the integration process to reset. Across premotor regions, evidence-integration timescales were independent of intrinsic regional dynamics, and thus depended on task experience. In summary, learning aligns evidence accumulation to action preparation in activity dynamics across dozens of brain regions. This leads to highly distributed and parallelized sensorimotor transformations during decision-making. Our work unifies concepts from decision-making and motor control fields into a brain-wide framework for understanding how sensory evidence controls actions.
Collapse
Affiliation(s)
- Andrei Khilkevich
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Michael Lohse
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Ryan Low
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Ivana Orsolic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Tadej Bozic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Paige Windmill
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
3
|
van Beest EH, Abdelwahab MAO, Cazemier JL, Baltira C, Maes MC, Peri BD, Self MW, Willuhn I, Roelfsema PR. The direct and indirect pathways of the basal ganglia antagonistically influence cortical activity and perceptual decisions. iScience 2024; 27:110753. [PMID: 39280625 PMCID: PMC11402218 DOI: 10.1016/j.isci.2024.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The striatum, the main input nucleus of the basal ganglia, receives topographically organized input from the cortex and gives rise to the direct and indirect output pathways, which have antagonistic effects on basal ganglia output directed to the cortex. We optogenetically stimulated the direct and indirect pathways in a visual and a working memory task in mice that responded by licking. Unilateral direct pathway stimulation increased the probability of lick responses toward the contralateral, non-stimulated side and increased cortical activity globally. In contrast, indirect pathway stimulation increased the probability of responses toward the stimulated side and decreased activity in the stimulated hemisphere. Moreover, direct pathway stimulation enhanced the neural representation of a contralateral visual stimulus during the delay of the working memory task, whereas indirect pathway stimulation had the opposite effect. Our results demonstrate how these two pathways influence perceptual decisions and working memory and modify activity in the dorsal cortex.
Collapse
Affiliation(s)
- Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mohammed A O Abdelwahab
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - J Leonie Cazemier
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Chrysiida Baltira
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - M Cassandra Maes
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Brandon D Peri
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Ingo Willuhn
- Department of Neuromodulation and Behavior, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, the Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
4
|
Gupta D, Kopec CD, Bondy AG, Luo TZ, Elliott VA, Brody CD. A multi-region recurrent circuit for evidence accumulation in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602544. [PMID: 39026895 PMCID: PMC11257434 DOI: 10.1101/2024.07.08.602544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Decision-making based on noisy evidence requires accumulating evidence and categorizing it to form a choice. Here we evaluate a proposed feedforward and modular mapping of this process in rats: evidence accumulated in anterodorsal striatum (ADS) is categorized in prefrontal cortex (frontal orienting fields, FOF). Contrary to this, we show that both regions appear to be indistinguishable in their encoding/decoding of accumulator value and communicate this information bidirectionally. Consistent with a role for FOF in accumulation, silencing FOF to ADS projections impacted behavior throughout the accumulation period, even while nonselective FOF silencing did not. We synthesize these findings into a multi-region recurrent neural network trained with a novel approach. In-silico experiments reveal that multiple scales of recurrence in the cortico-striatal circuit rescue computation upon nonselective FOF perturbations. These results suggest that ADS and FOF accumulate evidence in a recurrent and distributed manner, yielding redundant representations and robustness to certain perturbations.
Collapse
Affiliation(s)
- Diksha Gupta
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Present address: Sainsbury Wellcome Centre, University College London, London, UK
| | - Charles D. Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Adrian G. Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Thomas Z. Luo
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Verity A. Elliott
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Carlos D. Brody
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton NJ, USA
| |
Collapse
|
5
|
Gilad A. Wide-field imaging in behaving mice as a tool to study cognitive function. NEUROPHOTONICS 2024; 11:033404. [PMID: 38384657 PMCID: PMC10879934 DOI: 10.1117/1.nph.11.3.033404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Cognitive functions are mediated through coordinated and dynamic neuronal responses that involve many different areas across the brain. Therefore, it is of high interest to simultaneously record neuronal activity from as many brain areas as possible while the subject performs a cognitive behavioral task. One of the emerging tools to achieve a mesoscopic field of view is wide-field imaging of cortex-wide dynamics in mice. Wide-field imaging is cost-effective, user-friendly, and enables obtaining cortex-wide signals from mice performing complex and demanding cognitive tasks. Importantly, wide-field imaging offers an unbiased cortex-wide observation that sheds light on overlooked cortical regions and highlights parallel processing circuits. Recent wide-field imaging studies have shown that multi-area cortex-wide patterns, rather than just a single area, are involved in encoding cognitive functions. The optical properties of wide-field imaging enable imaging of different brain signals, such as layer-specific, inhibitory subtypes, or neuromodulation signals. Here, I review the main advantages of wide-field imaging in mice, review the recent literature, and discuss future directions of the field. It is expected that wide-field imaging in behaving mice will continue to gain popularity and aid in understanding the mesoscale dynamics underlying cognitive function.
Collapse
Affiliation(s)
- Ariel Gilad
- Hebrew University of Jerusalem, Institute for Medical Research Israel-Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
6
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. Cell Rep 2024; 43:114017. [PMID: 38578827 DOI: 10.1016/j.celrep.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness, suprathreshold stimuli evoke perceptions; under anesthesia, perceptions are abolished; and during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perceptions. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia as well as during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely, in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is reliably elicited by external visual stimuli.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Luo
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Helen Chung
- The College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego Contreras
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Znamenskiy P, Kim MH, Muir DR, Iacaruso MF, Hofer SB, Mrsic-Flogel TD. Functional specificity of recurrent inhibition in visual cortex. Neuron 2024; 112:991-1000.e8. [PMID: 38244539 DOI: 10.1016/j.neuron.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
In the neocortex, neural activity is shaped by the interaction of excitatory and inhibitory neurons, defined by the organization of their synaptic connections. Although connections among excitatory pyramidal neurons are sparse and functionally tuned, inhibitory connectivity is thought to be dense and largely unstructured. By measuring in vivo visual responses and synaptic connectivity of parvalbumin-expressing (PV+) inhibitory cells in mouse primary visual cortex, we show that the synaptic weights of their connections to nearby pyramidal neurons are specifically tuned according to the similarity of the cells' responses. Individual PV+ cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This structured organization of inhibitory synaptic weights provides a circuit mechanism for tuned inhibition onto pyramidal cells despite dense connectivity, stabilizing activity within feature-specific excitatory ensembles while supporting competition between them.
Collapse
Affiliation(s)
- Petr Znamenskiy
- Specification and Function of Neural Circuits Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Mean-Hwan Kim
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dylan R Muir
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Sonja B Hofer
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Yiling Y, Klon-Lipok J, Singer W. Joint encoding of stimulus and decision in monkey primary visual cortex. Cereb Cortex 2024; 34:bhad420. [PMID: 37955641 PMCID: PMC10793581 DOI: 10.1093/cercor/bhad420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
We investigated whether neurons in monkey primary visual cortex (V1) exhibit mixed selectivity for sensory input and behavioral choice. Parallel multisite spiking activity was recorded from area V1 of awake monkeys performing a delayed match-to-sample task. The monkeys had to make a forced choice decision of whether the test stimulus matched the preceding sample stimulus. The population responses evoked by the test stimulus contained information about both the identity of the stimulus and with some delay but before the onset of the motor response the forthcoming choice. The results of subspace identification analysis indicate that stimulus-specific and decision-related information coexists in separate subspaces of the high-dimensional population activity, and latency considerations suggest that the decision-related information is conveyed by top-down projections.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Zhang A, Zador AM. Neurons in the primary visual cortex of freely moving rats encode both sensory and non-sensory task variables. PLoS Biol 2023; 21:e3002384. [PMID: 38048367 PMCID: PMC10721203 DOI: 10.1371/journal.pbio.3002384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
Neurons in primary visual cortex (area V1) are strongly driven by both sensory stimuli and non-sensory events. However, although the representation of sensory stimuli has been well characterized, much less is known about the representation of non-sensory events. Here, we characterize the specificity and organization of non-sensory representations in rat V1 during a freely moving visual decision task. We find that single neurons encode diverse combinations of task features simultaneously and across task epochs. Despite heterogeneity at the level of single neuron response patterns, both visual and nonvisual task variables could be reliably decoded from small neural populations (5 to 40 units) throughout a trial. Interestingly, in animals trained to make an auditory decision following passive observation of a visual stimulus, some but not all task features could also be decoded from V1 activity. Our results support the view that even in V1-the earliest stage of the cortical hierarchy-bottom-up sensory information may be combined with top-down non-sensory information in a task-dependent manner.
Collapse
Affiliation(s)
- Anqi Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Anthony M. Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
11
|
Ruesseler M, Weber LA, Marshall TR, O'Reilly J, Hunt LT. Quantifying decision-making in dynamic, continuously evolving environments. eLife 2023; 12:e82823. [PMID: 37883173 PMCID: PMC10602589 DOI: 10.7554/elife.82823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
During perceptual decision-making tasks, centroparietal electroencephalographic (EEG) potentials report an evidence accumulation-to-bound process that is time locked to trial onset. However, decisions in real-world environments are rarely confined to discrete trials; they instead unfold continuously, with accumulation of time-varying evidence being recency-weighted towards its immediate past. The neural mechanisms supporting recency-weighted continuous decision-making remain unclear. Here, we use a novel continuous task design to study how the centroparietal positivity (CPP) adapts to different environments that place different constraints on evidence accumulation. We show that adaptations in evidence weighting to these different environments are reflected in changes in the CPP. The CPP becomes more sensitive to fluctuations in sensory evidence when large shifts in evidence are less frequent, and the potential is primarily sensitive to fluctuations in decision-relevant (not decision-irrelevant) sensory input. A complementary triphasic component over occipito-parietal cortex encodes the sum of recently accumulated sensory evidence, and its magnitude covaries with parameters describing how different individuals integrate sensory evidence over time. A computational model based on leaky evidence accumulation suggests that these findings can be accounted for by a shift in decision threshold between different environments, which is also reflected in the magnitude of pre-decision EEG activity. Our findings reveal how adaptations in EEG responses reflect flexibility in evidence accumulation to the statistics of dynamic sensory environments.
Collapse
Affiliation(s)
- Maria Ruesseler
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
| | - Lilian Aline Weber
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Tom Rhys Marshall
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
- Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Jill O'Reilly
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Laurence Tudor Hunt
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| |
Collapse
|
12
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Coen P, Sit TPH, Wells MJ, Carandini M, Harris KD. Mouse frontal cortex mediates additive multisensory decisions. Neuron 2023; 111:2432-2447.e13. [PMID: 37295419 PMCID: PMC10957398 DOI: 10.1016/j.neuron.2023.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
The brain can combine auditory and visual information to localize objects. However, the cortical substrates underlying audiovisual integration remain uncertain. Here, we show that mouse frontal cortex combines auditory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (secondary motor cortex) additively encodes visual and auditory signals, consistent with the mice's behavioral strategy. An accumulator model applied to these sensory representations reproduced the observed choices and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence across sensory cortices, providing a signal that is transformed into a binary decision by a downstream accumulator.
Collapse
Affiliation(s)
- Philip Coen
- UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy P H Sit
- Sainsbury-Wellcome Center, University College London, London, UK
| | - Miles J Wells
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
15
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540656. [PMID: 37292587 PMCID: PMC10245750 DOI: 10.1101/2023.05.22.540656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness stimuli evoke perceptions; under anesthesia perceptions are abolished; during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perception. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia and during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is elicited by specifically by external visual stimuli.
Collapse
|
17
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
18
|
Nobre AC, van Ede F. Attention in flux. Neuron 2023; 111:971-986. [PMID: 37023719 DOI: 10.1016/j.neuron.2023.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
Selective attention comprises essential infrastructural functions supporting cognition-anticipating, prioritizing, selecting, routing, integrating, and preparing signals to guide adaptive behavior. Most studies have examined its consequences, systems, and mechanisms in a static way, but attention is at the confluence of multiple sources of flux. The world advances, we operate within it, our minds change, and all resulting signals progress through multiple pathways within the dynamic networks of our brains. Our aim in this review is to raise awareness of and interest in three important facets of how timing impacts our understanding of attention. These include the challenges posed to attention by the timing of neural processing and psychological functions, the opportunities conferred to attention by various temporal structures in the environment, and how tracking the time courses of neural and behavioral modulations with continuous measures yields surprising insights into the workings and principles of attention.
Collapse
Affiliation(s)
- Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, the Netherlands.
| |
Collapse
|
19
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Musall S, Sun XR, Mohan H, An X, Gluf S, Li SJ, Drewes R, Cravo E, Lenzi I, Yin C, Kampa BM, Churchland AK. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat Neurosci 2023; 26:495-505. [PMID: 36690900 PMCID: PMC9991922 DOI: 10.1038/s41593-022-01245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions.
Collapse
Affiliation(s)
- Simon Musall
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany.
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany.
| | - Xiaonan R Sun
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hemanth Mohan
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Steven Gluf
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Rhonda Drewes
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Emma Cravo
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Chaoqun Yin
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Björn M Kampa
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
- JARA Brain, Institute for Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| | - Anne K Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Lawlor J, Zagala A, Jamali S, Boubenec Y. Pupillary dynamics reflect the impact of temporal expectation on detection strategy. iScience 2023; 26:106000. [PMID: 36798438 PMCID: PMC9926307 DOI: 10.1016/j.isci.2023.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Everyday life's perceptual decision-making is informed by experience. In particular, temporal expectation can ease the detection of relevant events in noisy sensory streams. Here, we investigated if humans can extract hidden temporal cues from the occurrences of probabilistic targets and utilize them to inform target detection in a complex acoustic stream. To understand what neural mechanisms implement temporal expectation influence on decision-making, we used pupillometry as a proxy for underlying neuromodulatory activity. We found that participants' detection strategy was influenced by the hidden temporal context and correlated with sound-evoked pupil dilation. A model of urgency fitted on false alarms predicted detection reaction time. Altogether, these findings suggest that temporal expectation informs decision-making and could be implemented through neuromodulatory-mediated urgency signals.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA,Corresponding author
| | - Agnès Zagala
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| | - Sara Jamali
- Institut Pasteur, INSERM, Institut de l’Audition, Paris, France
| | - Yves Boubenec
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
22
|
Xia MC, Guo J, Ding Y, Shi ZQ, Du F, Wang K, Miao CH, Liang C. Dexmedetomidine Preserves Activity of Neurons in Primary Somatosensory Cortex Compared to Propofol and Ketamine. Brain Sci 2022; 12:brainsci12121720. [PMID: 36552179 PMCID: PMC9775739 DOI: 10.3390/brainsci12121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
General anesthesia has been shown to induce significant changes in the functional connectivity of the cerebral cortex. However, traditional methods such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) lack the spatial resolution to study the effects of general anesthesia on individual cortical neurons. This study aimed to use high-resolution two-photon imaging, which can provide single-neuron resolution, to investigate the characteristics of consciousness under general anesthesia. We used C57BL/6J and Thy1-GCamp6s mice and found that at similar levels of sedation, as measured by EEG, dexmedetomidine did not significantly inhibit the spontaneous activity of neuronal somata in the S1 cortex, but preserved the frequency of calcium events in neuronal spines. In contrast, propofol and ketamine dramatically inhibited the spontaneous activity of both neuronal somata and spines. The S1 cortex still responded to whisker stimulation under dexmedetomidine anesthesia, but not under propofol or ketamine anesthesia. Our results suggest that dexmedetomidine anesthesia has unique neuronal properties associated with its ability to facilitate easy awakening in the clinic. These findings provide insights into the development of more effective strategies for monitoring consciousness during general anesthesia.
Collapse
Affiliation(s)
- Mu-Chao Xia
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Juan Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Ding
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Zi-Qi Shi
- Institute of Neurology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Du
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kai Wang
- Institute of Neurology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
- Correspondence: (C.-H.M.); (C.L.); Tel./Fax: +86-021-64041990 (C.-H.M. & C.L.)
| | - Chao Liang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (C.-H.M.); (C.L.); Tel./Fax: +86-021-64041990 (C.-H.M. & C.L.)
| |
Collapse
|
23
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Li C, McHaney KM, Sederberg PB, Cang J. Tree Shrews as an Animal Model for Studying Perceptual Decision-Making Reveal a Critical Role of Stimulus-Independent Processes in Guiding Behavior. eNeuro 2022; 9:ENEURO.0419-22.2022. [PMID: 36414413 PMCID: PMC9718354 DOI: 10.1523/eneuro.0419-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Decision-making is an essential cognitive process by which we interact with the external world. However, attempts to understand the neural mechanisms of decision-making are limited by the current available animal models and the technologies that can be applied to them. Here, we build on the renewed interest in using tree shrews (Tupaia belangeri) in vision research and provide strong support for them as a model for studying visual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative forced choice contrast discrimination task, and they exhibited differences in response time distributions depending on the reward and punishment structure of the task. Specifically, they made occasional fast guesses when incorrect responses are punished by a constant increase in the interval between trials. This behavior was suppressed when faster incorrect responses were discouraged by longer intertrial intervals. By fitting the behavioral data with two variants of racing diffusion decision models, we found that the between-trial delay affected decision-making by modulating the drift rate of a time accumulator. Our results thus provide support for the existence of an internal process that is independent of the evidence accumulation in decision-making and lay a foundation for future mechanistic studies of perceptual decision-making using tree shrews.
Collapse
Affiliation(s)
- Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Kara M McHaney
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Per B Sederberg
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
26
|
Peters AJ, Marica AM, Fabre JMJ, Harris KD, Carandini M. Visuomotor learning promotes visually evoked activity in the medial prefrontal cortex. Cell Rep 2022; 41:111487. [PMID: 36261004 PMCID: PMC9631115 DOI: 10.1016/j.celrep.2022.111487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is necessary for executing many learned associations between stimuli and movement. It is unclear, however, how activity in the mPFC evolves across learning, and how this activity correlates with sensory stimuli and the learned movements they evoke. To address these questions, we record cortical activity with widefield calcium imaging while mice learned to associate a visual stimulus with a forelimb movement. After learning, the mPFC shows stimulus-evoked activity both during task performance and during passive viewing, when the stimulus evokes no action. This stimulus-evoked activity closely tracks behavioral performance across training, with both exhibiting a marked increase between days when mice first learn the task, followed by a steady increase with further training. Electrophysiological recordings localized this activity to the secondary motor and anterior cingulate cortex. We conclude that learning a visuomotor task promotes a route for visual information to reach the prefrontal cortex.
Collapse
Affiliation(s)
- Andrew J Peters
- UCL Institute of Ophthalmology, University College London, London, UK.
| | | | - Julie M J Fabre
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
27
|
Donaldson PD, Navabi ZS, Carter RE, Fausner SML, Ghanbari L, Ebner TJ, Swisher SL, Kodandaramaiah SB. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings. Adv Healthc Mater 2022; 11:e2200626. [PMID: 35869830 PMCID: PMC9573805 DOI: 10.1002/adhm.202200626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca2+ ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca2+ imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm2 of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca2+ signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca2+ signals that depend on the behavioral state.
Collapse
Affiliation(s)
- Preston D. Donaldson
- Department of Electrical and Computer EngineeringUniversity of Minnesota Twin Cities200 Union St SEMinneapolisMN55455USA
| | - Zahra S. Navabi
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Russell E. Carter
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
| | - Skylar M. L. Fausner
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Leila Ghanbari
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Timothy J. Ebner
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
| | - Sarah L. Swisher
- Department of Electrical and Computer EngineeringUniversity of Minnesota Twin Cities200 Union St SEMinneapolisMN55455USA
| | - Suhasa B. Kodandaramaiah
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of Minnesota Twin Cities321 Church St SEMinneapolisMN55455USA
| |
Collapse
|
28
|
Pedrosa R, Song C, Knöpfel T, Battaglia F. Combining Cortical Voltage Imaging and Hippocampal Electrophysiology for Investigating Global, Multi-Timescale Activity Interactions in the Brain. Int J Mol Sci 2022; 23:6814. [PMID: 35743257 PMCID: PMC9224488 DOI: 10.3390/ijms23126814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
A new generation of optogenetic tools for analyzing neural activity has been contributing to the elucidation of classical open questions in neuroscience. Specifically, voltage imaging technologies using enhanced genetically encoded voltage indicators have been increasingly used to observe the dynamics of large circuits at the mesoscale. Here, we describe how to combine cortical wide-field voltage imaging with hippocampal electrophysiology in awake, behaving mice. Furthermore, we highlight how this method can be useful for different possible investigations, using the characterization of hippocampal-neocortical interactions as a case study.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands;
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK;
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK;
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands;
| |
Collapse
|
29
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
30
|
Grün S, Li J, McNaughton B, Petersen C, McCormick D, Robson D, Buzsáki G, Harris K, Sejnowski T, Mrsic-Flogel T, Lindén H, Roland PE. Emerging principles of spacetime in brains: Meeting report on spatial neurodynamics. Neuron 2022; 110:1894-1898. [PMID: 35709696 DOI: 10.1016/j.neuron.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
How do neurons and networks of neurons interact spatially? Here, we overview recent discoveries revealing how spatial dynamics of spiking and postsynaptic activity efficiently expose and explain fundamental brain and brainstem mechanisms behind detection, perception, learning, and behavior.
Collapse
Affiliation(s)
- Sonja Grün
- Institute for Neuroscience and Medicine (INM-6, INM-10) & Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbH, Jülich, Germany; SystemTheoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Li
- Systems Neuroscience and Neuroengineering, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruce McNaughton
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| | | | - David McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Drew Robson
- Systems Neuroscience and Neuroengineering, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Kenneth Harris
- Institute of Neurology, University College London, London, UK
| | | | | | - Henrik Lindén
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Per E Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
McGuire KL, Amsalem O, Sugden AU, Ramesh RN, Fernando J, Burgess CR, Andermann ML. Visual association cortex links cues with conjunctions of reward and locomotor contexts. Curr Biol 2022; 32:1563-1576.e8. [PMID: 35245458 DOI: 10.1016/j.cub.2022.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 01/02/2023]
Abstract
Postrhinal cortex (POR) and neighboring lateral visual association areas are necessary for identifying objects and interpreting them in specific contexts, but how POR neurons encode the same object across contexts remains unclear. Here, we imaged excitatory neurons in mouse POR across tens of days prior to and throughout initial cue-reward learning and reversal learning. We assessed responses to the same cue when it was rewarded or unrewarded, during both locomotor and stationary contexts. Surprisingly, a large class of POR neurons were minimally cue-driven prior to learning. After learning, distinct clusters within this class responded selectively to a given cue when presented in a specific conjunction of reward and locomotion contexts. In addition, another class contained clusters of neurons whose cue responses were more transient, insensitive to reward learning, and adapted over thousands of presentations. These two classes of POR neurons may support context-dependent interpretation and context-independent identification of sensory cues.
Collapse
Affiliation(s)
- Kelly L McGuire
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Perceptive Automata, 201 Washington Street, Boston, MA 02108, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Duquesne University, Department of Mathematics and Computer Science, Pittsburgh, PA 15282, USA; Behaivior, 6401 Penn Avenue, Pittsburgh, PA 15206, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Known, 5 Bryant Park, New York, NY 10018, USA
| | - Jesseba Fernando
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian R Burgess
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 2021; 10:e63163. [PMID: 34328419 PMCID: PMC8324299 DOI: 10.7554/elife.63163] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role.
Collapse
Affiliation(s)
- Peter Zatka-Haas
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
- Department of Physiology, Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicholas A Steinmetz
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, LondonLondonUnited Kingdom
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, LondonLondonUnited Kingdom
| |
Collapse
|
33
|
Blot A, Roth MM, Gasler I, Javadzadeh M, Imhof F, Hofer SB. Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron 2021; 109:1996-2008.e6. [PMID: 33979633 PMCID: PMC8221812 DOI: 10.1016/j.neuron.2021.04.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear. We find that responses of mouse LP neurons projecting to higher visual areas likely derive from feedforward input from primary visual cortex (V1) combined with information from many cortical and subcortical areas, including superior colliculus. Signals from LP projections to different higher visual areas are tuned to specific features of visual stimuli and their locomotor context, distinct from the signals carried by direct intracortical projections from V1. Thus, visual transthalamic pathways are functionally specific to their cortical target, different from feedforward cortical pathways, and combine information from multiple brain regions, linking sensory signals with behavioral context. Transthalamic pathway through pulvinar indirectly connects lower to higher cortical areas This pathway combines input from V1 with that of many cortical and subcortical areas Pulvinar conveys distinct visual and motor information to different higher visual areas Direct intracortical and transthalamic pathways convey different information
Collapse
Affiliation(s)
- Antonin Blot
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | | | - Ioana Gasler
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Mitra Javadzadeh
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Fabia Imhof
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|