1
|
Sun Q, Liu M, Guan W, Xiao X, Dong C, Bruchas MR, Zweifel LS, Li Y, Tian L, Li B. Dynorphin modulates reward-seeking actions through a pallido-amygdala cholinergic circuit. Neuron 2025:S0896-6273(25)00218-1. [PMID: 40239651 DOI: 10.1016/j.neuron.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
The endogenous opioid peptide dynorphin and its receptor κ-opioid receptor (KOR) have been implicated in divergent behaviors, but the underlying mechanisms remain elusive. Here, we show that dynorphin released from nucleus accumbens dynorphinergic neurons exerts powerful modulation over a ventral pallidum (VP) disinhibitory circuit, thereby controlling cholinergic transmission to the amygdala and reward-seeking behavior in mice. On one hand, dynorphin acts postsynaptically via KORs on VP GABAergic neurons to promote disinhibition of cholinergic neurons, which release acetylcholine into the amygdala to facilitate learning and invigorate actions. On the other hand, dynorphin also acts presynaptically via KORs on dynorphinergic terminals to limit its own release. Such autoinhibition keeps cholinergic neurons from prolonged activation and release of acetylcholine and prevents perseverant reward seeking. Our study reveals how dynorphin exquisitely modulates behavior through the cholinergic system and provides an explanation for why these neuromodulators are involved in motivational disorders, including depression and addiction.
Collapse
Affiliation(s)
- Qingtao Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Mingzhe Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wuqiang Guan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
2
|
Wang T, Nonomura T, Lan TH, Zhou Y. Optogenetic engineering for ion channel modulation. Curr Opin Chem Biol 2025; 85:102569. [PMID: 39903997 DOI: 10.1016/j.cbpa.2025.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Optogenetics, which integrates photonics and genetic engineering to control protein activity and cellular processes, has transformed biomedical research. Its precise spatiotemporal control, minimal invasiveness, and tunable reversibility have spurred its widespread adoption in both basic and clinical research. Optogenetic techniques have been applied to partially restore vision in blind patients and are being actively explored as innovative treatments for neurological, psychiatric, cardiac, and immunological disorders. Microbial channelrhodopsins (ChRs) allow precise manipulation of neuronal and cardiac activities, while vertebrate rhodopsins offer unique opportunities for ion channel modulation through G-protein-coupled receptor (GPCR) pathways. Plant-derived photoswitchable domains can also be engineered into ion channels to confer photosensitivity. This review summarizes the latest progress in engineering genetically encoded light-sensitive ion channel actuators and modulators (GELICAMs) with diverse ion selectivity and spectral sensitivity. We further discuss the potential applications and challenges of these tools in advancing biomedical research and therapeutic interventions.
Collapse
Affiliation(s)
- Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tatsuki Nonomura
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Munguba H, Srivastava I, Gutzeit VA, Singh A, Vijay A, Kristt M, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses. Neuron 2025; 113:912-930.e6. [PMID: 39879977 PMCID: PMC11925682 DOI: 10.1016/j.neuron.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
5
|
Fukuzawa S, Kawaguchi T, Shimomura T, Kubo Y, Tsukamoto H. Characterization and Engineering of a Blue-Sensitive, Gi/o-Biased, and Bistable Ciliary Opsin from a Fan Worm. Biochemistry 2025; 64:1020-1031. [PMID: 39947647 DOI: 10.1021/acs.biochem.4c00754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ciliary opsins (c-opsin) have been identified not only in vertebrates but also in invertebrates. An invertebrate ciliary opsin was recently identified in the fan worm Acromegalomma interruptum (formerly named Megalomma interrupta); however, its spectral and signaling characteristics are unknown. In the present study, we characterized the spectral properties and light-induced cellular signaling properties of opsin (Acromegalomma invertebrate ciliary opsin (AcrInvC-opsin)). AcrInvC-opsin showed an absorption maximum at 464 nm, and upon blue light absorption, the spectrum was red-shifted by approximately 50 nm. The two states are interconvertible by illumination with blue and orange light. Blue light illumination of AcrInvC-opsin caused specific coupling with Gi, sustained Gi dissociation, decreased intracellular cAMP levels, and the activation of GIRK channels. The cellular responses by the activated opsin were partially terminated by orange light illumination. These light-dependent responses indicate that InvC-opsin is a typical bistable pigment wherein the resting and activated states can be interconverted by visible light illumination. We also attempted to modulate the spectral and functional properties of AcrInvC-opsin by using site-directed mutagenesis. Substitution of Ser-94 with Ala caused little spectral shift in the resting state but a further red shift of ∼10 nm in the activated state, indicating that the absorption spectra of the two states were tuned differently. In contrast, the substitution of S94A did not significantly affect the light-dependent signaling properties of AcrInvC-opsin. Because AcrInvC-opsin is a blue-sensitive, Gi/o-biased, and bistable pigment, it has the potential to serve as an optical control tool to specifically and reversibly regulate Gi/o-dependent signaling pathways by visible light.
Collapse
Affiliation(s)
- Sachiko Fukuzawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tomoki Kawaguchi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Program of Physiological Sciences, Field of Life Science, Department of Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Program of Physiological Sciences, Field of Life Science, Department of Advanced Studies, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Graf J, Samiee A, Flossmann T, Holthoff K, Kirmse K. Chemogenetic silencing reveals presynaptic G i/o protein-mediated inhibition of developing hippocampal synchrony in vivo. iScience 2024; 27:110997. [PMID: 39429781 PMCID: PMC11489827 DOI: 10.1016/j.isci.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Recent advances in understanding how neuronal activity shapes developing brain circuits increasingly rely on Gi/o-dependent inhibitory chemogenetic tools (Gi-DREADDs). However, their mechanisms of action and efficacy in neurons with immature Gi/o signaling are elusive. Here, we express the Gi-DREADD hM4Di in glutamatergic telencephalic neurons and analyze its impact on CA1 pyramidal neurons in neonatal mice. Using acousto-optic two-photon Ca2+ imaging, we report that activation of hM4Di leads to a complete arrest of spontaneous synchrony in CA1 in vitro. We demonstrate that hM4Di does not cause somatic hyperpolarization or shunting but rather mediates presynaptic silencing of glutamatergic neurotransmission. In vivo, inhibition through hM4Di potently suppresses early sharp waves (eSPWs) and discontinuous oscillatory network activity in CA1 of head-fixed mice before eye opening. Our findings provide insights into the role of Gi/o signaling in synchronized activity in the neonatal hippocampus and bear relevance for applying chemogenetic silencing at early developmental stages.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Arash Samiee
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Tom Flossmann
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Institute of Physiology I, Jena University Hospital, 07743 Jena, Germany
| | - Knut Holthoff
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Sun Q, Liu M, Guan W, Xiao X, Dong C, Bruchas MR, Zweifel LS, Li Y, Tian L, Li B. Dynorphin modulates motivation through a pallido-amygdala cholinergic circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605785. [PMID: 39211114 PMCID: PMC11361169 DOI: 10.1101/2024.07.31.605785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The endogenous opioid peptide dynorphin and its receptor κ-opioid receptor (KOR) have been implicated in divergent behaviors, but the underlying mechanisms remain elusive. Here we show that dynorphin released from nucleus accumbens dynorphinergic neurons exerts powerful modulation over a ventral pallidum (VP) disinhibitory circuit, thereby controlling cholinergic transmission to the amygdala and motivational drive in mice. On one hand, dynorphin acts postsynaptically via KORs on local GABAergic neurons in the VP to promote disinhibition of cholinergic neurons, which release acetylcholine into the amygdala to invigorate reward-seeking behaviors. On the other hand, dynorphin also acts presynaptically via KORs on dynorphinergic terminals to limit its own release. Such autoinhibition keeps cholinergic neurons from prolonged activation and release of acetylcholine, and prevents perseverant reward seeking. Our study reveals how dynorphin exquisitely modulate motivation through cholinergic system, and provides an explanation for why these neuromodulators are involved in motivational disorders, including depression and addiction.
Collapse
|
10
|
Kim YJ, Tohyama S, Nagashima T, Nagase M, Hida Y, Hamada S, Watabe AM, Ohtsuka T. A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity. Cell Chem Biol 2024; 31:1336-1348.e7. [PMID: 38582083 DOI: 10.1016/j.chembiol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
Collapse
Affiliation(s)
- Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takashi Nagashima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Yamato Hida
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shun Hamada
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan.
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
11
|
Thotamune W, Ubeysinghe S, Shrestha KK, Mostafa ME, Young MC, Karunarathne A. Optical control of cell-surface and endomembrane-exclusive β-adrenergic receptor signaling. J Biol Chem 2024; 300:107481. [PMID: 38901558 PMCID: PMC11304070 DOI: 10.1016/j.jbc.2024.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine hormone-induced stress responses, such as elevation of heart rate. Besides those that are plasma membrane-bound, endomembrane βARs are also signaling competent. Dysregulation of βAR pathways underlies severe pathological conditions. Emerging evidence indicates pathological molecular signatures in deeper endomembrane βARs signaling, likely contributing to conditions such as cardiomyocyte hypertrophy and apoptosis. However, the lack of approaches to control endomembrane β1ARs has impeded linking signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficient photolabile proligand (OptoIso) to trigger βAR signaling exclusively in endomembrane regions using blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. OptoIso also allows optical activation of plasma membrane βAR signaling in selected single cells with native fidelity, which can be reversed by terminating blue light. Thus, OptoIso will be a valuable experimental tool to elicit spatial and temporal control of βAR signaling in user-defined endomembrane or plasma membrane regions in unmodified cells with native fidelity.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA
| | | | - Kendra K Shrestha
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA
| | | | - Michael C Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA.
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
12
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell-Specific Single Viral Vector CRISPR/Cas9 Editing and Genetically Encoded Tool Delivery in the Central and Peripheral Nervous Systems. eNeuro 2024; 11:ENEURO.0438-23.2024. [PMID: 38871457 PMCID: PMC11228695 DOI: 10.1523/eneuro.0438-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 from a genomic locus affords space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three common tools in neuroscience: ChRonos, a channelrhodopsin, for studying synaptic transmission using optogenetics, GCaMP8f for recording Ca2+ transients using photometry, and mCherry for tracing axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens, glutamatergic neurons projecting from the ventral pallidum to the lateral habenula, dopaminergic neurons in the ventral tegmental area, and proprioceptive neurons in the periphery. This flexible approach could help identify and test the function of novel genes affecting synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri 63110
| | - India N Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jessica R Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
13
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Gowrishankar R, Gat A, Malan D, Brown BJ, Dine J, Imambocus BN, Levy R, Sauter K, Litvin A, Regev N, Subramaniam S, Abrera K, Summarli D, Goren EM, Mizrachi G, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Bruchas MR, Soba P, Oren-Suissa M, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits. Nat Methods 2024; 21:1275-1287. [PMID: 38811857 PMCID: PMC11239505 DOI: 10.1038/s41592-024-02285-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniela Malan
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Bobbie J Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | | | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Khalid Abrera
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Dustin Summarli
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Eva Madeline Goren
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- University of Michigan, Ann Arbor, MI, USA
| | - Gili Mizrachi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Soba
- LIMES-Institute, University of Bonn, Bonn, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Hira R. Closed-loop experiments and brain machine interfaces with multiphoton microscopy. NEUROPHOTONICS 2024; 11:033405. [PMID: 38375331 PMCID: PMC10876015 DOI: 10.1117/1.nph.11.3.033405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
Collapse
Affiliation(s)
- Riichiro Hira
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Physiology and Cell Biology, Tokyo, Japan
| |
Collapse
|
15
|
Dong B, Mahapatra S, Clark MG, Carlsen MS, Mohn KJ, Ma S, Brasseale KA, Crim G, Zhang C. Spatiotemporally Precise Optical Manipulation of Intracellular Molecular Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307342. [PMID: 38279563 PMCID: PMC10987104 DOI: 10.1002/advs.202307342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Controlling chemical processes in live cells is a challenging task. The spatial heterogeneity of biochemical reactions in cells is often overlooked by conventional means of incubating cells with desired chemicals. A comprehensive understanding of spatially diverse biochemical processes requires precise control over molecular activities at the subcellular level. Herein, a closed-loop optoelectronic control system is developed that allows the manipulation of biomolecular activities in live cells at high spatiotemporal precision. Chemical-selective fluorescence signals are utilized to command lasers that trigger specific chemical processes or control the activation of photoswitchable inhibitors at desired targets. This technology is fully compatible with laser scanning confocal fluorescence microscopes. The authors demonstrate selective interactions of a 405 nm laser with targeted organelles and simultaneous monitoring of cell responses by fluorescent protein signals. Notably, blue laser interaction with the endoplasmic reticulum leads to a more pronounced reduction in cytosolic green fluorescent protein signals in comparison to that with nuclei and lipid droplets. Moreover, when combined with a photoswitchable inhibitor, microtubule polymerization is selectively inhibited within the subcellular compartments. This technology enables subcellular spatiotemporal optical manipulation over chemical processes and drug activities, exclusively at desired targets, while minimizing undesired effects on non-targeted locations.
Collapse
Affiliation(s)
- Bin Dong
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Shivam Mahapatra
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Matthew G. Clark
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Mark S. Carlsen
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Karsten J. Mohn
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Seohee Ma
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Kent A. Brasseale
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Grace Crim
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Chi Zhang
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
- Purdue Center for Cancer Research201 S. University St.West LafayetteIN47907USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease207 S. Martin Jischke Dr.West LafayetteIN47907USA
| |
Collapse
|
16
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Thotamune W, Ubeysinghe S, Shrestha KK, Mostafa ME, Young MC, Karunarathne A. Optical Control of Cell-Surface and Endomembrane-Exclusive β-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580335. [PMID: 38405895 PMCID: PMC10888897 DOI: 10.1101/2024.02.14.580335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, βARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive βAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane βAR, emerging evidence indicates potential pathological implications of deeper endomembrane βARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane βAR signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy β1AR pro-ligand (OptoIso) to trigger βAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of βARs in unmodified cells, given its ability to control deep organelle βAR signaling, OptoIso will be a valuable experimental tool.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Kendra K. Shrestha
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | | | - Michael C. Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
18
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Rodgers J, Wright P, Ballister ER, Hughes RB, Storchi R, Wynne J, Martial FP, Lucas RJ. Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications. Pflugers Arch 2023; 475:1387-1407. [PMID: 38036775 PMCID: PMC10730688 DOI: 10.1007/s00424-023-02879-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.
Collapse
Affiliation(s)
- Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Phillip Wright
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Edward R Ballister
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, 10032, NY, USA
| | - Rebecca B Hughes
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Riccardo Storchi
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan Wynne
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Franck P Martial
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Berndt A, Cai D, Cohen A, Juarez B, Iglesias JT, Xiong H, Qin Z, Tian L, Slesinger PA. Current Status and Future Strategies for Advancing Functional Circuit Mapping In Vivo. J Neurosci 2023; 43:7587-7598. [PMID: 37940594 PMCID: PMC10634581 DOI: 10.1523/jneurosci.1391-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The human brain represents one of the most complex biological systems, containing billions of neurons interconnected through trillions of synapses. Inherent to the brain is a biochemical complexity involving ions, signaling molecules, and peptides that regulate neuronal activity and allow for short- and long-term adaptations. Large-scale and noninvasive imaging techniques, such as fMRI and EEG, have highlighted brain regions involved in specific functions and visualized connections between different brain areas. A major shortcoming, however, is the need for more information on specific cell types and neurotransmitters involved, as well as poor spatial and temporal resolution. Recent technologies have been advanced for neuronal circuit mapping and implemented in behaving model organisms to address this. Here, we highlight strategies for targeting specific neuronal subtypes, identifying, and releasing signaling molecules, controlling gene expression, and monitoring neuronal circuits in real-time in vivo Combined, these approaches allow us to establish direct causal links from genes and molecules to the systems level and ultimately to cognitive processes.
Collapse
Affiliation(s)
| | - Denise Cai
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | | | - Zhenpeng Qin
- University of Texas-Dallas, Richardson, TX 75080
| | - Lin Tian
- University of California-Davis, Davis, CA 95616
| | | |
Collapse
|
21
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell specific single viral vector CRISPR/Cas9 editing and genetically encoded tool delivery in the central and peripheral nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561249. [PMID: 37873336 PMCID: PMC10592710 DOI: 10.1101/2023.10.10.561249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we have developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 in specific cell types in transgenic mouse lines affords more space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three commonly used tools in neuroscience: ChRonos, a channelrhodopsin, for manipulating synaptic transmission using optogenetics; GCaMP8f for recording Ca2+ transients using fiber photometry, and mCherry for anatomical tracing of axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens (NAc), glutamatergic neurons projecting from the ventral pallidum (VP) to the lateral habenula (LHb), dopaminergic neurons in the ventral tegmental area (VTA), and parvalbumin (PV)-positive proprioceptive neurons in the periphery. This flexible approach should be useful to identify novel genes that affect synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C. Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Medical Scientist Training Program, Washington University School of Medicine; St. Louis, MO
| | - India N. Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Jessica R. Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine; St. Louis, MO
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| |
Collapse
|
24
|
Bayless DW, Davis CHO, Yang R, Wei Y, de Andrade Carvalho VM, Knoedler JR, Yang T, Livingston O, Lomvardas A, Martins GJ, Vicente AM, Ding JB, Luo L, Shah NM. A neural circuit for male sexual behavior and reward. Cell 2023; 186:3862-3881.e28. [PMID: 37572660 PMCID: PMC10615179 DOI: 10.1016/j.cell.2023.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.
Collapse
Affiliation(s)
- Daniel W Bayless
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha O Davis
- Stanford Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Renzhi Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Joseph R Knoedler
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Oscar Livingston
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Akira Lomvardas
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Ana Mafalda Vicente
- Allen Institute for Neural Dynamics, Seattle, WA 98109; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Hagio H, Koyama W, Hosaka S, Song AD, Narantsatsral J, Matsuda K, Sugihara T, Shimizu T, Koyanagi M, Terakita A, Hibi M. Optogenetic manipulation of Gq- and Gi/o-coupled receptor signaling in neurons and heart muscle cells. eLife 2023; 12:e83974. [PMID: 37589544 PMCID: PMC10435233 DOI: 10.7554/elife.83974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimulation of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated signaling in zebrafish neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Hanako Hagio
- Graduate School of Science, Nagoya UniversityNagoyaJapan
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Wataru Koyama
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Shiori Hosaka
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | | | - Koji Matsuda
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | | | | | | | - Akihisa Terakita
- Graduate School of Science, Osaka Metropolitan UniversityOsakaJapan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| |
Collapse
|
26
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Malan D, Brown BJ, Dine J, Levy R, Litvin A, Regev N, Subramaniam S, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Soba P, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547328. [PMID: 37425961 PMCID: PMC10327178 DOI: 10.1101/2023.07.01.547328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Malan
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Bobbie J. Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Present address: Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- LIMES-Institute, University of Bonn, Bonn, Germany
| | - Yuval Nir
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J. Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Tsukamoto H, Kubo Y. A self-inactivating invertebrate opsin optically drives biased signaling toward Gβγ-dependent ion channel modulation. Proc Natl Acad Sci U S A 2023; 120:e2301269120. [PMID: 37186850 PMCID: PMC10214182 DOI: 10.1073/pnas.2301269120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Animal opsins, light-sensitive G protein-coupled receptors, have been used for optogenetic tools to control G protein-dependent signaling pathways. Upon G protein activation, the Gα and Gβγ subunits drive different intracellular signaling pathways, leading to complex cellular responses. For some purposes, Gα- and Gβγ-dependent signaling needs to be separately modulated, but these responses are simultaneously evoked due to the 1:1 stoichiometry of Gα and Gβγ Nevertheless, we show temporal activation of G protein using a self-inactivating invertebrate opsin, Platynereis c-opsin1, drives biased signaling for Gβγ-dependent GIRK channel activation in a light-dependent manner by utilizing the kinetic difference between Gβγ-dependent and Gα-dependent responses. The opsin-induced transient Gi/o activation preferentially causes activation of the kinetically fast Gβγ-dependent GIRK channels rather than slower Gi/oα-dependent adenylyl cyclase inhibition. Although similar Gβγ-biased signaling properties were observed in a self-inactivating vertebrate visual pigment, Platynereis c-opsin1 requires fewer retinal molecules to evoke cellular responses. Furthermore, the Gβγ-biased signaling properties of Platynereis c-opsin1 are enhanced by genetically fusing with RGS8 protein, which accelerates G protein inactivation. The self-inactivating invertebrate opsin and its RGS8-fusion protein can function as optical control tools biased for Gβγ-dependent ion channel modulation.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biology, Kobe University, Kobe657-8501, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki444-8585, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi 332-0012, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama240-0193, Japan
| |
Collapse
|
29
|
Hanai S, Nagata T, Katayama K, Inukai S, Koyanagi M, Inoue K, Terakita A, Kandori H. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Biochemistry 2023; 62:1347-1359. [PMID: 37001008 DOI: 10.1021/acs.biochem.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.
Collapse
|
30
|
Yao Y, Chen J, Li X, Chen ZF, Li P. A carotid body-brainstem neural circuit mediates sighing in hypoxia. Curr Biol 2023; 33:827-837.e4. [PMID: 36750092 DOI: 10.1016/j.cub.2023.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Increased ventilation is a critical process that occurs when the body responds to a hypoxic environment. Sighs are long, deep breaths that prevent alveolar collapse, and their frequency is significantly increased by hypoxia. In this study, we first show that sighing is induced by hypoxia as a function of increased hypoxic severity and that hypoxia-induced sighing is capable of increasing the oxygen saturation in a mouse model. We next found that the gastrin-releasing peptide (Grp) expressing neurons in the nucleus of the solitary tract (NTS) are important in mediating hypoxia-induced sighing. Retrograde tracing from these Grp neurons reveals their direct afferent input from the petrosal ganglion neurons that innervate the carotid body, the major peripheral chemoreceptor that senses blood oxygen. Acute hypoxia preferentially activates these Grp neurons in the NTS. Photoactivation of these neurons through their projections in the inspiratory rhythm generator in the ventral medulla induces sighing, whereas genetic ablation or chemogenetic silencing of these neurons specifically diminishes the sighs, but not other respiratory responses, induced by hypoxia. Finally, the mice with reduced sighing in hypoxia exhibit an elevated heart-rate increase, which may compensate for maintaining the blood oxygen level. Therefore, we identified a neural circuit that connects the carotid body to the breathing control center in the ventral medulla with a specific function for hypoxia-induced sighing, which restores the oxygen level.
Collapse
Affiliation(s)
- Yilong Yao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jingwen Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhou-Feng Chen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Stuart T, Jeang WJ, Slivicki RA, Brown BJ, Burton A, Brings VE, Alarcón-Segovia LC, Agyare P, Ruiz S, Tyree A, Pruitt L, Madhvapathy S, Niemiec M, Zhuang J, Krishnan S, Copits BA, Rogers JA, Gereau RW, Samineni VK, Bandodkar AJ, Gutruf P. Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation. ACS NANO 2023; 17:561-574. [PMID: 36548126 PMCID: PMC11801802 DOI: 10.1021/acsnano.2c09475] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (μ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA μM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Richard A Slivicki
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bobbie J Brown
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Victoria E Brings
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lilian C Alarcón-Segovia
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Prophecy Agyare
- Department of Neuroscience, Northwestern University, Evanston, Illinois 60201, United States
| | - Savanna Ruiz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Amanda Tyree
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Lindsay Pruitt
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Surabhi Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Martin Niemiec
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - James Zhuang
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Siddharth Krishnan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Bryan A Copits
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Neuroscience, Washington University, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110, United States
| | - Vijay K Samineni
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience GIDP, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
32
|
Li L, Durand-de Cuttoli R, Aubry AV, Burnett CJ, Cathomas F, Parise LF, Chan KL, Morel C, Yuan C, Shimo Y, Lin HY, Wang J, Russo SJ. Social trauma engages lateral septum circuitry to occlude social reward. Nature 2023; 613:696-703. [PMID: 36450985 PMCID: PMC9876792 DOI: 10.1038/s41586-022-05484-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
Collapse
Affiliation(s)
- Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V Aubry
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Joseph Burnett
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carole Morel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chongzhen Yuan
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Research & Development, New York, NY, USA
| | - Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Yun Lin
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Research & Development, New York, NY, USA
| | - Jun Wang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Research & Development, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Vettkötter D, Schneider M, Goulden BD, Dill H, Liewald J, Zeiler S, Guldan J, Ateş YA, Watanabe S, Gottschalk A. Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles. Nat Commun 2022; 13:7827. [PMID: 36535932 PMCID: PMC9763335 DOI: 10.1038/s41467-022-35324-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tauon ~7.2 s and recovers with tauoff ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.
Collapse
Affiliation(s)
- Dennis Vettkötter
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Martin Schneider
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
- Max Planck Institute for Neurobiology, D-82152, Martinsried, Germany
| | - Brady D Goulden
- Department of Cell Biology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Holger Dill
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Jana Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Sandra Zeiler
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Julia Guldan
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Master Program Interdisciplinary Neurosciences, Department of Biological Sciences, Goethe University, Frankfurt, Germany
| | - Yilmaz Arda Ateş
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Master Program Interdisciplinary Neurosciences, Department of Biological Sciences, Goethe University, Frankfurt, Germany
| | - Shigeki Watanabe
- Department of Cell Biology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany.
| |
Collapse
|
34
|
Surdin T, Preissing B, Rohr L, Grömmke M, Böke H, Barcik M, Azimi Z, Jancke D, Herlitze S, Mark MD, Siveke I. Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience 2022; 26:105828. [PMID: 36632066 PMCID: PMC9826949 DOI: 10.1016/j.isci.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.
Collapse
Affiliation(s)
- Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Bianca Preissing
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maike Barcik
- Cardiovascular Research Institute Düsseldorf, Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Corresponding author
| | - Melanie D. Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany,Corresponding author
| |
Collapse
|
35
|
Lamanna J, Ferro M, Spadini S, Malgaroli A. Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. Eur J Neurosci 2022; 56:6141-6161. [PMID: 36239030 PMCID: PMC10100385 DOI: 10.1111/ejn.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Chemical synapses are tiny and overcrowded environments, deeply embedded inside brain tissue and enriched with thousands of protein species. Many efforts have been devoted to developing custom approaches for evaluating and modifying synaptic activity. Most of these methods are based on the engineering of one or more synaptic protein scaffolds used to target active moieties to the synaptic compartment or to manipulate synaptic functioning. In this review, we summarize the most recent methodological advances and provide a description of the involved proteins as well as the operation principle. Furthermore, we highlight their advantages and limitations in relation to studies of synaptic transmission in vitro and in vivo. Concerning the labelling methods, the most important challenge is how to extend the available approaches to the in vivo setting. On the other hand, for those methods that allow manipulation of synaptic function, this limit has been overcome using optogenetic approaches that can be more easily applied to the living brain. Finally, future applications of these methods to neuroscience, as well as new potential routes for development, are discussed.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
36
|
Kankanamge D, Tennakoon M, Karunarathne A, Gautam N. G protein gamma subunit, a hidden master regulator of GPCR signaling. J Biol Chem 2022; 298:102618. [PMID: 36272647 PMCID: PMC9678972 DOI: 10.1016/j.jbc.2022.102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Heterotrimeric G proteins (αβγ subunits) that are activated by G protein-coupled receptors (GPCRs) mediate the biological responses of eukaryotic cells to extracellular signals. The α subunits and the tightly bound βγ subunit complex of G proteins have been extensively studied and shown to control the activity of effector molecules. In contrast, the potential roles of the large family of γ subunits have been less studied. In this review, we focus on present knowledge about these proteins. Induced loss of individual γ subunit types in animal and plant models result in strikingly distinct phenotypes indicating that γ subtypes play important and specific roles. Consistent with these findings, downregulation or upregulation of particular γ subunit types result in various types of cancers. Clues about the mechanistic basis of γ subunit function have emerged from imaging the dynamic behavior of G protein subunits in living cells. This shows that in the basal state, G proteins are not constrained to the plasma membrane but shuttle between membranes and on receptor activation βγ complexes translocate reversibly to internal membranes. The translocation kinetics of βγ complexes varies widely and is determined by the membrane affinity of the associated γ subtype. On translocating, some βγ complexes act on effectors in internal membranes. The variation in translocation kinetics determines differential sensitivity and adaptation of cells to external signals. Membrane affinity of γ subunits is thus a parsimonious and elegant mechanism that controls information flow to internal cell membranes while modulating signaling responses.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mithila Tennakoon
- Department of Chemistry, St Louis University, St Louis, Missouri, USA
| | | | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
37
|
Girven KS, Mangieri L, Bruchas MR. Emerging approaches for decoding neuropeptide transmission. Trends Neurosci 2022; 45:899-912. [PMID: 36257845 PMCID: PMC9671847 DOI: 10.1016/j.tins.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in high-resolution techniques to investigate peptidergic transmission and expression throughout the brain in model systems. Neuropeptides exhibit distinct characteristics which includes their post-translational processing, release from dense core vesicles, and ability to activate G-protein-coupled receptors (GPCRs). These complex properties have driven the need for development of specialized tools that can sense neuropeptide expression, cell activity, and release. Current research has focused on isolating when and how neuropeptide transmission occurs, as well as the conditions in which neuropeptides directly mediate physiological and adaptive behavioral states. Here we describe the current technological landscape in which the field is operating to decode key questions regarding these dynamic neuromodulators.
Collapse
Affiliation(s)
- Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Leandra Mangieri
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
High-performance optical control of GPCR signaling by bistable animal opsins MosOpn3 and LamPP in a molecular property-dependent manner. Proc Natl Acad Sci U S A 2022; 119:e2204341119. [PMID: 36417444 PMCID: PMC9889881 DOI: 10.1073/pnas.2204341119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optical control of G protein-coupled receptor (GPCR) signaling is a highly valuable approach for comprehensive understanding of GPCR-based physiologies and controlling them precisely. However, optogenetics for GPCR signaling is still developing and requires effective and versatile tools with performance evaluation from their molecular properties. Here, we systematically investigated performance of two bistable opsins that activate Gi/Go-type G protein (mosquito Opn3 (MosOpn3) and lamprey parapinopsin (LamPP)) in optical control in vivo using Caenorhabditis elegans. Transgenic worms expressing MosOpn3, which binds 13-cis retinal to form photopigments, in nociceptor neurons showed light-induced avoidance responses in the presence of all-trans retinal, a retinal isomer ubiquitously present in every tissue, like microbial rhodopsins and unlike canonical vertebrate opsins. Remarkably, transgenic worms expressing MosOpn3 were ~7,000 times more sensitive to light than transgenic worms expressing ChR2 in this light-induced behavior, demonstrating the advantage of MosOpn3 as a light switch. LamPP is a UV-sensitive bistable opsin having complete photoregenerative ability by green light. Accordingly, transgenic worms expressing LamPP in cholinergic motor neurons stopped moving upon violet light illumination and restored coordinate movement upon green light illumination, demonstrating color-dependent control of behavior using LamPP. Furthermore, we applied molecular engineering to produce MosOpn3-based tools enabling light-dependent upregulation of cAMP or Ca2+ levels and LamPP-based tool enabling clamping cAMP levels color dependently and context independently, extending their usability. These findings define the capacity of two bistable opsins with similar retinal requirement as ChR2, providing numerous strategies for optical control of various GPCR-based physiologies as well as GPCR signaling itself.
Collapse
|
39
|
Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022; 45:854-864. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
To understand the neural mechanisms of behavior, it is necessary to both monitor and perturb the activity of ensembles of neurons with high specificity. While neural ensemble recordings have been available for decades, progress in high-resolution manipulation techniques has lagged behind. Optogenetics has enabled the manipulation of genetically defined cell types in behaving animals, and recent developments, including multipoint nanofabricated light sources, provide spatiotemporal resolution on a par with that of physiological recordings. Here we review current advances in optogenetic methods for cellular-resolution stimulation and intervention, as well as their integration with real-time neural recordings for closed-loop experimentation. We discuss how these approaches open the door to new kinds of experiments aimed at dissecting the role of specific neural patterns and discrete cellular populations in orchestrating the activity of brain circuits that support behavior and cognition.
Collapse
Affiliation(s)
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Kang SJ, Liu S, Ye M, Kim DI, Pao GM, Copits BA, Roberts BZ, Lee KF, Bruchas MR, Han S. A central alarm system that gates multi-sensory innate threat cues to the amygdala. Cell Rep 2022; 40:111222. [PMID: 35977501 PMCID: PMC9420642 DOI: 10.1016/j.celrep.2022.111222] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 12/31/2022] Open
Abstract
Perception of threats is essential for survival. Previous findings suggest that parallel pathways independently relay innate threat signals from different sensory modalities to multiple brain areas, such as the midbrain and hypothalamus, for immediate avoidance. Yet little is known about whether and how multi-sensory innate threat cues are integrated and conveyed from each sensory modality to the amygdala, a critical brain area for threat perception and learning. Here, we report that neurons expressing calcitonin gene-related peptide (CGRP) in the parvocellular subparafascicular nucleus in the thalamus and external lateral parabrachial nucleus in the brainstem respond to multi-sensory threat cues from various sensory modalities and relay negative valence to the lateral and central amygdala, respectively. Both CGRP populations and their amygdala projections are required for multi-sensory threat perception and aversive memory formation. The identification of unified innate threat pathways may provide insights into developing therapeutic candidates for innate fear-related disorders.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gerald M Pao
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin Z Roberts
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kuo-Fen Lee
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael R Bruchas
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Clark MG, Gonzalez GA, Luo Y, Aldana-Mendoza JA, Carlsen MS, Eakins G, Dai M, Zhang C. Real-time precision opto-control of chemical processes in live cells. Nat Commun 2022; 13:4343. [PMID: 35896556 PMCID: PMC9329476 DOI: 10.1038/s41467-022-32071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
Precision control of molecular activities and chemical reactions in live cells is a long-sought capability by life scientists. No existing technology can probe molecular targets in cells and simultaneously control the activities of only these targets at high spatial precision. We develop a real-time precision opto-control (RPOC) technology that detects a chemical-specific optical response from molecular targets during laser scanning and uses the optical signal to couple a separate laser to only interact with these molecules without affecting other sample locations. We demonstrate precision control of molecular states of a photochromic molecule in different regions of the cells. We also synthesize a photoswitchable compound and use it with RPOC to achieve site-specific inhibition of microtubule polymerization and control of organelle dynamics in live cells. RPOC can automatically detect and control biomolecular activities and chemical processes in dynamic living samples with submicron spatial accuracy, fast response time, and high chemical specificity. There is a need to control molecular activities at high spatial precision. Here the authors report a real-time precision opto-control technology that detects a chemical-specific optical response from molecular targets, and precisely control photoswitchable microtubule polymerization inhibitors in cells.
Collapse
Affiliation(s)
- Matthew G Clark
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Gil A Gonzalez
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Yiyang Luo
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Jesus A Aldana-Mendoza
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Mark S Carlsen
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Gregory Eakins
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Mingji Dai
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA.,Purdue Center for Cancer Research, 201 S. University St., West Lafayette, IN, 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA. .,Purdue Center for Cancer Research, 201 S. University St., West Lafayette, IN, 47907, USA. .,Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
42
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Abstract
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.
Collapse
|
44
|
Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022; 5:687. [PMID: 35810216 PMCID: PMC9271052 DOI: 10.1038/s42003-022-03636-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision. Aion is an anion-conducting, bistable channelrhodopsin that enables long-term silencing of neuronal networks, as demonstrated in organotypic hippocampal cultures and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Neena Dhiman
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
45
|
Dai R, Yu T, Weng D, Li H, Cui Y, Wu Z, Guo Q, Zou H, Wu W, Gao X, Qi Z, Ren Y, Wang S, Li Y, Luo M. A neuropsin-based optogenetic tool for precise control of G q signaling. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1271-1284. [PMID: 35579776 DOI: 10.1007/s11427-022-2122-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Gq-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca2+ signals. There is a strong need for an optogenetic tool that enables powerful experimental control over Gq signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular Gq signaling with high temporal and spatial resolution. Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered, Gq-dependent Ca2+ release from intracellular stores and protein kinase C activation. Strong Ca2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca2+ transition, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of Gq signaling in both non-excitable cells and excitable cells in all major organ systems.
Collapse
Affiliation(s)
- Ruicheng Dai
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- School of Life Sciences, Peking University, Beijing, 100871, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Tao Yu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Heng Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing, 102206, China
| | - Yuting Cui
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, 102206, China
- Capital Medical University, Beijing, 102206, China
| | - Haiyue Zou
- Chinese Institute for Brain Research, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenting Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
- Peking University-Tsinghua University-NIBS Joint Graduate Program, NIBS, Beijing, 102206, China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zhongyang Qi
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yuqi Ren
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Shu Wang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-McGovern Institute for Brain Research, Beijing, 100871, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
- Graduate School of Peking Union Medical College, Beijing, 100730, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing, 102206, China.
| |
Collapse
|
46
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
47
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
48
|
Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure 2022; 30:1075-1087.e4. [PMID: 35588733 DOI: 10.1016/j.str.2022.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest human receptor family and involved in virtually every physiological process. One hallmark of their function is specific coupling to selected signaling pathways. The ability to tune this coupling would make development of receptors with new capabilities possible. Complexes of GPCRs and G-proteins have recently been resolved at high resolution, but this information was in only few cases harnessed for rational receptor engineering. Here, we demonstrate structure-guided optimization of light-activated OptoXRs. Our hypothesis was that incorporation of GPCR-Gα contacts would lead to improved coupling. We first evaluated structure-based alignments for chimeric receptor fusion. We then show in a light-activated β2AR that including Gα contacts increased signaling 7- to 20-fold compared with other designs. In turn, contact elimination diminished function. Finally, this platform allowed optimization of a further OptoXR and spectral tuning. Our work exemplifies structure-based OptoXR development for targeted cell and network manipulation.
Collapse
|
49
|
Smith SJ, von Zastrow M. A Molecular Landscape of Mouse Hippocampal Neuromodulation. Front Neural Circuits 2022; 16:836930. [PMID: 35601530 PMCID: PMC9120848 DOI: 10.3389/fncir.2022.836930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptive neuronal circuit function requires a continual adjustment of synaptic network parameters known as “neuromodulation.” This process is now understood to be based primarily on the binding of myriad secreted “modulatory” ligands such as dopamine, serotonin and the neuropeptides to G protein-coupled receptors (GPCRs) that, in turn, regulate the function of the ion channels that establish synaptic weights and membrane excitability. Many of the basic molecular mechanisms of neuromodulation are now known, but the organization of neuromodulation at a network level is still an enigma. New single-cell RNA sequencing data and transcriptomic neurotaxonomies now offer bright new lights to shine on this critical “dark matter” of neuroscience. Here we leverage these advances to explore the cell-type-specific expression of genes encoding GPCRs, modulatory ligands, ion channels and intervening signal transduction molecules in mouse hippocampus area CA1, with the goal of revealing broad outlines of this well-studied brain structure’s neuromodulatory network architecture.
Collapse
Affiliation(s)
- Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA, United States
- *Correspondence: Stephen J Smith,
| | - Mark von Zastrow
- Departments of Psychiatry and Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
50
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|