1
|
Tang S, Geng L, Wang X, Tie B, Chen Q, Qiu J. Fearless for reward in curiosity? Longitudinal relationships and functional connectivity basis between sensitivity to reward and punishment and curiosity. Int J Psychophysiol 2025; 213:112601. [PMID: 40449685 DOI: 10.1016/j.ijpsycho.2025.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/01/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Curiosity, the intrinsic drive to know by acquiring novel information and experiencing novel stimuli, is widely regarded as a fundamental desire for exploration. Information is often perceived as a reward, and curiosity can manifest as the intense, even fearless, pursuit of potential rewards. However, curiosity is also considered to be a rational process, requiring individuals to weigh potential risks against anticipated benefits. To investigate the multifaceted nature of curiosity, this study used a cross-lagged panel model to examine the relationships between sensitivity to reward (SR), sensitivity to punishment (SP), and curiosity. A predictive model was then constructed using resting-state functional connectivity data through connectome-based predictive modelling. Building on the cross-lagged panel model results, a mediation analysis was conducted to investigate the mediating roles of SR and SP in the relationship between the predictive network and curiosity. The findings revealed that SR positively predicts curiosity and that the relationship between SP and curiosity is reciprocal and negative, with the negative prediction of SP being significantly stronger. Additionally, a negative curiosity prediction network was identified, with the strongest contributions being intra- and internetwork functional connectivity involving the motor, cerebellar, limbic and medial frontal networks. Finally, the curiosity prediction network was found to operate via the enhancement of SP and attenuation of SR. These findings provide preliminary evidence for associations between SR, SP, and curiosity over time and the incentive-driven yet adaptive nature of curiosity.
Collapse
Affiliation(s)
- Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Li Geng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Bijie Tie
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China.
| |
Collapse
|
2
|
Zhang Q, Zhou J. Probing the role of anterior cingulate cortex in sustained reward seeking. Trends Neurosci 2025:S0166-2236(25)00077-3. [PMID: 40268579 DOI: 10.1016/j.tins.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
A recent study by González et al. provides causal evidence that the anterior cingulate cortex (ACC) is crucial for rats to maintain persistence in reward-seeking behaviors across both information- and effort-based choice tasks, highlighting a fundamental and unified role of the ACC in goal-directed decision-making.
Collapse
Affiliation(s)
- Qiyue Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Jingfeng Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
3
|
Xia F, Xu Y, Zhang H, Yuan X. The effect of doll blind box uncertainty on consumers' irrational consumption behavior: the role of instant gratification, Gambler's fallacy, and perceived scarcity. BMC Psychol 2025; 13:332. [PMID: 40181490 PMCID: PMC11969734 DOI: 10.1186/s40359-025-02644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The uncertainty associated with doll blind boxes has sparked a consumer frenzy in China. However, it remains unclear how the allure of uncertain rewards influences the irrational consumption behavior of blind box consumers. This study aimed to elucidate the internal mechanisms underlying this process. Specifically, this study investigated the relationships among perceived uncertainty, gambler's fallacy, instant gratification, perceived scarcity, and irrational consumption behavior. METHODS 434 Online questionnaires were distributed to Chinese doll blind box consumers. This study examines the impact of perceived uncertainty on consumers' irrational consumption behavior by employing the Stimulus-Organism-Response theory and constructing a mechanism model. The analysis was conducted using PLS-SEM in SmartPLS 4.0. RESULTS Perceived uncertainty positively affected instant gratification and gambler's fallacies. Gambler's fallacy and instant gratification significantly mediate between perceived uncertainty and irrational consumption behavior. Moreover, perceived scarcity positively moderated the relationship between gambler's fallacy and irrational consumption behavior. As perceived scarcity increased among blind box consumers, cognitive bias resulting from gambler's fallacy more significantly influenced the consumers to engage in irrational consumption behavior. CONCLUSIONS This study clarified the psychological mechanisms underlying irrational consumption behavior among blind box consumers. Moreover, it provides specific suggestions for blind box consumer, product stakeholders and policymakers to better advocate rational consumption behavior.
Collapse
Affiliation(s)
- Fangyu Xia
- School of Culture and Tourism, Jiangsu University of Technology, Zhongwu Road 1801, Changzhou, 213001, China
- Faculty of Hospitality and Tourism Management, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, 999078, China
| | - Ye Xu
- Faculty of Hospitality and Tourism Management, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, 999078, China.
| | - Haonan Zhang
- Faculty of Hospitality and Tourism Management, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, 999078, China
| | - Xinzhou Yuan
- Faculty of Hospitality and Tourism Management, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, 999078, China
| |
Collapse
|
4
|
Simone L, Caruana F, Elena B, Del Sorbo S, Jezzini A, Rozzi S, Luppino G, Gerbella M. Anatomo-functional organization of insular networks: From sensory integration to behavioral control. Prog Neurobiol 2025; 247:102748. [PMID: 40074022 DOI: 10.1016/j.pneurobio.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Classically, the insula is considered an associative multisensory cortex where emotional awareness emerges through the integration of interoceptive and exteroceptive information, along with autonomic regulation. However, since early intracortical microstimulation (ICMS) studies, the insular cortex has also been conceived as a mosaic of anatomo-functional sectors processing various types of sensory information to generate specific overt behaviors. Based on this, the insula has been subdivided into distinct functional fields: an anterior field associated with oroalimentary behaviors, a middle field involved dorsally in hand movements and ventrally in emotional reactions, and a posterior field engaged in axial and proximal movements. Nevertheless, the anatomo-functional networks through which these fields produce motor behaviors remain largely unknown. To fill this gap in the present study, we investigated the connectivity of the macaque insula using a multimodal approach which combines resting-state fMRI with data from tract-tracing injections in insular functional fields defined by ICMS, as well as in brain areas known to be connected to the insula and characterized by specific somatotopic organization. The results revealed that each insular functional field takes part in distinct somatotopically organized network modulating specific motor or visceromotor behaviors, extending previous models that subdivide the insula primarily based on the types of interoceptive and exteroceptive information it receives. Our findings posit the various insular sectors as interfaces that synthesize diverse interoceptive and exteroceptive inputs into coherent subjective experiences and decision-making processes, within an embodied and enactive framework, that moves beyond the traditional dichotomy between sensory experience and motor behavior.
Collapse
Affiliation(s)
- Luciano Simone
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Borra Elena
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Simone Del Sorbo
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Ahmad Jezzini
- Department of Medical Education, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Stefano Rozzi
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
5
|
Tu G, Wen P, Halawa A, Takehara-Nishiuchi K. Acetylcholine modulates prefrontal outcome coding during threat learning under uncertainty. eLife 2025; 13:RP102986. [PMID: 40042523 PMCID: PMC11882142 DOI: 10.7554/elife.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.
Collapse
Affiliation(s)
- Gaqi Tu
- Department of Psychology, University of TorontoTorontoCanada
- Collaborative Program in Neuroscience, University of TorontoTorontoCanada
| | - Peiying Wen
- Department of Psychology, University of TorontoTorontoCanada
| | - Adel Halawa
- Human Biology Program, University of TorontoTorontoCanada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of TorontoTorontoCanada
- Collaborative Program in Neuroscience, University of TorontoTorontoCanada
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|
6
|
Xu T, Zhang L, Zhou F, Fu K, Gan X, Chen Z, Zhang R, Lan C, Wang L, Kendrick KM, Yao D, Becker B. Distinct neural computations scale the violation of expected reward and emotion in social transgressions. Commun Biol 2025; 8:106. [PMID: 39838081 PMCID: PMC11751440 DOI: 10.1038/s42003-025-07561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions. On the neural level, the left dorsomedial prefrontal cortex (dmPFC) was strongly activated during reward receipt whereas the emotions engaged the bilateral anterior insula. Reward and emotional PEs were also encoded differently in brain-wide multivariate patterns, with a more sensitive neural signature observed within fronto-insular circuits for reward PE. We further identified a fronto-insular network encompassing the left anterior cingulate cortex, bilateral insula, left dmPFC and inferior frontal gyrus that encoded punishment decisions. In addition, a stronger fronto-insular pattern expression under reward PE predicted more punishment decisions. These findings underscore that reward and emotional violations interact to shape decisions in complex social interactions, while the underlying neurofunctional PEs computations are distinguishable.
Collapse
Affiliation(s)
- Ting Xu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Kun Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ran Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Chunmei Lan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Chen X, Wang H, Tan X, Duan M, Luo C. Flight training and the anterior cingulate cortex. Sci Rep 2024; 14:29908. [PMID: 39622970 PMCID: PMC11612386 DOI: 10.1038/s41598-024-81892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Pilots are considered the final line of defense for aviation safety. Before becoming a pilot, an ab initio pilot must undergo systematic flight training. This study included 25 male flying cadets. Kendall's coefficient of concordance was used to measure the regional homogeneity of the time series of a given voxel with its 26 nearest neighboring voxels. This operation was performed for all voxels to generate a regional homogeneity map for each participant based on Kendall's coefficient of concordance. A partial correlation analysis was performed to examine the relationship between regional homogeneity maps and flight training hours. We found that the anterior cingulate cortex in the ab initio group was significantly positively correlated with flight hours. These results suggest a potential relationship between flight training experience and the functional properties of the anterior cingulate cortex.
Collapse
Affiliation(s)
- Xi Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Institute of Flight Technology, Civil Aviation Flight university of China, Guanghan, China.
| | - Hongming Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
9
|
Tang H, Bartolo R, Averbeck BB. Ventral frontostriatal circuitry mediates the computation of reinforcement from symbolic gains and losses. Neuron 2024; 112:3782-3795.e5. [PMID: 39321792 PMCID: PMC11581918 DOI: 10.1016/j.neuron.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Reinforcement learning (RL), particularly in primates, is often driven by symbolic outcomes. However, it is usually studied with primary reinforcers. To examine the neural mechanisms underlying learning from symbolic outcomes, we trained monkeys on a task in which they learned to choose options that led to gains of tokens and avoid choosing options that led to losses of tokens. We then recorded simultaneously from the orbitofrontal cortex (OFC), ventral striatum (VS), amygdala (AMY), and mediodorsal thalamus (MDt). We found that the OFC played a dominant role in coding token outcomes and token prediction errors. The other areas contributed complementary functions, with the VS coding appetitive outcomes and the AMY coding the salience of outcomes. The MDt coded actions and relayed information about tokens between the OFC and VS. Thus, the OFC leads the processing of symbolic RL in the ventral frontostriatal circuitry.
Collapse
Affiliation(s)
- Hua Tang
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| | - Ramon Bartolo
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
10
|
Leow YN, Barlowe A, Luo C, Osako Y, Jazayeri M, Sur M. Sensory History Drives Adaptive Neural Geometry in LP/Pulvinar-Prefrontal Cortex Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623977. [PMID: 39605622 PMCID: PMC11601498 DOI: 10.1101/2024.11.16.623977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prior expectations guide attention and support perceptual filtering for efficient processing during decision-making. Here we show that during a visual discrimination task, mice adaptively use prior stimulus history to guide ongoing choices by estimating differences in evidence between consecutive trials (| Δ Dir |). The thalamic lateral posterior (LP)/pulvinar nucleus provides robust inputs to the Anterior Cingulate Cortex (ACC), which has been implicated in selective attention and predictive processing, but the function of the LP-ACC projection is unknown. We found that optogenetic manipulations of LP-ACC axons disrupted animals' ability to effectively estimate and use information across stimulus history, leading to | Δ Dir |-dependent ipsilateral biases. Two-photon calcium imaging of LP-ACC axons revealed an engagement-dependent low-dimensional organization of stimuli along a curved manifold. This representation was scaled by | Δ Dir | in a manner that emphasized greater deviations from prior evidence. Thus, our work identifies the LP-ACC pathway as essential for selecting and evaluating stimuli relative to prior evidence to guide decisions.
Collapse
|
11
|
Vellani V, Glickman M, Sharot T. Three diverse motives for information sharing. COMMUNICATIONS PSYCHOLOGY 2024; 2:107. [PMID: 39506099 PMCID: PMC11541573 DOI: 10.1038/s44271-024-00144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Knowledge is distributed over many individuals. Thus, humans are tasked with informing one another for the betterment of all. But as information can alter people's action, affect and cognition in both positive and negative ways, deciding whether to share information can be a particularly difficult problem. Here, we examine how people integrate potentially conflicting consequences of knowledge, to decide whether to inform others. We show that participants (Exp1: N = 114, Pre-registered replication: N = 102) use their own information-seeking preferences to solve complex information-sharing decisions. In particular, when deciding whether to inform others, participants consider the usefulness of information in directing action, its valence and the receiver's uncertainty level, and integrate these assessments into a calculation of the value of information that explains information sharing decisions. A cluster analysis revealed that participants were clustered into groups based on the different weights they assign to these three factors. Within individuals, the relative influence of each of these factors was stable across information-seeking and information-sharing decisions. These results suggest that people put themselves in a receiver position to determine whether to inform others and can help predict when people will share information.
Collapse
Affiliation(s)
- Valentina Vellani
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK.
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK.
| | - Moshe Glickman
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
| | - Tali Sharot
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Bussell JJ, Badman RP, Márton CD, Bromberg-Martin ES, Abbott L, Rajan K, Axel R. Representations of the intrinsic value of information in mouse orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562291. [PMID: 39416043 PMCID: PMC11482914 DOI: 10.1101/2023.10.13.562291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Animals are motivated to seek information that does not influence reward outcomes, suggesting that information has intrinsic value. We have developed an odor-based information seeking task that reveals that mice choose to receive information even though it does not alter the reward outcome. Moreover, mice are willing to pay for information by sacrificing water reward, suggesting that information is of intrinsic value to a mouse. We used a microendoscope to reveal neural activity in orbitofrontal cortex (OFC) while mice learned the information seeking task. We observed the emergence of distinct populations of neurons responsive to odors predictive of information and odors predictive of water reward. A latent variable model recapitulated these different representations in the low-dimensional dynamics of OFC neuronal population activity. These data suggest that mice have evolved separate pathways to represent the intrinsic value of information and the extrinsic value of water reward. Thus, the desire to acquire knowledge is observed in mice, and the value of this information is represented in the OFC. The mouse now provides a facile experimental system to study the representation of the value of information, a higher cognitive variable.
Collapse
Affiliation(s)
- Jennifer J. Bussell
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Zuckerman Mind Brain and Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Ryan P. Badman
- Department of Neurobiology, Harvard Medical School; Boston, MA, 02115, USA
- Kempner Institute, Harvard University; Cambridge, MA, 02138, USA
| | | | | | - L.F. Abbott
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Zuckerman Mind Brain and Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Kanaka Rajan
- Department of Neurobiology, Harvard Medical School; Boston, MA, 02115, USA
- Kempner Institute, Harvard University; Cambridge, MA, 02138, USA
| | - Richard Axel
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Zuckerman Mind Brain and Behavior Institute, Columbia University; New York, NY, 10027, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, 20815, USA
| |
Collapse
|
13
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. Curr Biol 2024; 34:4526-4538.e5. [PMID: 39293441 PMCID: PMC11461104 DOI: 10.1016/j.cub.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Macaque ventral frontal cortex is composed of a set of anatomically heterogeneous and highly interconnected areas. Collectively, these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here, we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of inter-areal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Finkelman T, Furman-Haran E, Aberg KC, Paz R, Tal A. Inhibitory mechanisms in the prefrontal-cortex differentially mediate Putamen activity during valence-based learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605168. [PMID: 39131397 PMCID: PMC11312490 DOI: 10.1101/2024.07.29.605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Learning from appetitive and aversive stimuli involves interactions between the prefrontal cortex and subcortical structures. Preclinical and theoretical studies indicate that inhibition is essential in regulating the relevant neural circuitry. Here, we demonstrate that GABA, the main inhibitory neurotransmitter in the central nervous system, differentially affects how the dACC interacts with subcortical structures during appetitive and aversive learning in humans. Participants engaged in tasks involving appetitive and aversive learning, while using functional magnetic resonance spectroscopy (MRS) at 7T to track GABA concentrations in the dACC, alongside whole-brain fMRI scans to assess BOLD activation. During appetitive learning, dACC GABA concentrations were negatively correlated with learning performance and BOLD activity measured from the dACC and the Putamen. These correlations were absent during aversive learning, where dACC GABA concentrations negatively correlated with the connectivity between the dACC and the Putamen. Our results show that inhibition in the dACC mediates appetitive and aversive learning in humans through distinct mechanisms.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Kristoffer C Aberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Russ BE, Rudebeck PH. Ventrolateral prefrontal cortex in macaques guides decisions in different learning contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613767. [PMID: 39345480 PMCID: PMC11429923 DOI: 10.1101/2024.09.18.613767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Flexibly adjusting our behavioral strategies based on the environmental context is critical to maximize rewards. Ventrolateral prefrontal cortex (vlPFC) has been implicated in both learning and decision-making for probabilistic rewards, although how context influences these processes remains unclear. We collected functional neuroimaging data while rhesus macaques performed a probabilistic learning task in two contexts: one with novel and another with familiar visual stimuli. We found that activity in vlPFC encoded rewards irrespective of the context but encoded behavioral strategies that depend on reward outcome (win-stay/lose-shift) preferentially in novel contexts. Functional connectivity between vlPFC and anterior cingulate cortex varied with behavioral strategy in novel learning blocks. By contrast, connectivity between vlPFC and mediodorsal thalamus was highest when subjects repeated a prior choice. Furthermore, pharmacological D2-receptor blockade altered behavioral strategies during learning and resting-state vlPFC activity. Taken together, our results suggest that multiple vlPFC-linked circuits contribute to adaptive decision-making in different contexts.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| |
Collapse
|
16
|
Stoll FM, Rudebeck PH. Dissociable Representations of Decision Variables within Subdivisions of the Macaque Orbital and Ventrolateral Frontal Cortex. J Neurosci 2024; 44:e0464242024. [PMID: 38991790 PMCID: PMC11358530 DOI: 10.1523/jneurosci.0464-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subdivisions of VFC in male macaque monkeys performing a two-choice probabilistic task for different fruit juice outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral Area 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within Area 12o, in contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal Area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subdivisions, while the properties of the reward, such as its flavor, were more strongly represented in Areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
17
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Ghane M, Trambaiolli L, Bertocci MA, Martinez-Rivera FJ, Chase HW, Brady T, Skeba A, Graur S, Bonar L, Iyengar S, Quirk GJ, Rasmussen SA, Haber SN, Phillips ML. Specific Patterns of Endogenous Functional Connectivity Are Associated With Harm Avoidance in Obsessive-Compulsive Disorder. Biol Psychiatry 2024; 96:137-146. [PMID: 38336216 DOI: 10.1016/j.biopsych.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/11/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Individuals with obsessive-compulsive disorder (OCD) show persistent avoidance behaviors, often in the absence of actual threat. Quality-of-life costs and heterogeneity support the need for novel brain-behavior intervention targets. Informed by mechanistic and anatomical studies of persistent avoidance in rodents and nonhuman primates, our goal was to test whether connections within a hypothesized persistent avoidance-related network predicted OCD-related harm avoidance (HA), a trait measure of persistent avoidance. We hypothesized that 1) HA, not an OCD diagnosis, would be associated with altered endogenous connectivity in at least one connection in the network; 2) HA-specific findings would be robust to comorbid symptoms; and 3) reliable findings would replicate in a holdout testing subsample. METHODS Using resting-state functional connectivity magnetic resonance imaging, cross-validated elastic net for feature selection, and Poisson generalized linear models, we tested which connections significantly predicted HA in our training subsample (n = 73; 71.8% female; healthy control group n = 36, OCD group n = 37); robustness to comorbidities; and replicability in a testing subsample (n = 30; 56.7% female; healthy control group n = 15, OCD group n = 15). RESULTS Stronger inverse connectivity between the right dorsal anterior cingulate cortex and right basolateral amygdala and stronger positive connectivity between the right ventral anterior insula and left ventral striatum were associated with greater HA across groups. Network connections did not discriminate OCD diagnostic status or predict HA-correlated traits, suggesting sensitivity to trait HA. The dorsal anterior cingulate cortex-basolateral amygdala relationship was robust to controlling for comorbidities and medication in individuals with OCD and was also predictive of HA in our testing subsample. CONCLUSIONS Stronger inverse dorsal anterior cingulate cortex-basolateral amygdala connectivity was robustly and reliably associated with HA across groups and in OCD. Results support the relevance of a cross-species persistent avoidance-related network to OCD, with implications for precision-based approaches and treatment.
Collapse
Affiliation(s)
- Merage Ghane
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Lucas Trambaiolli
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory J Quirk
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Suzanne N Haber
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts; School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602229. [PMID: 39026728 PMCID: PMC11257438 DOI: 10.1101/2024.07.05.602229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Macaque ventral frontal cortex is comprised of a set of anatomically heterogeneous and highly interconnected areas. Collectively these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of interareal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M. Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead Contact
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
20
|
Stoll FM, Rudebeck PH. Preferences reveal dissociable encoding across prefrontal-limbic circuits. Neuron 2024; 112:2241-2256.e8. [PMID: 38640933 PMCID: PMC11223984 DOI: 10.1016/j.neuron.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
22
|
Kobayashi K, Kable JW. Neural mechanisms of information seeking. Neuron 2024; 112:1741-1756. [PMID: 38703774 DOI: 10.1016/j.neuron.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
We ubiquitously seek information to make better decisions. Particularly in the modern age, when more information is available at our fingertips than ever, the information we choose to collect determines the quality of our decisions. Decision neuroscience has long adopted empirical approaches where the information available to decision-makers is fully controlled by the researchers, leaving neural mechanisms of information seeking less understood. Although information seeking has long been studied in the context of the exploration-exploitation trade-off, recent studies have widened the scope to investigate more overt information seeking in a way distinct from other decision processes. Insights gained from these studies, accumulated over the last few years, raise the possibility that information seeking is driven by the reward system signaling the subjective value of information. In this piece, we review findings from the recent studies, highlighting the conceptual and empirical relationships between distinct literatures, and discuss future research directions necessary to establish a more comprehensive understanding of how individuals seek information as a part of value-based decision-making.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Poli F, O'Reilly JX, Mars RB, Hunnius S. Curiosity and the dynamics of optimal exploration. Trends Cogn Sci 2024; 28:441-453. [PMID: 38413257 DOI: 10.1016/j.tics.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
What drives our curiosity remains an elusive and hotly debated issue, with multiple hypotheses proposed but a cohesive account yet to be established. This review discusses traditional and emergent theories that frame curiosity as a desire to know and a drive to learn, respectively. We adopt a model-based approach that maps the temporal dynamics of various factors underlying curiosity-based exploration, such as uncertainty, information gain, and learning progress. In so doing, we identify the limitations of past theories and posit an integrated account that harnesses their strengths in describing curiosity as a tool for optimal environmental exploration. In our unified account, curiosity serves as a 'common currency' for exploration, which must be balanced with other drives such as safety and hunger to achieve efficient action.
Collapse
Affiliation(s)
- Francesco Poli
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Jill X O'Reilly
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sabine Hunnius
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
24
|
González VV, Zhang Y, Ashikyan SA, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. Cereb Cortex 2024; 34:bhae135. [PMID: 38610085 PMCID: PMC11014886 DOI: 10.1093/cercor/bhae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Subjects are often willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No Info) vs. a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%) and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in the anterior cingulate cortex, orbitofrontal cortex, basolateral amygdala, or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of the anterior cingulate cortex destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that previous choice predicted current choice in all conditions, however previously rewarded Info trials strongly predicted preference in all conditions except in female rats following anterior cingulate cortex inhibition. The results reveal a causal, sex-dependent role for the anterior cingulate cortex in decisions involving information.
Collapse
Affiliation(s)
- Valeria V González
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Yifan Zhang
- Department of Computer Science, University of Southern California, Salvatori Computer Science Center, 941 Bloom Walk, Los Angeles, CA 90089, United States
| | - Sonya A Ashikyan
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Anne Rickard
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Ibrahim Yassine
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Juan Luis Romero-Sosa
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Aaron P Blaisdell
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| | - Alicia Izquierdo
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Addictions, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| |
Collapse
|
25
|
Bénon J, Lee D, Hopper W, Verdeil M, Pessiglione M, Vinckier F, Bouret S, Rouault M, Lebouc R, Pezzulo G, Schreiweis C, Burguière E, Daunizeau J. The online metacognitive control of decisions. COMMUNICATIONS PSYCHOLOGY 2024; 2:23. [PMID: 39242926 PMCID: PMC11332065 DOI: 10.1038/s44271-024-00071-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/28/2024] [Indexed: 09/09/2024]
Abstract
Difficult decisions typically involve mental effort, which scales with the deployment of cognitive (e.g., mnesic, attentional) resources engaged in processing decision-relevant information. But how does the brain regulate mental effort? A possibility is that the brain optimizes a resource allocation problem, whereby the amount of invested resources balances its expected cost (i.e. effort) and benefit. Our working assumption is that subjective decision confidence serves as the benefit term of the resource allocation problem, hence the "metacognitive" nature of decision control. Here, we present a computational model for the online metacognitive control of decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the ensuing resource allocation problem under agnostic assumptions about the inner workings of the underlying decision system. We demonstrate how this makes oMCD a quasi-optimal control policy for a broad class of decision processes, including -but not limited to- progressive attribute integration. We disclose oMCD's main properties (in terms of choice, confidence and response time), and show that they reproduce most established empirical results in the field of value-based decision making. Finally, we discuss the possible connections between oMCD and most prominent neurocognitive theories about decision control and mental effort regulation.
Collapse
Affiliation(s)
| | - Douglas Lee
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stoll FM, Rudebeck PH. Dissociable representations of decision variables within subdivisions of macaque orbitofrontal and ventrolateral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584181. [PMID: 38559221 PMCID: PMC10979845 DOI: 10.1101/2024.03.10.584181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subregions of VFC in macaque monkeys performing a two-choice probabilistic task for different fruit juices outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral subdivision 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within 12o, by contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subregions, while the properties of the reward, such as its flavor, were more strongly represented in areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
27
|
Monosov IE. Curiosity: primate neural circuits for novelty and information seeking. Nat Rev Neurosci 2024; 25:195-208. [PMID: 38263217 DOI: 10.1038/s41583-023-00784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
28
|
Bromberg-Martin ES, Feng YY, Ogasawara T, White JK, Zhang K, Monosov IE. A neural mechanism for conserved value computations integrating information and rewards. Nat Neurosci 2024; 27:159-175. [PMID: 38177339 PMCID: PMC10774124 DOI: 10.1038/s41593-023-01511-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/30/2023] [Indexed: 01/06/2024]
Abstract
Behavioral and economic theory dictate that we decide between options based on their values. However, humans and animals eagerly seek information about uncertain future rewards, even when this does not provide any objective value. This implies that decisions are made by endowing information with subjective value and integrating it with the value of extrinsic rewards, but the mechanism is unknown. Here, we show that human and monkey value judgements obey strikingly conserved computational principles during multi-attribute decisions trading off information and extrinsic reward. We then identify a neural substrate in a highly conserved ancient structure, the lateral habenula (LHb). LHb neurons signal subjective value, integrating information's value with extrinsic rewards, and the LHb predicts and causally influences ongoing decisions. Neurons in key input areas to the LHb largely signal components of these computations, not integrated value signals. Thus, our data uncover neural mechanisms of conserved computations underlying decisions to seek information about the future.
Collapse
Affiliation(s)
| | - Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - J Kael White
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Kaining Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
González VV, Ashikyan SA, Zhang Y, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551514. [PMID: 37577596 PMCID: PMC10418268 DOI: 10.1101/2023.08.03.551514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Subjects often are willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No-info) vs a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%), and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory DREADDs in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), basolateral amygdala (BLA), or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of ACC destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that the previous choice strongly predicted preference in control animals, but not in female rats following ACC inhibition. The results reveal a causal, sex-dependent role for ACC in decisions involving information.
Collapse
|
30
|
Young ME, Spencer-Salmon C, Mosher C, Tamang S, Rajan K, Rudebeck PH. Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation. Neuron 2023; 111:3668-3682.e5. [PMID: 37586366 PMCID: PMC10840822 DOI: 10.1016/j.neuron.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cortex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the patterns of neural activity engaged in the striatum and amygdala during affective processing are well established, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolateral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferentially signal anticipated reward using short bursts of activity that form temporally specific patterns. By contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neurons are engaged in affect, especially in subcallosal ACC.
Collapse
Affiliation(s)
- Megan E Young
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Camille Spencer-Salmon
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Clayton Mosher
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarita Tamang
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kanaka Rajan
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Peter H Rudebeck
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
31
|
Agetsuma M, Sato I, Tanaka YR, Carrillo-Reid L, Kasai A, Noritake A, Arai Y, Yoshitomo M, Inagaki T, Yukawa H, Hashimoto H, Nabekura J, Nagai T. Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation. Nat Commun 2023; 14:5996. [PMID: 37803014 PMCID: PMC10558457 DOI: 10.1038/s41467-023-41547-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Associative learning is crucial for adapting to environmental changes. Interactions among neuronal populations involving the dorso-medial prefrontal cortex (dmPFC) are proposed to regulate associative learning, but how these neuronal populations store and process information about the association remains unclear. Here we developed a pipeline for longitudinal two-photon imaging and computational dissection of neural population activities in male mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC network topology. Using regularized regression methods and graphical modeling, we found that fear conditioning drove dmPFC reorganization to generate a neuronal ensemble encoding conditioned responses (CR) characterized by enhanced internal coactivity, functional connectivity, and association with conditioned stimuli (CS). Importantly, neurons strongly responding to unconditioned stimuli during conditioning subsequently became hubs of this novel associative network for the CS-to-CR transformation. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on the activity-dependent formation of the hub network within the dmPFC.
Collapse
Grants
- MEXT | Japan Society for the Promotion of Science (JSPS)
- This study was supported by the Japan Science and Technology Agency, PRESTO (to M.A.), JSPS KAKENHI Grant (grant number JP18K06536, JP18H05144, JP20H05076, JP21H02801, JP22H05081, JP22H05519 to M.A.; JP20H03357, JP20H05073, JP21K18563 to Y.R.T.; JP20H05065, JP22H05080 to A.K.; JP22H05081 to A.N.), JSPS Bilateral Program (JPJSBP1-20199901 to M.A.), AMED (grant number JP19dm0207086 to M.A.; JP21dm0207117 to H.H.), the grant of Joint Research by the National Institutes of Natural Sciences (NINS program No 01112008 and 01112106 to M.A.), and grants from Brain Science Foundation and Shimadzu Foundation to M.A. and the Takeda Science Foundation to A.K. and H.H. Authors declare that they have no competing interests.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
- Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan.
| | - Issei Sato
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro R Tanaka
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan
| | - Luis Carrillo-Reid
- Instituto de Neurobiologia, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Juriquilla, Queretaro, CP, 76230, Mexico
| | - Atsushi Kasai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Yoshiyuki Arai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Miki Yoshitomo
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takashi Inagaki
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Yukawa
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hitoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
32
|
Matthews JR, Cooper PS, Bode S, Chong TTJ. The availability of non-instrumental information increases risky decision-making. Psychon Bull Rev 2023; 30:1975-1987. [PMID: 37038030 PMCID: PMC10716073 DOI: 10.3758/s13423-023-02279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
Contemporary models of decision-making under risk focus on estimating the final value of each alternative course of action. According to such frameworks, information that has no capacity to alter a future payoff (i.e., is "non-instrumental") should have little effect on one's preference for risk. Importantly, however, recent work has shown that information, despite being non-instrumental, may nevertheless exert a striking influence on behavior. Here, we tested whether the opportunity to passively observe the sequence of events following a decision could modulate risky behavior, even if that information could not possibly influence the final result. Across three experiments, 71 individuals chose to accept or reject gambles on a five-window slot machine. If a gamble was accepted, each window was sequentially revealed prior to the outcome being declared. Critically, we informed participants about which windows would subsequently provide veridical information about the gamble outcome, should that gamble be accepted. Our analyses revealed three key findings. First, the opportunity to observe the consequences of one's choice significantly increased the likelihood of gambling, despite that information being entirely non-instrumental. Second, this effect generalized across different stakes. Finally, choices were driven predominantly by the likelihood that information could result in an earlier resolution of uncertainty. These findings demonstrate the importance of anticipatory information to decision-making under risk. More broadly, we provide strong evidence for the utility of non-instrumental information, by demonstrating its capacity to modulate primary economic decisions that should be driven by more motivationally salient variables associated with risk and reward.
Collapse
Affiliation(s)
- Julian R Matthews
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia.
- RIKEN Center for Brain Science, Wakō-shi, Saitama, 351-0198, Japan.
| | - Patrick S Cooper
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stefan Bode
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia.
- Department of Clinical Neurosciences, St Vincent's Hospital, Fitzroy, Victoria, 3065, Australia.
| |
Collapse
|
33
|
Molinaro G, Cogliati Dezza I, Bühler SK, Moutsiana C, Sharot T. Multifaceted information-seeking motives in children. Nat Commun 2023; 14:5505. [PMID: 37679315 PMCID: PMC10485006 DOI: 10.1038/s41467-023-40971-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
From an early age, children need to gather information to learn about their environment. Deciding which knowledge to pursue can be difficult because information can serve several, sometimes competing, purposes. Here, we examine the developmental trajectories of such diverse information-seeking motives. Over five experiments involving 521 children (aged 4-12), we find that school-age children integrate three key factors into their information-seeking choices: whether information reduces uncertainty, is useful in directing action, and is likely to be positive. Choices that likely reveal positive information and are useful for action emerge as early as age 4, followed by choices that reduce uncertainty (at ~age 5). Our results suggest that motives related to usefulness and uncertainty reduction become stronger with age, while the tendency to seek positive news does not show a statistically significant change throughout development. This study reveals how the relative importance of diverging, sometimes conflicting, information-seeking motives emerges throughout development.
Collapse
Affiliation(s)
- Gaia Molinaro
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK.
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK.
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA, 94704, USA.
| | - Irene Cogliati Dezza
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Sarah Katharina Bühler
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
| | - Christina Moutsiana
- Department of Social Sciences, University of Westminster, London, W1W 6UW, UK
| | - Tali Sharot
- Affective Brain Lab, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK.
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Stoll FM, Rudebeck PH. Preferences reveal separable valuation systems in prefrontal-limbic circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540239. [PMID: 37214895 PMCID: PMC10197711 DOI: 10.1101/2023.05.10.540239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to drive choice behavior. Here we report that instead of a single integrated valuation system in OFC, another separate one is centered in ventrolateral prefrontal cortex (vlPFC) in macaque monkeys. Specifically, we found that OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into these two aspects of subjective valuation. In addition, vlPFC, but not OFC, represented the outcome probability for the two options separately, with the difference between these representations reflecting the degree of preference. Thus, there are at least two separable valuation systems that work in concert to guide choices and that both are biased by preferences.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
36
|
Noritake A, Nakamura K. Rewarding-unrewarding prediction signals under a bivalent context in the primate lateral hypothalamus. Sci Rep 2023; 13:5926. [PMID: 37045876 PMCID: PMC10097697 DOI: 10.1038/s41598-023-33026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Animals can expect rewards under equivocal situations. The lateral hypothalamus (LH) is thought to process motivational information by producing valence signals of reward and punishment. Despite rich studies using rodents and non-human primates, these signals have been assessed separately in appetitive and aversive contexts; therefore, it remains unclear what information the LH encodes in equivocal situations. To address this issue, macaque monkeys were conditioned under a bivalent context in which reward and punishment were probabilistically delivered, in addition to appetitive and aversive contexts. The monkeys increased approaching behavior similarly in the bivalent and appetitive contexts as the reward probability increased. They increased avoiding behavior under the bivalent and aversive contexts as the punishment probability increased, but the mean frequency was lower under the bivalent context than under the aversive context. The population activity correlated with these mean behaviors. Moreover, the LH produced fine prediction signals of reward expectation, uncertainty, and predictability consistently in the bivalent and appetitive contexts by recruiting context-independent and context-dependent subpopulations of neurons, while it less produced punishment signals in the aversive and bivalent contexts. Further, neural ensembles encoded context information and "rewarding-unrewarding" and "reward-punishment" valence. These signals may motivate individuals robustly in equivocal environments.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
37
|
Gottlieb J. Emerging Principles of Attention and Information Demand. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2023. [DOI: 10.1177/09637214221142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
I review recent literature on information demand and its implications for attention control. I argue that this literature motivates a view of attention as a mechanism that reduces uncertainty by selectively sampling sensory stimuli on the basis of expected information gain (EIG). I discuss emerging evidence on how individuals estimate the two quantities that determine EIG, prior uncertainty and stimulus diagnosticity (predictive accuracy). I also discuss the neural mechanisms that compute EIG and integrate it with rewards in frontoparietal, executive, and neuromodulatory circuits. I end by considering the implications of this framework for a broader understanding of the factors that assign relevance to sensory stimuli and the role of attention in decision making and other cognitive functions.
Collapse
Affiliation(s)
- Jacqueline Gottlieb
- Department of Neuroscience, Columbia University
- Kavli Institute for Brain Science, Columbia University
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
38
|
Li Y, Daddaoua N, Horan M, Foley NC, Gottlieb J. Uncertainty modulates visual maps during noninstrumental information demand. Nat Commun 2022; 13:5911. [PMID: 36207316 PMCID: PMC9547007 DOI: 10.1038/s41467-022-33585-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Animals are intrinsically motivated to obtain information independently of instrumental incentives. This motivation depends on two factors: a desire to resolve uncertainty by gathering accurate information and a desire to obtain positively-valenced observations, which predict favorable rather than unfavorable outcomes. To understand the neural mechanisms, we recorded parietal cortical activity implicated in prioritizing stimuli for spatial attention and gaze, in a task in which monkeys were free (but not trained) to obtain information about probabilistic non-contingent rewards. We show that valence and uncertainty independently modulated parietal neuronal activity, and uncertainty but not reward-related enhancement consistently correlated with behavioral sensitivity. The findings suggest uncertainty-driven and valence-driven information demand depend on partially distinct pathways, with the former being consistently related to parietal responses and the latter depending on additional mechanisms implemented in downstream structures.
Collapse
Affiliation(s)
- Yvonne Li
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nabil Daddaoua
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mattias Horan
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas C Foley
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jacqueline Gottlieb
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Pai J, Ogasawara T, Bromberg-Martin ES, Ogasawara K, Gereau RW, Monosov IE. Laser stimulation of the skin for quantitative study of decision-making and motivation. CELL REPORTS METHODS 2022; 2:100296. [PMID: 36160041 PMCID: PMC9499993 DOI: 10.1016/j.crmeth.2022.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity. We show that skin laser stimulation used in human studies of aversion can be used for this purpose in several key animal models. We then use laser stimulation to study how neurons in the orbitofrontal cortex (OFC), an area whose many roles include guiding decisions among different rewards, encode the value of rewards and punishments. We show that some OFC neurons integrated the positive value of rewards with the negative value of aversive laser stimulation, suggesting that the OFC can play a role in more complex choices than previously appreciated.
Collapse
Affiliation(s)
- Julia Pai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kei Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W. Gereau
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
40
|
Banaie Boroujeni K, Sigona MK, Treuting RL, Manuel TJ, Caskey CF, Womelsdorf T. Anterior cingulate cortex causally supports flexible learning under motivationally challenging and cognitively demanding conditions. PLoS Biol 2022; 20:e3001785. [PMID: 36067198 PMCID: PMC9481162 DOI: 10.1371/journal.pbio.3001785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/16/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Anterior cingulate cortex (ACC) and striatum (STR) contain neurons encoding not only the expected values of actions, but also the value of stimulus features irrespective of actions. Values about stimulus features in ACC or STR might contribute to adaptive behavior by guiding fixational information sampling and biasing choices toward relevant objects, but they might also have indirect motivational functions by enabling subjects to estimate the value of putting effort into choosing objects. Here, we tested these possibilities by modulating neuronal activity in ACC and STR of nonhuman primates using transcranial ultrasound stimulation while subjects learned the relevance of objects in situations with varying motivational and cognitive demands. Motivational demand was indexed by varying gains and losses during learning, while cognitive demand was varied by increasing the uncertainty about which object features could be relevant during learning. We found that ultrasound stimulation of the ACC, but not the STR, reduced learning efficiency and prolonged information sampling when the task required averting losses and motivational demands were high. Reduced learning efficiency was particularly evident at higher cognitive demands and when subjects experienced loss of already attained tokens. These results suggest that the ACC supports flexible learning of feature values when loss experiences impose a motivational challenge and when uncertainty about the relevance of objects is high. Taken together, these findings provide causal evidence that the ACC facilitates resource allocation and improves visual information sampling during adaptive behavior.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (KBB); (TW)
| | - Michelle K. Sigona
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert Louie Treuting
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Thomas J. Manuel
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charles F. Caskey
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States of America
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (KBB); (TW)
| |
Collapse
|
41
|
Zhang Y, Zhou H, Qin J. Research on the effect of uncertain rewards on impulsive purchase intention of blind box products. Front Behav Neurosci 2022; 16:946337. [PMID: 36046369 PMCID: PMC9421032 DOI: 10.3389/fnbeh.2022.946337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Since 2019, China has gradually seen a “blind box” boom, and young people have quickly become the main buying force of blind boxes, promoting the continuous development of the blind box industry. Previous studies have shown that uncertainty in events with positive prospects can play a more positive role than certainty. However, how does uncertainty in the blind box affect consumers’ emotions and cognition and trigger subsequent consumption decisions? To clarify the internal mechanism of this process, this paper takes the blind box as the research object and constructs the mechanism model of perceived uncertainty on consumers’ impulsive purchase intention, based on Stimulus-Organism-Response (SOR) theory. In addition, the curiosity variable and perceived luck variable are introduced according to the information gap theory and optimism theory. On this basis, we conduct an empirical analysis by means of a questionnaire survey. The results show that perceived uncertainty has a positive impact on consumers’ impulsive purchase intentions, in which curiosity plays a mediating role. Besides, perceived luck positively moderates the impact of perceived uncertainty on impulsive purchase intention. This study clarifies the internal impact of perceived uncertainty on impulsive purchase intention of the blind box and enriches the basic theory of uncertainty reward and purchase intention. At the same time, we also offer related recommendations for future enterprises to learn from the marketing model of uncertain rewards.
Collapse
|
42
|
Trambaiolli LR, Peng X, Lehman JF, Linn G, Russ BE, Schroeder CE, Liu H, Haber SN. Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex. eLife 2022; 11:e76334. [PMID: 35510840 PMCID: PMC9106333 DOI: 10.7554/elife.76334] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Three large-scale networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VANet and DANet) and salience (SNet) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VANet and DANet, but there is a gap in the current knowledge regarding its involvement in the SNet. Herein, we used a translational and multimodal approach to demonstrate the existence of a SNet node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomical connectivity strength between different vlPFC areas and the frontal and insular cortices. The strongest connections were with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) - the main cortical SNet nodes. These inputs converged in the caudal area 47/12, an area that has strong projections to subcortical structures associated with the SNet. Second, we used resting-state functional MRI (rsfMRI) in NHP data to validate this SNet node. Third, we used rsfMRI in the human to identify a homologous caudal 47/12 region that also showed strong connections with the SNet cortical nodes. Taken together, these data confirm a SNet node in the vlPFC, demonstrating that the vlPFC contains nodes for all three cognitive networks: VANet, DANet, and SNet. Thus, the vlPFC is in a position to switch between these three networks, pointing to its key role as an attentional hub. Its additional connections to the orbitofrontal, dorsolateral, and premotor cortices, place the vlPFC at the center for switching behaviors based on environmental stimuli, computing value, and cognitive control.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- McLean Hospital, Harvard Medical School, Belmont, United States
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| | - Xiaolong Peng
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Medical University of South Carolina, Charleston, United States
| | - Julia F Lehman
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| | - Gary Linn
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
| | - Brian E Russ
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Psychiatry, New York University at Langone, New York, United States
| | - Charles E Schroeder
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Hesheng Liu
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Medical University of South Carolina, Charleston, United States
| | - Suzanne N Haber
- McLean Hospital, Harvard Medical School, Belmont, United States
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| |
Collapse
|
43
|
Zhang K, Bromberg-Martin ES, Sogukpinar F, Kocher K, Monosov IE. Surprise and recency in novelty detection in the primate brain. Curr Biol 2022; 32:2160-2173.e6. [DOI: 10.1016/j.cub.2022.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
|
44
|
Calapai A, Cabrera-Moreno J, Moser T, Jeschke M. Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nat Commun 2022; 13:1648. [PMID: 35347139 PMCID: PMC8960775 DOI: 10.1038/s41467-022-29185-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle.
Collapse
Affiliation(s)
- A Calapai
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany
| | - J Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
| | - T Moser
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience Group and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - M Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
45
|
Koppel L, Novembre G, Kämpe R, Savallampi M, Morrison I. Prediction and action in cortical pain processing. Cereb Cortex 2022; 33:794-810. [PMID: 35289367 PMCID: PMC9890457 DOI: 10.1093/cercor/bhac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Predicting that a stimulus is painful facilitates action to avoid harm. But how distinct are the neural processes underlying the prediction of upcoming painful events vis-à-vis those taking action to avoid them? Here, we investigated brain activity as a function of current and predicted painful or nonpainful thermal stimulation, as well as the ability of voluntary action to affect the duration of upcoming stimulation. Participants performed a task which involved the administration of a painful or nonpainful stimulus (S1), which predicted an immediately subsequent very painful or nonpainful stimulus (S2). Pressing a response button within a specified time window during S1 either reduced or did not reduce the duration of the upcoming stimulation. Predicted pain increased activation in several regions, including anterior cingulate cortex (ACC), midcingulate cortex (MCC), and insula; however, activation in ACC and MCC depended on whether a meaningful action was performed, with MCC activation showing a direct relationship with motor output. Insula's responses for predicted pain were also modulated by potential action consequences, albeit without a direct relationship with motor output. These findings suggest that cortical pain processing is not specifically tied to the sensory stimulus, but instead, depends on the consequences of that stimulus for sensorimotor control of behavior.
Collapse
Affiliation(s)
- Lina Koppel
- Corresponding author: Department of Management and Engineering, Division of Economics, Linköping University, 581 83 Linköping, Sweden.
| | - Giovanni Novembre
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Mattias Savallampi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - India Morrison
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
46
|
Hart EE, Gardner MPH, Schoenbaum G. Anterior cingulate neurons signal neutral cue pairings during sensory preconditioning. Curr Biol 2022; 32:725-732.e3. [PMID: 34936884 PMCID: PMC8976914 DOI: 10.1016/j.cub.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023]
Abstract
Of all frontocortical subregions, the anterior cingulate cortex (ACC) has perhaps the most overlapping theories of function.1-3 Recording studies in rats, humans, and other primates have reported diverse neural responses that support many theories,4-12 yet nearly all these studies have in common tasks in which one event reliably predicts another. This leaves open the possibility that ACC represents associative pairing of events, independent of their overt biological significance. Sensory preconditioning13 provides an opportunity to test this. In the first phase, preconditioning, value-neutral sensory stimuli are paired (A→B). To test whether this was learned, subjects are given standard conditioning during which one of the previously neutral sensory cues is paired with a biologically meaningful outcome (B→outcome). During the final probe test, the neutral cue which was never paired with a biologically meaningful outcome is presented alone (A→) and will elicit a conditional response, suggesting that subjects had learned the associative structure during preconditioning and use that knowledge to infer presentation of the biologically relevant outcome (A→B→outcome). Inference-based responding demonstrates a fundamental property of model-based reasoning14,15 and requires learning of the associations between neutral stimuli before rewards are introduced.16-19 ACC neurons developed firing patterns that reflected the learning of sensory associations during preconditioning, even though no rewards were present. The strength of these correlates predicted rats' ability to later mobilize and use that associative information during the probe test. These results demonstrate that clear biological significance is not necessary to produce correlates of learning in ACC.
Collapse
Affiliation(s)
- Evan E Hart
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; National Institute of General Medical Sciences, 45 Center Drive, Bethesda, MD 20892, USA.
| | - Matthew P H Gardner
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, Canada
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA; Department of Neuroscience, Johns Hopkins School of Medicine, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Psychiatry, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Monosov IE, Rushworth MFS. Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change. Neuropsychopharmacology 2022; 47:196-210. [PMID: 34234288 PMCID: PMC8617208 DOI: 10.1038/s41386-021-01079-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Hypotheses and beliefs guide credit assignment - the process of determining which previous events or actions caused an outcome. Adaptive hypothesis formation and testing are crucial in uncertain and changing environments in which associations and meanings are volatile. Despite primates' abilities to form and test hypotheses, establishing what is causally responsible for the occurrence of particular outcomes remains a fundamental challenge for credit assignment and learning. Hypotheses about what surprises are due to stochasticity inherent in an environment as opposed to real, systematic changes are necessary for identifying the environment's predictive features, but are often hard to test. We review evidence that two highly interconnected frontal cortical regions, anterior cingulate cortex and ventrolateral prefrontal area 47/12o, provide a biological substrate for linking two crucial components of hypothesis-formation and testing: the control of information seeking and credit assignment. Neuroimaging, targeted disruptions, and neurophysiological studies link an anterior cingulate - 47/12o circuit to generation of exploratory behaviour, non-instrumental information seeking, and interpretation of subsequent feedback in the service of credit assignment. Our observations support the idea that information seeking and credit assignment are linked at the level of neural circuits and explain why this circuit is important for ensuring behaviour is flexible and adaptive.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Rudebeck PH, Izquierdo A. Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology 2022; 47:134-146. [PMID: 34408279 PMCID: PMC8617092 DOI: 10.1038/s41386-021-01140-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Efficient foraging is essential to survival and depends on frontal cortex in mammals. Because of its role in psychiatric disorders, frontal cortex and its contributions to reward procurement have been studied extensively in both rodents and non-human primates. How frontal cortex of these animal models compares is a source of intense debate. Here we argue that translating findings from rodents to non-human primates requires an appreciation of both the niche in which each animal forages as well as the similarities in frontal cortex anatomy and function. Consequently, we highlight similarities and differences in behavior and anatomy, before focusing on points of convergence in how parts of frontal cortex contribute to distinct aspects of foraging in rats and macaques, more specifically. In doing so, our aim is to emphasize where translation of frontal cortex function between species is clearer, where there is divergence, and where future work should focus. We finish by highlighting aspects of foraging for which have received less attention but we believe are critical to uncovering how frontal cortex promotes survival in each species.
Collapse
Affiliation(s)
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA, USA.
- The Brain Research Institute, UCLA, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA.
- Integrative Center for Addictions, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Ghambaryan A, Gutkin B, Klucharev V, Koechlin E. Additively Combining Utilities and Beliefs: Research Gaps and Algorithmic Developments. Front Neurosci 2021; 15:704728. [PMID: 34658760 PMCID: PMC8517513 DOI: 10.3389/fnins.2021.704728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Value-based decision making in complex environments, such as those with uncertain and volatile mapping of reward probabilities onto options, may engender computational strategies that are not necessarily optimal in terms of normative frameworks but may ensure effective learning and behavioral flexibility in conditions of limited neural computational resources. In this article, we review a suboptimal strategy - additively combining reward magnitude and reward probability attributes of options for value-based decision making. In addition, we present computational intricacies of a recently developed model (named MIX model) representing an algorithmic implementation of the additive strategy in sequential decision-making with two options. We also discuss its opportunities; and conceptual, inferential, and generalization issues. Furthermore, we suggest future studies that will reveal the potential and serve the further development of the MIX model as a general model of value-based choice making.
Collapse
Affiliation(s)
- Anush Ghambaryan
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
- Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Boris Gutkin
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
- Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Vasily Klucharev
- Centre for Cognition and Decision Making, HSE University, Moscow, Russia
| | - Etienne Koechlin
- Ecole Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|