1
|
Brochard J, Dayan P, Bach DR. Critical intelligence: Computing defensive behaviour. Neurosci Biobehav Rev 2025; 174:106213. [PMID: 40381896 DOI: 10.1016/j.neubiorev.2025.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/24/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Characterising the mechanisms underlying naturalistic defensive behavior remains a significant challenge. While substantial progress has been made in unravelling the neural basis of tightly constrained behaviors, a critical gap persists in our comprehension of the circuits that implement algorithms capable of generating the diverse defensive responses observed outside experimental restrictions. Recent advancements in neuroscience technology now allow for an unprecedented examination of naturalistic behaviour. To help provide a theoretical grounding for this nascent experimental programme, we summarise the main computational and statistical challenges of defensive decision making, encapsulated in the concept of critical intelligence. Next, drawing from an extensive literature in biology, machine learning, and decision theory, we explore a range of candidate solutions to these challenges. While the proposed solutions offer insights into potential adaptive strategies, they also present inherent trade-offs and limitations in their applicability across different biological contexts. Ultimately, we propose series of experiments designed to differentiate between these candidate solutions, providing a roadmap for future investigations into the fundamental defensive algorithms utilized by biological agents and their neural implementation. Thus, our work aims to provide a roadmap towards broader understanding of how complex defensive behaviors are orchestrated in the brain, with implications for both neuroscience research and the development of more sophisticated artificial intelligence systems.
Collapse
Affiliation(s)
- Jules Brochard
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Dominik R Bach
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
2
|
Nasanbuyan N, Yoshida M, Inutsuka A, Takayanagi Y, Kato S, Hidema S, Nishimori K, Kobayashi K, Onaka T. Differential Functions of Oxytocin Receptor-Expressing Neurons in the Ventromedial Hypothalamus in Social Stress Responses: Induction of Adaptive and Maladaptive Coping Behaviors. Biol Psychiatry 2025; 97:874-886. [PMID: 39343339 DOI: 10.1016/j.biopsych.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The flexibility to adjust actions and attitudes in response to varying social situations is a fundamental aspect of adaptive social behavior. Adaptive social behaviors influence an individual's vulnerability to social stress. While it has been proposed that oxytocin is a facilitator of active coping behaviors during social stress, the exact mechanisms remain unknown. METHODS Using a social defeat stress paradigm in male mice, we identified the distribution of oxytocin receptor (OXTR)-expressing neurons in the ventrolateral part of the ventromedial hypothalamus (vlVMH) that are activated during stress by detection of c-Fos protein expression. We then investigated the role of vlVMH OXTR-expressing neurons in social defeat stress responses by chemogenetic methods or deletion of local OXTRs. The social defeat posture was measured for quantification of adaptive social behavior during repeated social stress. RESULTS Social defeat stress activated OXTR-expressing neurons rather than estrogen receptor 1-expressing neurons in the rostral vlVMH. OXTR-expressing neurons in the vlVMH were glutamatergic. Chemogenetic activation of vlVMH OXTR-expressing neurons facilitated exhibition of the social defeat posture during exposure to social stress, while local OXTR deletion suppressed it. In contrast, overactivation of vlVMH-OXTR neurons induced generalized social avoidance after exposure to chronic social defeat stress. Neural circuits for the social defeat posture centered on OXTR-expressing neurons were identified by viral tracers and c-Fos mapping. CONCLUSIONS vlVMH OXTR-expressing neurons are a functionally unique population of neurons that promote active coping behavior during social stress, but their excessive and repetitive activation under chronic social stress impairs subsequent social behavior.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
3
|
Ahmadlou M, Shirazi MY, Zhang P, Rogers ILM, Dziubek J, Young M, Hofer SB. A subcortical switchboard for perseverative, exploratory and disengaged states. Nature 2025; 641:151-161. [PMID: 40044848 PMCID: PMC12043504 DOI: 10.1038/s41586-025-08672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2025] [Indexed: 04/13/2025]
Abstract
To survive in dynamic environments with uncertain resources, animals must adapt their behaviour flexibly, choosing strategies such as persevering with a current choice, exploring alternatives or disengaging altogether. Previous studies have mainly investigated how forebrain regions represent choice costs and values as well as optimal strategies during such decisions1-5. However, the neural mechanisms by which the brain implements alternative behavioural strategies such as persevering, exploring or disengaging remain poorly understood. Here we identify a neural hub that is critical for flexible switching between behavioural strategies, the median raphe nucleus (MRN). Using cell-type-specific optogenetic manipulations, fibre photometry and circuit tracing in mice performing diverse instinctive and learnt behaviours, we found that the main cell types of the MRN-GABAergic (γ-aminobutyric acid-expressing), glutamatergic (VGluT2+) and serotonergic neurons-have complementary functions and regulate perseverance, exploration and disengagement, respectively. Suppression of MRN GABAergic neurons-for instance, through inhibitory input from lateral hypothalamus, which conveys strong positive valence to the MRN-leads to perseverative behaviour. By contrast, activation of MRN VGluT2+ neurons drives exploration. Activity of serotonergic MRN neurons is necessary for general task engagement. Input from the lateral habenula that conveys negative valence suppresses serotonergic MRN neurons, leading to disengagement. These findings establish the MRN as a central behavioural switchboard that is uniquely positioned to flexibly control behavioural strategies. These circuits thus may also have an important role in the aetiology of major mental pathologies such as depressive or obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Sainsbury Wellcome Centre, University College London, London, UK.
| | | | - Pan Zhang
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Isaac L M Rogers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Julia Dziubek
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Margaret Young
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
4
|
Relota XJ, Ford A, Savier EL. Behavioral Modulation and Molecular Definition of Wide-Field Vertical Cells in the Mouse Superior Colliculus. J Neurosci 2025; 45:e1816242025. [PMID: 40032526 PMCID: PMC12005361 DOI: 10.1523/jneurosci.1816-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Visual information can have different meanings across species, and the same visual stimulus can drive appetitive or aversive behavior. The superior colliculus (SC), a visual center located in the midbrain has been involved in driving such behaviors. Within this structure, the wide-field vertical cells (WFV) are a conserved morphological cell type that is present in species ranging from reptiles to cats (Basso et al., 2021). Here, we report our investigation of the connectivity of the WFV, their visual responses, and how these responses are modulated by locomotion in male and female laboratory mice. We also address the molecular definition of these cells and attempt to reconcile recent findings acquired by RNA sequencing of single cells in the SC with the Ntsr1-Cre GN209 transgenic mouse line which was previously used to investigate WFV. We use viral strategies to reveal WFV inputs and outputs and confirm their unique response properties using in vivo two-photon imaging. Among the stimuli tested, WFV prefer looming stimuli, a small moving spot, and upward-moving visual stimuli. We find that only visual responses driven by a looming stimulus show a significant modulation by locomotion. We identify several inputs to the WFV as potential candidates for this modulation. These results suggest that WFV integrate information across multiple brain regions and are subject to behavioral modulation. Taken together, our results pave the way to elucidate the role of these neurons in visual behavior and allow us to interrogate the definition of cell types in the light of new molecular definitions.
Collapse
Affiliation(s)
- Xena J Relota
- Molecular and Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexander Ford
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Elise L Savier
- Molecular and Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan 48109
- Ophthalmology and Visual Science Department, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Vega-Zuniga T, Sumser A, Symonova O, Koppensteiner P, Schmidt FH, Joesch M. A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics. Nat Neurosci 2025; 28:627-639. [PMID: 39930095 PMCID: PMC11893466 DOI: 10.1038/s41593-025-01874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/19/2024] [Indexed: 03/12/2025]
Abstract
For accurate perception and motor control, an animal must distinguish between sensory experiences elicited by external stimuli and those elicited by its own actions. The diversity of behaviors and their complex influences on the senses make this distinction challenging. Here, we uncover an action-cue hub that coordinates motor commands with visual processing in the brain's first visual relay. We show that the ventral lateral geniculate nucleus (vLGN) acts as a corollary discharge center, integrating visual translational optic flow signals with motor copies from saccades, locomotion and pupil dynamics. The vLGN relays these signals to correct action-specific visual distortions and to refine perception, as shown for the superior colliculus and in a depth-estimation task. Simultaneously, brain-wide vLGN projections drive corrective actions necessary for accurate visuomotor control. Our results reveal an extended corollary discharge architecture that refines early visual transformations and coordinates actions via a distributed hub-and-spoke network to enable visual perception during action.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Anton Sumser
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Division of Neuroscience, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Florian H Schmidt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
6
|
Gu H, Zhao F, Liu Z, Cao P. Defense or death? A review of the neural mechanisms underlying sensory modality-triggered innate defensive behaviors. Curr Opin Neurobiol 2025; 92:102977. [PMID: 40015135 DOI: 10.1016/j.conb.2025.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Defense or death presents a canonical dilemma for animals when encountering predators. Threatening sensory cues provide essential information that signals predator presence, driving the evolution of a spectrum of defensive behaviors. In rodents, these behaviors, as described by the classic "predatory imminence continuum" model, range from risk assessment and freezing to rapid escape responses. During the pre-encounter phase, risk assessment and avoidance responses are crucial for monitoring the environment with vigilance and cautiousness. Once detected during the post-encounter phase or physically attacked during the circa-strike phase, multiple sensory systems are rapidly activated, triggering escape responses to increase the distance from the threat. Although there are species-specific variations, the brain regions underpinning these defensive strategies, including the thalamus, hypothalamus, and midbrain, are evolutionarily conserved. This review aims to provide a comprehensive overview of the universal innate defensive circuit framework to enrich our understanding of how animals respond to life-threatening situations.
Collapse
Affiliation(s)
- Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiran Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhihui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
7
|
Ye J, Xu Y, Huang K, Wang X, Wang L, Wang F. Hierarchical behavioral analysis framework as a platform for standardized quantitative identification of behaviors. Cell Rep 2025; 44:115239. [PMID: 40010299 DOI: 10.1016/j.celrep.2025.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Behavior is composed of modules that operate based on inherent logic. Understanding behavior and its neural mechanisms is facilitated by clear structural behavioral analysis. Here, we developed a hierarchical behavioral analysis framework (HBAF) that efficiently reveals the organizational logic of these modules by analyzing high-dimensional behavioral data. By creating a spontaneous behavior atlas for male and female mice, we discovered that spontaneous behavior patterns are hardwired, with sniffing serving as the hub node for movement transitions. The sniffing-to-grooming ratio accurately distinguished the spontaneous behavioral states in a high-throughput manner. These states are influenced by emotional status, circadian rhythms, and lighting conditions, leading to unique behavioral characteristics, spatiotemporal features, and dynamic patterns. By implementing the straightforward and achievable spontaneous behavior paradigm, HBAF enables swift and accurate assessment of animal behavioral states and bridges the gap between a theoretical understanding of the behavioral structure and practical analysis using comprehensive multidimensional behavioral information.
Collapse
Affiliation(s)
- Jialin Ye
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Xu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kang Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Feng Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
8
|
Mederos S, Blakely P, Vissers N, Clopath C, Hofer SB. Overwriting an instinct: Visual cortex instructs learning to suppress fear responses. Science 2025; 387:682-688. [PMID: 39913581 DOI: 10.1126/science.adr2247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/06/2025] [Indexed: 04/23/2025]
Abstract
Fast instinctive responses to environmental stimuli can be crucial for survival but are not always optimal. Animals can adapt their behavior and suppress instinctive reactions, but the neural pathways mediating such ethologically relevant forms of learning remain unclear. We found that posterolateral higher visual areas (plHVAs) are crucial for learning to suppress escapes from innate visual threats through a top-down pathway to the ventrolateral geniculate nucleus (vLGN). plHVAs are no longer necessary after learning; instead, the learned behavior relies on plasticity within vLGN populations that exert inhibitory control over escape responses. vLGN neurons receiving input from plHVAs enhance their responses to visual threat stimuli during learning through endocannabinoid-mediated long-term suppression of their inhibitory inputs. We thus reveal the detailed circuit, cellular, and synaptic mechanisms underlying experience-dependent suppression of fear responses.
Collapse
Affiliation(s)
- Sara Mederos
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Patty Blakely
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK
- Bioengineering Department, Imperial College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
9
|
Fei Y, Luh M, Ontiri A, Ghauri D, Hu W, Liang L. Coordination of distinct sources of excitatory inputs enhances motion selectivity in the mouse visual thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631826. [PMID: 39829841 PMCID: PMC11741327 DOI: 10.1101/2025.01.08.631826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons. Inhibiting collicular input significantly suppressed visual responses in thalamic neurons and specifically reduced motion selectivity in neurons preferring nasal-to-temporal motion. The reduction in motion selectivity could be the result of silencing sharply tuned direction-selective colliculogeniculate input. These findings suggest that the thalamus is not merely a relay but selectively integrates inputs from multiple regions to build stimulus selectivity and shape the information transmitted to the cortex. HIGHLIGHTS Chronic dual-color calcium imaging reveals diverse visual tuning of collicular axonal boutons.Nearby collicular and retinal boutons often share feature preferences at ∼10 µm scaleSilencing of collicular input suppresses visual responses in the majority of thalamic neurons.Silencing of collicular input reduces motion selectivity in thalamic neurons.
Collapse
|
10
|
Stringer C, Pachitariu M. Analysis methods for large-scale neuronal recordings. Science 2024; 386:eadp7429. [PMID: 39509504 DOI: 10.1126/science.adp7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
11
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Aranda ML, Min E, Liu LT, Schipma AE, Schmidt TM. Light tunes a novel long-term threat avoidance behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620706. [PMID: 39554108 PMCID: PMC11565844 DOI: 10.1101/2024.10.28.620706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Animals must constantly scan their environment for imminent threats to their safety. However, they must also integrate their past experiences across long timescales to assess the potential recurrence of new threats. Though visual inputs are critical for the detection of environmental danger, whether and how visual information shapes an animal's assessment of whether a new threat is likely to reappear in a given context is unknown. Using a novel behavioral assessment of long-term threat avoidance behavior, we find that animals will avoid a familiar location where they previously experienced a single exposure to an innately threatening visual stimulus. This avoidance behavior is highly sensitive and lasts for multiple days. Intriguingly, we find that the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells tune this behavior via a perihabenular-nucleus accumbens circuit distinct from the canonical visual threat detection circuits. These findings define a specific retinal cell type driving a new long-term threat avoidance behavior driven by prior visual experience.
Collapse
|
13
|
Lee T, Weinberg-Wolf H, Zapadka TE, Rudenko A, Demb JB, Kim IJ. Specific retinal neurons regulate context-dependent defensive responses to visual threat. PNAS NEXUS 2024; 3:pgae423. [PMID: 39359403 PMCID: PMC11443969 DOI: 10.1093/pnasnexus/pgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
While encountering a visual threat, an animal assesses multiple factors to choose an appropriate defensive strategy. For example, when a rodent detects a looming aerial predator, its behavioral response can be influenced by a specific environmental context, such as the availability of a shelter. Indeed, rodents typically escape from a looming stimulus when a shelter is present; otherwise, they typically freeze. Here we report that context-dependent behavioral responses can be initiated at the earliest stage of the visual system by distinct types of retinal ganglion cells (RGCs), the retina's output neurons. Using genetically defined cell ablation in mature mice, we discovered that some RGC types were necessary for either escaping (alpha RGCs) or freezing (intrinsically photosensitive RGCs) in response to a looming stimulus but not for both behaviors; whereas other RGC types were not required for either behavior (direction-selective RGCs preferring vertical motion). Altogether, our results suggest that specific RGC types regulate distinct behavioral responses elicited by the same threatening stimulus depending on contextual signals in the environment. These findings emphasize the unique contribution of early visual pathways to evolutionally conserved behavioral reactions.
Collapse
Affiliation(s)
- Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY 10031, USA
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
14
|
Nakamura H, Ohta K. Understanding subcortical projections to the lateral posterior thalamic nucleus and its subregions using retrograde neural tracing. Front Neuroanat 2024; 18:1430636. [PMID: 39170852 PMCID: PMC11335648 DOI: 10.3389/fnana.2024.1430636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
15
|
Park G, Park Y, Yang S, Cho Y, Serikov A, Jung D, Seo DC, Lee SE, Nam MH, Kim D, Kim J. Neurotensin-specific corticothalamic circuit regulates innate response conflict. Curr Biol 2024; 34:3473-3487.e6. [PMID: 39067450 DOI: 10.1016/j.cub.2024.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Animals must simultaneously select and balance multiple action contingencies in ambiguous situations: for instance, evading danger during feeding. This has rarely been examined in the context of information selection; despite corticothalamic pathways that mediate sensory attention being relatively well characterized, neural mechanisms filtering conflicting actions remain unclear. Here, we develop a new loom/feed test to observe conflict between naturally induced fear and feeding and identify a novel anterior cingulate cortex (ACC) output to the ventral anterior and ventral lateral thalamus (VA/VL) that adjusts selectivity between these innate actions. Using micro-endoscopy and fiber photometry, we reveal that activity in corticofugal outputs was lowered during unbalanced/singularly occupied periods, as were the resulting decreased thalamic initiation-related signals for less-favored actions, suggesting that the integration of ACC-thalamic firing may directly regulate the output of behavior choices. Accordingly, the optoinhibition of ACC-VA/VL circuits induced high bias toward feeding at the expense of defense. To identify upstream "commander" cortical cells gating this output, we established dual-order tracing (DOT)-translating ribosome affinity purification (TRAP)-a scheme to label upstream neurons with transcriptome analysis-and found a novel population of neurotensin-positive interneurons (ACCNts). The photoexcitation of ACCNts cells indeed caused similarly hyper-selective behaviors. Collectively, this new "corticofugal action filter" scheme suggests that communication in multi-step cingulate circuits may critically influence the summation of motor signals in thalamic outputs, regulating bias between innate action types.
Collapse
Affiliation(s)
- Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongjun Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dajung Jung
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
16
|
Stempel AV, Evans DA, Arocas OP, Claudi F, Lenzi SC, Kutsarova E, Margrie TW, Branco T. Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice. Curr Biol 2024; 34:3031-3039.e7. [PMID: 38936364 DOI: 10.1016/j.cub.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.
Collapse
Affiliation(s)
- A Vanessa Stempel
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| | - Dominic A Evans
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Oriol Pavón Arocas
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Stephen C Lenzi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Elena Kutsarova
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Troy W Margrie
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK.
| |
Collapse
|
17
|
Hu Z, Huang X, Liu J, Wang Z, Xi Y, Yang Y, Lin S, So KF, Huang L, Tao Q, Ren C. A visual circuit related to the parabrachial nucleus for the antipruritic effects of bright light treatment. Cell Rep 2024; 43:114356. [PMID: 38865246 DOI: 10.1016/j.celrep.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.
Collapse
Affiliation(s)
- Zhengfang Hu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiaodan Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jianyu Liu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Ziyang Wang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yan Yang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lu Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Qian Tao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Jinan University, Department of Public Health and Preventive Medicine Psychology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Chaoran Ren
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
18
|
Shang W, Xie S, Feng W, Li Z, Jia J, Cao X, Shen Y, Li J, Shi H, Gu Y, Weng SJ, Lin L, Pan YH, Yuan XB. A non-image-forming visual circuit mediates the innate fear of heights in male mice. Nat Commun 2024; 15:3746. [PMID: 38702319 PMCID: PMC11068790 DOI: 10.1038/s41467-024-48147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.
Collapse
Affiliation(s)
- Wei Shang
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Wenbo Feng
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Xiaoxiao Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yanting Shen
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Jing Li
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Haibo Shi
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yiran Gu
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
19
|
de Malmazet D, Kühn NK, Li C, Farrow K. Retinal origin of orientation but not direction selective maps in the superior colliculus. Curr Biol 2024; 34:1222-1233.e7. [PMID: 38417446 PMCID: PMC10980837 DOI: 10.1016/j.cub.2024.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Neurons in the mouse superior colliculus ("colliculus") are arranged in ordered spatial maps. While orientation-selective (OS) neurons form a concentric map aligned to the center of vision, direction-selective (DS) neurons are arranged in patches with changing preferences across the visual field. It remains unclear whether these maps are a consequence of feedforward input from the retina or local computations in the colliculus. To determine whether these maps originate in the retina, we mapped the local and global distribution of OS and DS retinal ganglion cell axon boutons using in vivo two-photon calcium imaging. We found that OS boutons formed patches that matched the distribution of OS neurons within the colliculus. DS boutons displayed fewer regional specializations, better reflecting the organization of DS neurons in the retina. Both eyes convey similar orientation but different DS inputs to the colliculus, as shown in recordings from retinal explants. These data demonstrate that orientation and direction maps within the colliculus are independent, where orientation maps are likely inherited from the retina, but direction maps require additional computations.
Collapse
Affiliation(s)
- Daniel de Malmazet
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Norma K Kühn
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium
| | - Chen Li
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium; imec, Leuven 3001, Belgium.
| |
Collapse
|
20
|
Ritter A, Habusha S, Givon L, Edut S, Klavir O. Prefrontal control of superior colliculus modulates innate escape behavior following adversity. Nat Commun 2024; 15:2158. [PMID: 38461293 PMCID: PMC10925020 DOI: 10.1038/s41467-024-46460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Innate defensive responses, though primarily instinctive, must also be highly adaptive to changes in risk assessment. However, adaptive changes can become maladaptive, following severe stress, as seen in posttraumatic stress disorder (PTSD). In a series of experiments, we observed long-term changes in innate escape behavior of male mice towards a previously non-threatening stimulus following an adverse shock experience manifested as a shift in the threshold of threat response. By recording neural activity in the superior colliculus (SC) while phototagging specific responses to afferents, we established the crucial influence of input arriving at the SC from the medial prefrontal cortex (mPFC), both directly and indirectly, on escape-related activity after adverse shock experience. Inactivating these specific projections during the shock effectively abolished the observed changes. Conversely, optogenetically activating them during encounters controlled escape responses. This establishes the necessity and sufficiency of those specific mPFC inputs into the SC for adverse experience related changes in innate escape behavior.
Collapse
Affiliation(s)
- Ami Ritter
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shlomi Habusha
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
21
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Wu K, Wang D, Wang Y, Tang P, Li X, Pan Y, Tao HW, Zhang LI, Liang F. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions. Neuron 2023; 111:3650-3667.e6. [PMID: 37652003 PMCID: PMC10990237 DOI: 10.1016/j.neuron.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.
Collapse
Affiliation(s)
- Kaibin Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Peiwen Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Xuan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China; Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
23
|
Li Z, Peng B, Huang JJ, Zhang Y, Seo MB, Fang Q, Zhang GW, Zhang X, Zhang LI, Tao HW. Enhancement and contextual modulation of visuospatial processing by thalamocollicular projections from ventral lateral geniculate nucleus. Nat Commun 2023; 14:7278. [PMID: 37949869 PMCID: PMC10638288 DOI: 10.1038/s41467-023-43147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.
Collapse
Affiliation(s)
- Zhong Li
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bo Peng
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Biological and Biomedical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michelle B Seo
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qi Fang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Huizhong Whit Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
24
|
Lee H, Weinberg-Wolf H, Lee HL, Lee T, Conte J, Godoy-Parejo C, Demb JB, Rudenko A, Kim IJ. Brn3b regulates the formation of fear-related midbrain circuits and defensive responses to visual threat. PLoS Biol 2023; 21:e3002386. [PMID: 37983249 PMCID: PMC10695396 DOI: 10.1371/journal.pbio.3002386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 12/04/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Defensive responses to visually threatening stimuli represent an essential fear-related survival instinct, widely detected across species. The neural circuitry mediating visually triggered defensive responses has been delineated in the midbrain. However, the molecular mechanisms regulating the development and function of these circuits remain unresolved. Here, we show that midbrain-specific deletion of the transcription factor Brn3b causes a loss of neurons projecting to the lateral posterior nucleus of the thalamus. Brn3b deletion also down-regulates the expression of the neuropeptide tachykinin 2 (Tac2). Furthermore, Brn3b mutant mice display impaired defensive freezing responses to visual threat precipitated by social isolation. This behavioral phenotype could be ameliorated by overexpressing Tac2, suggesting that Tac2 acts downstream of Brn3b in regulating defensive responses to threat. Together, our experiments identify specific genetic components critical for the functional organization of midbrain fear-related visual circuits. Similar mechanisms may contribute to the development and function of additional long-range brain circuits underlying fear-associated behavior.
Collapse
Affiliation(s)
- Hyoseo Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hae-Lim Lee
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joseph Conte
- Department of Biology, City College of New York, New York, New York, United States of America
| | - Carlos Godoy-Parejo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jonathan B. Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| | - Andrii Rudenko
- Department of Biology, City College of New York, New York, New York, United States of America
- Graduate Programs in Biology and Biochemistry, City University of New York, New York, New York, United States of America
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Huang L, Chen X, Tao Q, Wang X, Huang X, Fu Y, Yang Y, Deng S, Lin S, So KF, Song X, Ren C. Bright light treatment counteracts stress-induced sleep alterations in mice, via a visual circuit related to the rostromedial tegmental nucleus. PLoS Biol 2023; 21:e3002282. [PMID: 37676855 PMCID: PMC10484455 DOI: 10.1371/journal.pbio.3002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Light in the environment greatly impacts a variety of brain functions, including sleep. Clinical evidence suggests that bright light treatment has a beneficial effect on stress-related diseases. Although stress can alter sleep patterns, the effect of bright light treatment on stress-induced sleep alterations and the underlying mechanism are poorly understood. Here, we show that bright light treatment reduces the increase in nonrapid eye movement (NREM) sleep induced by chronic stress through a di-synaptic visual circuit consisting of the thalamic ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), lateral habenula (LHb), and rostromedial tegmental nucleus (RMTg). Specifically, chronic stress causes a marked increase in NREM sleep duration and a complementary decrease in wakefulness time in mice. Specific activation of RMTg-projecting LHb neurons or activation of RMTg neurons receiving direct LHb inputs mimics the effects of chronic stress on sleep patterns, while inhibition of RMTg-projecting LHb neurons or RMTg neurons receiving direct LHb inputs reduces the NREM sleep-promoting effects of chronic stress. Importantly, we demonstrate that bright light treatment reduces the NREM sleep-promoting effects of chronic stress through the vLGN/IGL-LHb-RMTg pathway. Together, our results provide a circuit mechanism underlying the effects of bright light treatment on sleep alterations induced by chronic stress.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xi Chen
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiaodan Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yunwei Fu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yan Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shijie Deng
- Department of Anesthesiology, Jiangmen Central Hospital, Guangdong, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoran Ren
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
26
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
27
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
28
|
Baier F, Reinhard K, Tong V, Murmann J, Farrow K, Hoekstra HE. The neural basis of defensive behaviour evolution in Peromyscus mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547734. [PMID: 37461474 PMCID: PMC10350006 DOI: 10.1101/2023.07.04.547734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Evading imminent predator threat is critical for survival. Effective defensive strategies can vary, even between closely related species. However, the neural basis of such species-specific behaviours is still poorly understood. Here we find that two sister species of deer mice (genus Peromyscus) show different responses to the same looming stimulus: P. maniculatus, which occupy densely vegetated habitats, predominantly dart to escape, while the open field specialist, P. polionotus, pause their movement. This difference arises from species-specific escape thresholds, is largely context-independent, and can be triggered by both visual and auditory threat stimuli. Using immunohistochemistry and electrophysiological recordings, we find that although visual threat activates the superior colliculus in both species, the role of the dorsal periaqueductal gray (dPAG) in driving behaviour differs. While dPAG activity scales with running speed and involves both excitatory and inhibitory neurons in P. maniculatus, the dPAG is largely silent in P. polionotus, even when darting is triggered. Moreover, optogenetic activation of excitatory dPAG neurons reliably elicits darting behaviour in P. maniculatus but not P. polionotus. Together, we trace the evolution of species-specific escape thresholds to a central circuit node, downstream of peripheral sensory neurons, localizing an ecologically relevant behavioural difference to a specific region of the complex mammalian brain.
Collapse
Affiliation(s)
- Felix Baier
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Present address: Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Present address: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Victoria Tong
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Julie Murmann
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Present address: Institute of Science & Technology Austria, Klosterneuburg, Austria
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Hopi E. Hoekstra
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
29
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
30
|
Solomon SG, Janbon H, Bimson A, Wheatcroft T. Visual spatial location influences selection of instinctive behaviours in mouse. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230034. [PMID: 37122945 PMCID: PMC10130721 DOI: 10.1098/rsos.230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Visual stimuli can elicit instinctive approach and avoidance behaviours. In mouse, vision is known to be important for both avoidance of an overhead threat and approach toward a potential terrestrial prey. The stimuli used to characterize these behaviours, however, vary in both spatial location (overhead or near the ground plane) and visual feature (rapidly expanding disc or slowly moving disc). We therefore asked how mice responded to the same visual features presented in each location. We found that a looming black disc induced escape behaviour when presented overhead or to the side of the animal, but the escapes produced by side-looms were less vigorous and often preceded by freezing behaviour. Similarly, small moving discs induced freezing behaviour when presented overhead or to the side of the animal, but side sweeps also elicited approach behaviours, such that mice explored the area of the arena near where the stimulus had been presented. Our observations therefore show that mice combine cues to the location and features of visual stimuli when selecting among potential behaviours.
Collapse
Affiliation(s)
- Samuel G. Solomon
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Hadrien Janbon
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Adam Bimson
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Thomas Wheatcroft
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
31
|
Xi K, Xiao H, Huang X, Yuan Z, Liu M, Mao H, Liu H, Ma G, Cheng Z, Xie Y, Liu Y, Feng D, Wang W, Guo B, Wu S. Reversal of hyperactive higher-order thalamus attenuates defensiveness in a mouse model of PTSD. SCIENCE ADVANCES 2023; 9:eade5987. [PMID: 36735778 PMCID: PMC9897664 DOI: 10.1126/sciadv.ade5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ziduo Yuan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Mingyue Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
32
|
Accanto N, Blot FGC, Lorca-Cámara A, Zampini V, Bui F, Tourain C, Badt N, Katz O, Emiliani V. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice. Neuron 2023; 111:176-189.e6. [PMID: 36395773 DOI: 10.1016/j.neuron.2022.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
We developed a flexible two-photon microendoscope (2P-FENDO) capable of all-optical brain investigation at near cellular resolution in freely moving mice. The system performs fast two-photon (2P) functional imaging and 2P holographic photostimulation of single and multiple cells using axially confined extended spots. Proof-of-principle experiments were performed in freely moving mice co-expressing jGCaMP7s and the opsin ChRmine in the visual or barrel cortex. On a field of view of 250 μm in diameter, we demonstrated functional imaging at a frame rate of up to 50 Hz and precise photostimulation of selected groups of cells. With the capability to simultaneously image and control defined neuronal networks in freely moving animals, 2P-FENDO will enable a precise investigation of neuronal functions in the brain during naturalistic behaviors.
Collapse
Affiliation(s)
- Nicolò Accanto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - François G C Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Florence Bui
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Noam Badt
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ori Katz
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| |
Collapse
|
33
|
Govindaiah G, Fox MA, Guido W. Pattern of Driver-Like Input onto Neurons of the Mouse Ventral Lateral Geniculate Nucleus. eNeuro 2023; 10:ENEURO.0386-22.2022. [PMID: 36609305 PMCID: PMC9850909 DOI: 10.1523/eneuro.0386-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) is a retinorecipient region of thalamus that contributes to a number of complex visual behaviors. Retinal axons that target vLGN terminate exclusively in the external subdivision (vLGNe), which is also transcriptionally and cytoarchitectonically distinct from the internal subdivision (vLGNi). While recent studies shed light on the cell types and efferent projections of vLGNe and vLGNi, we have a crude understanding of the source and nature of the excitatory inputs driving postsynaptic activity in these regions. Here, we address this by conducting in vitro whole-cell recordings in acutely prepared thalamic slices and using electrical and optical stimulation techniques to examine the postsynaptic excitatory activity evoked by the activation of retinal or cortical layer V input onto neurons in vLGNe and vLGNi. Activation of retinal afferents by electrical stimulation of optic tract or optical stimulation of retinal terminals resulted in robust driver-like excitatory activity in vLGNe. Optical activation of corticothalamic terminals from layer V resulted in similar driver-like activity in both vLGNe and vLGNi. Using a dual-color optogenetic approach, we found that many vLGNe neurons received convergent input from these two sources. Both individual pathways displayed similar driver-like properties, with corticothalamic stimulation leading to a stronger form of synaptic depression than retinogeniculate stimulation. We found no evidence of convergence in vLGNi, with neurons only responding to corticothalamic stimulation. These data provide insight into the influence of excitatory inputs to vLGN and reveal that only neurons in vLGNe receive convergent input from both sources.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
34
|
Lan YQ, Yu MB, Zhan ZY, Huang YR, Zhao LW, Quan YD, Li ZJ, Sun DF, Wu YL, Wu HY, Liu ZT, Wu KL. Use of a tissue clearing technique combined with retrograde trans-synaptic viral tracing to evaluate changes in mouse retinorecipient brain regions following optic nerve crush. Neural Regen Res 2023; 18:913-921. [DOI: 10.4103/1673-5374.353852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Somaiya RD, Stebbins K, Gingrich EC, Xie H, Campbell JN, Garcia ADR, Fox MA. Sonic hedgehog-dependent recruitment of GABAergic interneurons into the developing visual thalamus. eLife 2022; 11:e79833. [PMID: 36342840 PMCID: PMC9640189 DOI: 10.7554/elife.79833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Axons of retinal ganglion cells (RGCs) play critical roles in the development of inhibitory circuits in visual thalamus. We previously reported that RGC axons signal astrocytes to induce the expression of fibroblast growth factor 15 (FGF15), a motogen required for GABAergic interneuron migration into visual thalamus. However, how retinal axons induce thalamic astrocytes to generate Fgf15 and influence interneuron migration remains unknown. Here, we demonstrate that impairing RGC activity had little impact on interneuron recruitment into mouse visual thalamus. Instead, our data show that retinal-derived sonic hedgehog (SHH) is essential for interneuron recruitment. Specifically, we show that thalamus-projecting RGCs express SHH and thalamic astrocytes generate downstream components of SHH signaling. Deletion of RGC-derived SHH leads to a significant decrease in Fgf15 expression, as well as in the percentage of interneurons recruited into visual thalamus. Overall, our findings identify a morphogen-dependent neuron-astrocyte signaling mechanism essential for the migration of thalamic interneurons.
Collapse
Affiliation(s)
- Rachana Deven Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
| | - Katelyn Stebbins
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
- Virginia Tech Carilion School of MedicineRoanokeUnited States
| | - Ellen C Gingrich
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Hehuang Xie
- Fralin Life Sciences Institute at Virginia TechBlacksburgUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Genetics, Bioinformatics and Computational Biology Program, Virginia TechBlacksburgUnited States
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary MedicineBlacksburgUnited States
| | - John N Campbell
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - A Denise R Garcia
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Department of Biological Sciences, College of Science, Virginia TechBlacksburgUnited States
- Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanokeUnited States
| |
Collapse
|
36
|
Somatostatin-Positive Neurons in the Rostral Zona Incerta Modulate Innate Fear-Induced Defensive Response in Mice. Neurosci Bull 2022; 39:245-260. [PMID: 36260252 PMCID: PMC9905479 DOI: 10.1007/s12264-022-00958-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/16/2022] [Indexed: 10/24/2022] Open
Abstract
Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.
Collapse
|
37
|
Tien NW, Vitale C, Badea TC, Kerschensteiner D. Layer-Specific Developmentally Precise Axon Targeting of Transient Suppressed-by-Contrast Retinal Ganglion Cells. J Neurosci 2022; 42:7213-7221. [PMID: 36002262 PMCID: PMC9512569 DOI: 10.1523/jneurosci.2332-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022] Open
Abstract
The mouse retina encodes diverse visual features in the spike trains of >40 retinal ganglion cell (RGC) types. Each RGC type innervates a specific subset of the >50 retinorecipient brain areas. Our catalog of RGC types and feature representations is nearing completion. Yet, we know little about where specific RGC types send their information. Furthermore, the developmental strategies by which RGC axons choose their targets and pattern their terminal arbors remain obscure. Here, we identify a genetic intersection (Cck-Cre and Brn3cCKOAP ) that selectively labels transient Suppressed-by-Contrast (tSbC) RGCs, a member of an evolutionarily conserved functionally mysterious RGC subclass. We find that tSbC RGCs selectively innervate the dorsolateral geniculate nucleus (dLGN) and ventrolateral geniculate nucleus (vLGN) of the thalamus, the superior colliculus (SC), and the nucleus of the optic tract (NOT) in mice of either sex. They binocularly innervate dLGN and vLGN but project only contralaterally to SC and NOT. In each target, tSbC RGC axons occupy a specific sublayer, suggesting that they restrict their input to specific circuits. The tSbC RGC axons span the length of the optic tract by birth and remain poised there until they simultaneously innervate their four targets around postnatal day 3. The tSbC RGC axons choose the right targets and establish mature stratification patterns from the outset. This precision is maintained in the absence of Brn3c. Our results provide the first map of SbC inputs to the brain, revealing a narrow target set, unexpected laminar organization, target-specific binocularity, and developmental precision.SIGNIFICANCE STATEMENT In recent years, we have learned a lot about the visual features encoded by RGCs, the output neurons of the eye. In contrast, we know little about where RGCs send their information and how RGC axons, which carry this information, target specific brain areas during development. Here, we develop an intersectional strategy to label a unique RGC type, the tSbC RGC, and map its projections. We find that tSbC RGC axons are highly selective. They innervate few retinal targets and restrict their arbors to specific sublayers within these targets. The selective tSbC RGC projection patterns develop synchronously and without trial and error, suggesting molecular determinism and coordination.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Carmela Vitale
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, Maryland 20892
- Research and Development Institute, Transilvania University of Braşov, Braşov 500484, Romania
- National Center for Brain Research, Research Institute for Artificial Intelligence, Romanian Academy, Bucharest 050711, Romania
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Departments of Neuroscience
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
38
|
The caudal prethalamus: Inhibitory switchboard for behavioral control? Neuron 2022; 110:2728-2742. [PMID: 36076337 DOI: 10.1016/j.neuron.2022.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
Abstract
Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.
Collapse
|
39
|
Pavón Arocas O, Branco T. Preparation of acute midbrain slices containing the superior colliculus and periaqueductal Gray for patch-clamp recordings. PLoS One 2022; 17:e0271832. [PMID: 35951507 PMCID: PMC9371254 DOI: 10.1371/journal.pone.0271832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
This protocol is a practical guide for preparing acute coronal slices from the midbrain of young adult mice for electrophysiology experiments. It describes two different sets of solutions with their respective incubation strategies and two alternative procedures for brain extraction: decapitation under terminal isoflurane anaesthesia and intracardial perfusion with artificial cerebrospinal fluid under terminal isoflurane anaesthesia. Slices can be prepared from wild-type mice as well as from mice that have been genetically modified or transfected with viral constructs to label subsets of cells. The preparation can be used to investigate the electrophysiological properties of midbrain neurons in combination with pharmacology, opto- and chemogenetic manipulations, and calcium imaging; which can be followed by morphological reconstruction, immunohistochemistry, or single-cell transcriptomics. The protocol also provides a detailed list of materials and reagents including the design for a low-cost and easy to assemble 3D printed slice recovery chamber, general advice for troubleshooting common issues leading to suboptimal slice quality, and some suggestions to ensure good maintenance of a patch-clamp rig.
Collapse
Affiliation(s)
- Oriol Pavón Arocas
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| |
Collapse
|
40
|
Modular strategy for development of the hierarchical visual network in mice. Nature 2022; 608:578-585. [PMID: 35922512 DOI: 10.1038/s41586-022-05045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/28/2022] [Indexed: 12/31/2022]
Abstract
Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.
Collapse
|
41
|
Lenzi SC, Cossell L, Grainger B, Olesen SF, Branco T, Margrie TW. Threat history controls flexible escape behavior in mice. Curr Biol 2022; 32:2972-2979.e3. [PMID: 35659863 PMCID: PMC9616793 DOI: 10.1016/j.cub.2022.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
In many instances, external sensory-evoked neuronal activity is used by the brain to select the most appropriate behavioral response. Predator-avoidance behaviors such as freezing and escape1,2 are of particular interest since these stimulus-evoked responses are behavioral manifestations of a decision-making process that is fundamental to survival.3,4 Over the lifespan of an individual, however, the threat value of agents in the environment is believed to undergo constant revision,5 and in some cases, repeated avoidance of certain stimuli may no longer be an optimal behavioral strategy.6 To begin to study this type of adaptive control of decision-making, we devised an experimental paradigm to probe the properties of threat escape in the laboratory mouse Mus musculus. First, we found that while robust escape to visual looming stimuli can be observed after 2 days of social isolation, mice can also rapidly learn that such stimuli are non-threatening. This learned suppression of escape (LSE) is extremely robust and can persist for weeks and is not a generalized adaptation, since flight responses to novel live prey and auditory threat stimuli in the same environmental context were maintained. We also show that LSE cannot be explained by trial number or a simple form of stimulus desensitization since it is dependent on threat-escape history. We propose that the action selection process mediating escape behavior is constantly updated by recent threat history and that LSE can be used as a robust model system to understand the neurophysiological mechanisms underlying experience-dependent decision-making. Individually housed, but not group-housed, mice show robust escape to looming stimuli Mice can learn to suppress escape, and LSE memory is long lasting LSE is not a general adaptation since it is stimulus specific LSE is not simply habituation and is dependent on recent threat-escape experience
Collapse
Affiliation(s)
- Stephen C Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Lee Cossell
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Benjamin Grainger
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Sarah F Olesen
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
42
|
Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022; 16:792959. [PMID: 35601532 PMCID: PMC9118347 DOI: 10.3389/fncir.2022.792959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a highly conserved area of the mammalian midbrain that is widely implicated in the organisation and control of behaviour. SC receives input from a large number of brain areas, and provides outputs to a large number of areas. The convergence and divergence of anatomical connections with different areas and systems provides challenges for understanding how SC contributes to behaviour. Recent work in mouse has provided large anatomical datasets, and a wealth of new data from experiments that identify and manipulate different cells within SC, and their inputs and outputs, during simple behaviours. These data offer an opportunity to better understand the roles that SC plays in these behaviours. However, some of the observations appear, at first sight, to be contradictory. Here we review this recent work and hypothesise a simple framework which can capture the observations, that requires only a small change to previous models. Specifically, the functional organisation of SC can be explained by supposing that three largely distinct circuits support three largely distinct classes of simple behaviours-arrest, turning towards, and the triggering of escape or capture. These behaviours are hypothesised to be supported by the optic, intermediate and deep layers, respectively.
Collapse
Affiliation(s)
| | | | - Samuel G. Solomon
- Institute of Behavioural Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
43
|
Narushima M, Agetsuma M, Nabekura J. Development and experience-dependent modulation of the defensive behaviors of mice to visual threats. J Physiol Sci 2022; 72:5. [PMID: 35255805 PMCID: PMC10717832 DOI: 10.1186/s12576-022-00831-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022]
Abstract
Rodents demonstrate defensive behaviors such as fleeing or freezing upon recognizing a looming shadow above them. Although individuals' experiences in their habitat can modulate the defensive behavior phenotype, the effects of systematically manipulating the individual's visual experience on vision-guided defensive behaviors have not been studied. We aimed to describe the developmental process of defensive behaviors in response to visual threats and the effects of visual deprivation. We found that the probability of escape response occurrence increased 3 weeks postnatally, and then stabilized. When visual experience was perturbed by dark rearing from postnatal day (P) 21 for a week, the developmental increase in escape probability was clearly suppressed, while the freezing probability increased. Intriguingly, exposure to the looming stimuli at P28 reversed the suppression of escape response development at P35. These results clearly indicate that the development of defensive behaviors in response to looming stimuli is affected by an individual's sensory experience.
Collapse
Affiliation(s)
- Madoka Narushima
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
44
|
Hu Z, Mu Y, Huang L, Hu Y, Chen Z, Yang Y, Huang X, Fu Y, Xi Y, Lin S, Tao Q, Xu F, So KF, Ren C. A visual circuit related to the periaqueductal gray area for the antinociceptive effects of bright light treatment. Neuron 2022; 110:1712-1727.e7. [PMID: 35263618 DOI: 10.1016/j.neuron.2022.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Light is a powerful modulator of non-visual functions. Although accumulating evidence suggests an antinociceptive effect of bright light treatment, the precise circuits that mediate the effects of light on nocifensive behaviors remain unclear. Here, we show that bright light treatment suppresses mouse nocifensive behaviors through a visual circuit related to the lateral and ventral lateral parts of the periaqueductal gray area (l/vlPAG). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which in turn inhibit GABAergic neurons in the l/vlPAG. The activation of vLGN/IGL-projecting RGCs, activation of l/vlPAG-projecting vLGN/IGL neurons, or inhibition of postsynaptic l/vlPAG neurons is sufficient to suppress nocifensive behaviors. Importantly, we demonstrate that the antinociceptive effects of bright light treatment are dependent on the activation of the retina-vLGN/IGL-l/vlPAG pathway. Together, our results delineate an l/vlPAG-related visual circuit underlying the antinociceptive effects of bright light treatment.
Collapse
Affiliation(s)
- Zhengfang Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Yiman Mu
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Yuqing Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Zhiqing Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Xiaodan Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yunwei Fu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fuqiang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510530, China; Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510530, China.
| |
Collapse
|
45
|
Should I stay or should I go? A thalamic circuit for modulating behavioral responses to visual threat. Neuron 2021; 109:3717-3719. [PMID: 34856131 DOI: 10.1016/j.neuron.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Neuron and in Cell Reports, Fratzl et al. (2021) and Salay and Huberman (2021) identify the ventral lateral geniculate nucleus (vLGN) of the thalamus as a key regulator for adjusting defensive behaviors according to the level of perceived visual threat.
Collapse
|