1
|
Xie WY, Duan WX, Chen Y, Tao MX, Li HX, Gao F, Yin JY, Yan JH, Wang F, Mao CJ, Shen Y, Liu CF. The impact of bright light therapy on Parkinson's disease: A pilot study using vestibular-evoked myogenic potentials. Parkinsonism Relat Disord 2025; 134:107776. [PMID: 40090131 DOI: 10.1016/j.parkreldis.2025.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Bright light therapy (BLT) has been proved to have beneficial effects on Parkinson's disease (PD). Brainstem pathways improvements might be crucial to BLT, but the mechanisms remained unclear. The aim of this study is to validate whether BLT improves clinical symptoms in PD and thus explore the possible mechanisms of brainstem pathways evaluated by vestibular-evoked myogenic potentials (VEMPs). METHODS A total of 22 PD patients participated were enrolled in this crossover randomized placebo-controlled study. Participants received either one month of BLT or dim light therapy (DLT), separated by a 1-month wash-out period, and underwent clinical scales and VEMPs evaluations before and after each intervention. Mixed-effects regression models were used to determine the effect between BLT and DLT on PD patients by the differentials of clinical scales (Δscales) and VEMPs (ΔVEMPs). Correlations between the improvement of clinical symptoms and VEMPs parameters improvements were analyzed in PD patients receiving BLT. RESULTS Excessive daytime sleepiness, anxiety, life quality and autonomic function were improved after BLT. Compared to DLT, the difference was not significant. There were significant differences of cervical VEMPs (cVEMP) and ocular VEMPs (oVEMP) peak latencies after BLT. Compared with DLT, there was significant difference in ΔLp13, ΔRp13 and ΔLp11 peak latencies after BLT. CONCLUSIONS BLT may be a valuable non-pharmacological intervention for improving brainstem function, thereby enhancing quality of life and overall health in PD patients.
Collapse
Affiliation(s)
- Wei-Ye Xie
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ying Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Meng-Xing Tao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Han-Xing Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fan Gao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jie-Yun Yin
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, 215123, China
| | - Jia-Hui Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China; Department of Neurology, Xiongan Xuanwu Hospital, Xiongan, 071700, China.
| |
Collapse
|
2
|
Yu YM, Xia SH, Xu Z, Zhao WN, Song L, Pan X, Zhong CC, Wang D, Gao YH, Yang JX, Wu P, Zhang H, An S, Cao JL, Ding HL. An accumbal microcircuit for the transition from acute to chronic pain. Curr Biol 2025; 35:1730-1749.e5. [PMID: 40112811 DOI: 10.1016/j.cub.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Persistent nociceptive inputs arising from peripheral tissues or/and nerve injuries cause maladaptive changes in neurons or neural circuits in the central nervous system, which further confer acute injury into chronic pain transitions (pain chronification) even after the injury is resolved. However, the critical brain regions and their neural mechanisms involved in this transition have not yet been elucidated. Here, we reveal an accumbal microcircuit that is essential for pain chronification. Notably, the increase of neuronal activity in the nucleus accumbens shell (NAcS) in the acute phase (<7 days) and in core (NAcC) in the chronic phase (14-21 days) was detected in a neuropathic pain mouse model. Importantly, we demonstrated that the NAcS neuronal activation in the acute phase of injury was necessary and sufficient for the development of chronic neuropathic pain. This process was mediated by the accumbal dopamine D2 receptor-expressing neuronal microcircuit from NAcS to NAcC. Thus, our findings reveal an accumbal microcircuit mechanism for pain chronification and suggest that the early intervention targeting this microcircuit may provide a therapeutic approach to pain chronification.
Collapse
Affiliation(s)
- Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Chao-Chao Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
3
|
Tan B, Wu X, Ding Y, Yuan C, Jin Y, Xu C, Hu T, Yu J, Du Y, Chen Z. A glutamatergic innervation from medial area of secondary visual cortex to lateral posterior thalamic nucleus facilitates nociceptive and neuropathic pain. Commun Biol 2025; 8:416. [PMID: 40069548 PMCID: PMC11897222 DOI: 10.1038/s42003-025-07874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Neuropathic pain involves complex cortical mechanisms, yet the role of the medial secondary visual cortex (V2M) remains poorly understood. We hypothesized that glutamatergic neurons in V2M (V2MGlu) contribute to pain modulation and explored their functional involvement in both normal and neuropathic pain states. Here, we found that V2MGlu could be activated by peripheral stimulation under normal conditions. Optical inhibition or activation of unilateral V2MGlu respectively decreased or increased bilateral nociceptive sensitivity, with activation also inducing aversive emotions. Tracing experiments revealed that V2MGlu sends dense synaptic projections to the lateral posterior thalamic nucleus (LP) and lateral dorsal thalamic nucleus (LD). Notably, only optical manipulation of V2MGlu terminals in LP, rather than LD, affected bilateral pain perception. Following partial sciatic nerve ligation (PSL), V2MGlu exhibited hyperactivity, including increased spontaneous spike frequency and heightened responses to stimulation. Inhibiting V2MGlu alleviated PSL-induced mechanical allodynia, thermal hyperalgesia, and negative affective states related to pain. Inhibition of V2MGlu terminals in LP mitigated neuropathic pain. Here, we identified V2MGlu and its circuits to LP as part of the endogenous pain modulatory network, hyperactive after peripheral nerve injury and contributing to neuropathic pain. Our findings support targeting V2MGlu and related circuits as potential therapeutic strategies for neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yila Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cunrui Yuan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Vega-Zuniga T, Sumser A, Symonova O, Koppensteiner P, Schmidt FH, Joesch M. A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics. Nat Neurosci 2025; 28:627-639. [PMID: 39930095 PMCID: PMC11893466 DOI: 10.1038/s41593-025-01874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/19/2024] [Indexed: 03/12/2025]
Abstract
For accurate perception and motor control, an animal must distinguish between sensory experiences elicited by external stimuli and those elicited by its own actions. The diversity of behaviors and their complex influences on the senses make this distinction challenging. Here, we uncover an action-cue hub that coordinates motor commands with visual processing in the brain's first visual relay. We show that the ventral lateral geniculate nucleus (vLGN) acts as a corollary discharge center, integrating visual translational optic flow signals with motor copies from saccades, locomotion and pupil dynamics. The vLGN relays these signals to correct action-specific visual distortions and to refine perception, as shown for the superior colliculus and in a depth-estimation task. Simultaneously, brain-wide vLGN projections drive corrective actions necessary for accurate visuomotor control. Our results reveal an extended corollary discharge architecture that refines early visual transformations and coordinates actions via a distributed hub-and-spoke network to enable visual perception during action.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Anton Sumser
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Division of Neuroscience, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Florian H Schmidt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
5
|
Deng J, Chen L, Liu CC, Liu M, Guo GQ, Wei JY, Zhang JB, Fan HT, Zheng ZK, Yan P, Zhang XZ, Zhou F, Huang SX, Zhang JF, Xu T, Xie JD, Xin WJ. Distinct Thalamo-Subcortical Circuits Underlie Painful Behavior and Depression-Like Behavior Following Nerve Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401855. [PMID: 38973158 PMCID: PMC11425852 DOI: 10.1002/advs.202401855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.
Collapse
Affiliation(s)
- Jie Deng
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Chen
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, 510000, China
| | - Guo-Qing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jia-You Wei
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Bo Zhang
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510630, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou, 515063, China
| | - Pu Yan
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhou
- Department of Neurology, First people's hospital of Foshan, Foshan, Guangdong, 510168, China
| | - Sui-Xiang Huang
- Department of Pain Medicine, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, 510630, China
| | - Ji-Feng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, 510630, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing-Dun Xie
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
6
|
Zhu X, Zhang C, Hu Y, Wang Y, Xiao S, Zhu Y, Sun H, Sun J, Xu C, Xu Y, Chen Y, He X, Liu B, Liu J, Du J, Liang Y, Liu B, Li X, Jiang Y, Shen Z, Shao X, Fang J. Modulation of Comorbid Chronic Neuropathic Pain and Anxiety-Like Behaviors by Glutamatergic Neurons in the Ventrolateral Periaqueductal Gray and the Analgesic and Anxiolytic Effects of Electroacupuncture. eNeuro 2024; 11:ENEURO.0454-23.2024. [PMID: 39084906 PMCID: PMC11360982 DOI: 10.1523/eneuro.0454-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.
Collapse
Affiliation(s)
- Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuxin Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyu Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Hu Z, Huang X, Liu J, Wang Z, Xi Y, Yang Y, Lin S, So KF, Huang L, Tao Q, Ren C. A visual circuit related to the parabrachial nucleus for the antipruritic effects of bright light treatment. Cell Rep 2024; 43:114356. [PMID: 38865246 DOI: 10.1016/j.celrep.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.
Collapse
Affiliation(s)
- Zhengfang Hu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiaodan Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jianyu Liu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Ziyang Wang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yan Yang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lu Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Qian Tao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Jinan University, Department of Public Health and Preventive Medicine Psychology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Chaoran Ren
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
8
|
Zhu M, Jun S, Nie X, Chen J, Hao Y, Yu H, Zhang X, Sun L, Liu Y, Yuan X, Yuan F, Wang S. Mapping of afferent and efferent connections of phenylethanolamine N-methyltransferase-expressing neurons in the nucleus tractus solitarii. CNS Neurosci Ther 2024; 30:e14808. [PMID: 38887205 PMCID: PMC11183208 DOI: 10.1111/cns.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.
Collapse
Affiliation(s)
- Mengchu Zhu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Department of Laboratory DiagnosticsHebei Medical UniversityShijiazhuangHebeiChina
| | - Shirui Jun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaojun Nie
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Jinting Chen
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yinchao Hao
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hongxiao Yu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiang Zhang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Lu Sun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yuelin Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiangshan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of NeurologyJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Fang Yuan
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| | - Sheng Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| |
Collapse
|
9
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Zhang Y, Xu C, Gu Y. Context Processing in Contextual and Cued Fear Extinction. Neurosci Bull 2024; 40:835-839. [PMID: 38619694 PMCID: PMC11178715 DOI: 10.1007/s12264-024-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 04/16/2024] Open
Affiliation(s)
- Yimu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Shang W, Xie S, Feng W, Li Z, Jia J, Cao X, Shen Y, Li J, Shi H, Gu Y, Weng SJ, Lin L, Pan YH, Yuan XB. A non-image-forming visual circuit mediates the innate fear of heights in male mice. Nat Commun 2024; 15:3746. [PMID: 38702319 PMCID: PMC11068790 DOI: 10.1038/s41467-024-48147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.
Collapse
Affiliation(s)
- Wei Shang
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Wenbo Feng
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Xiaoxiao Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yanting Shen
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Jing Li
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Haibo Shi
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yiran Gu
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
12
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
14
|
Huang X, Tao Q, Ren C. A Comprehensive Overview of the Neural Mechanisms of Light Therapy. Neurosci Bull 2024; 40:350-362. [PMID: 37555919 PMCID: PMC10912407 DOI: 10.1007/s12264-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Light is a powerful environmental factor influencing diverse brain functions. Clinical evidence supports the beneficial effect of light therapy on several diseases, including depression, cognitive dysfunction, chronic pain, and sleep disorders. However, the precise mechanisms underlying the effects of light therapy are still not well understood. In this review, we critically evaluate current clinical evidence showing the beneficial effects of light therapy on diseases. In addition, we introduce the research progress regarding the neural circuit mechanisms underlying the modulatory effects of light on brain functions, including mood, memory, pain perception, sleep, circadian rhythm, brain development, and metabolism.
Collapse
Affiliation(s)
- Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Song L, Wang H, Peng R. Advances in the Regulation of Neural Function by Infrared Light. Int J Mol Sci 2024; 25:928. [PMID: 38256001 PMCID: PMC10815576 DOI: 10.3390/ijms25020928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, with the rapid development of optical technology, infrared light has been increasingly used in biomedical fields. Research has shown that infrared light could play roles in light stimulation and biological regulation. Infrared light has been used to regulate neural function due to its high spatial resolution, safety and neural sensitivity and has been considered a useful method to replace traditional neural regulation approaches. Infrared neuromodulation methods have been used for neural activation, central nervous system disorder treatment and cognitive enhancement. Research on the regulation of neural function by infrared light stimulation began only recently, and the underlying mechanism remains unclear. This article reviews the characteristics of infrared light, the advantages and disadvantages of infrared neuromodulation, its effects on improving individual health, and its mechanism. This article aims to provide a reference for future research on the use of infrared neural regulation to treat neuropsychological disorders.
Collapse
Affiliation(s)
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
18
|
Huo L, Ye Z, Liu M, He Z, Huang M, Li D, Wu Q, Wang Q, Wang X, Cao P, Dong J, Shang C. Brain circuits for retching-like behavior. Natl Sci Rev 2024; 11:nwad256. [PMID: 38288368 PMCID: PMC10824557 DOI: 10.1093/nsr/nwad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 01/31/2024] Open
Abstract
Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.
Collapse
Affiliation(s)
- Lifang Huo
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Zhimin Ye
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meiling Liu
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ziqing He
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Changping Life Science Laboratory, Beijing 102299, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Dong
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
19
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Li Z, Peng B, Huang JJ, Zhang Y, Seo MB, Fang Q, Zhang GW, Zhang X, Zhang LI, Tao HW. Enhancement and contextual modulation of visuospatial processing by thalamocollicular projections from ventral lateral geniculate nucleus. Nat Commun 2023; 14:7278. [PMID: 37949869 PMCID: PMC10638288 DOI: 10.1038/s41467-023-43147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.
Collapse
Affiliation(s)
- Zhong Li
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bo Peng
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Biological and Biomedical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michelle B Seo
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qi Fang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Huizhong Whit Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Huang L, Chen X, Tao Q, Wang X, Huang X, Fu Y, Yang Y, Deng S, Lin S, So KF, Song X, Ren C. Bright light treatment counteracts stress-induced sleep alterations in mice, via a visual circuit related to the rostromedial tegmental nucleus. PLoS Biol 2023; 21:e3002282. [PMID: 37676855 PMCID: PMC10484455 DOI: 10.1371/journal.pbio.3002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Light in the environment greatly impacts a variety of brain functions, including sleep. Clinical evidence suggests that bright light treatment has a beneficial effect on stress-related diseases. Although stress can alter sleep patterns, the effect of bright light treatment on stress-induced sleep alterations and the underlying mechanism are poorly understood. Here, we show that bright light treatment reduces the increase in nonrapid eye movement (NREM) sleep induced by chronic stress through a di-synaptic visual circuit consisting of the thalamic ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), lateral habenula (LHb), and rostromedial tegmental nucleus (RMTg). Specifically, chronic stress causes a marked increase in NREM sleep duration and a complementary decrease in wakefulness time in mice. Specific activation of RMTg-projecting LHb neurons or activation of RMTg neurons receiving direct LHb inputs mimics the effects of chronic stress on sleep patterns, while inhibition of RMTg-projecting LHb neurons or RMTg neurons receiving direct LHb inputs reduces the NREM sleep-promoting effects of chronic stress. Importantly, we demonstrate that bright light treatment reduces the NREM sleep-promoting effects of chronic stress through the vLGN/IGL-LHb-RMTg pathway. Together, our results provide a circuit mechanism underlying the effects of bright light treatment on sleep alterations induced by chronic stress.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xi Chen
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiaodan Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yunwei Fu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yan Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shijie Deng
- Department of Anesthesiology, Jiangmen Central Hospital, Guangdong, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoran Ren
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
22
|
Wu XQ, Tan B, Du Y, Yang L, Hu TT, Ding YL, Qiu XY, Moutal A, Khanna R, Yu J, Chen Z. Glutamatergic and GABAergic neurons in the vLGN mediate the nociceptive effects of green and red light on neuropathic pain. Neurobiol Dis 2023; 183:106164. [PMID: 37217103 DOI: 10.1016/j.nbd.2023.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, NY 10010, USA.
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Cao P, Zhang M, Ni Z, Song XJ, Yang CL, Mao Y, Zhou W, Dong WY, Peng X, Zheng C, Zhang Z, Jin Y, Tao W. Green light induces antinociception via visual-somatosensory circuits. Cell Rep 2023; 42:112290. [PMID: 36947545 DOI: 10.1016/j.celrep.2023.112290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Light has been shown to relieve pain, but the underlying neural mechanisms remain unknown. Here, we show that low-intensity (200 lux) green light treatment exerts antinociceptive effects through a neural circuit from the visual cortex projecting to the anterior cingulate cortex (ACC) in mice. Specifically, viral tracing, in vivo two-photon calcium imaging, and fiber photometry recordings show that green light activated glutamatergic projections from the medial part of the secondary visual cortex (V2MGlu) to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (V2MGlu→ACCGABA→Glu). Optogenetic or chemogenetic activation of the V2MGlu→ACCGABA→Glu circuit mimics green-light-induced antinociception in both neuropathic and inflammatory pain model mice. Artificial inhibition of ACC-projecting V2MGlu neurons abolishes the antinociception induced by green light. Taken together, our study shows the V2M-ACC circuit as a potential candidate mediating green-light-induced antinociceptive effects.
Collapse
Affiliation(s)
- Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingjun Zhang
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ziyun Ni
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiang-Jie Song
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wenjie Zhou
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wan-Ying Dong
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoqi Peng
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Changjian Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yan Jin
- Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230027, China; Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
24
|
Liang Y, Fan Z, Li J, Ma R, Zhang Y, Shi X, Zhu Y, Huang J. GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet modulate itch processing in mice. Biochem Biophys Res Commun 2023; 659:72-79. [PMID: 37054505 DOI: 10.1016/j.bbrc.2023.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Itch and pain are two closely related sensations that receiving similar encodings at multiple levels. Accumulated evidences suggest that activation of the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL)-to-lateral and ventrolateral periaqueductal gray (l/vlPAG) projections mediates the antinociceptive effects of bright light therapy. Clinical study showed that bright light therapy may ameliorate cholestasis-induced pruritus. However, the underlying mechanism and whether this circuit participates in itch modulation remains unclear. In this study, chloroquine and histamine were utilized to induce acute itch models in mice. Neuronal activities in vLGN/IGL nucleus were evaluated with c-fos immunostaining as well as fiber photometry. Optogenetic manipulations were performed to activate or inhibit GABAergic neurons in the vLGN/IGL nucleus. Our results showed that the expressions of c-fos in vLGN/IGL were significantly increased upon both chloroquine- and histamine-induced acute itch stimuli. GABAergic neurons in vLGN/IGL were activated during histamine and chloroquine-induced scratching. Optogenetic activation of the vLGN/IGL GABAergic neurons exerts antipruritic effect, while inhibiting these neurons exerts pruritic effect. Our results provide evidence that GABAergic neurons in vLGN/IGL nucleus might play a crucial role in modulating itch, which may provide clue for application of bright light as an antipruritic treatment in clinic.
Collapse
|
25
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
The Central Nervous Mechanism of Stress-Promoting Cancer Progression. Int J Mol Sci 2022; 23:ijms232012653. [PMID: 36293510 PMCID: PMC9604265 DOI: 10.3390/ijms232012653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s immune response, causing tumor cells to escape the “surveillance” of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.
Collapse
|
27
|
Cheng K, Martin LF, Calligaro H, Patwardhan A, Ibrahim MM. Case Report: Green Light Exposure Relieves Chronic Headache Pain in a Colorblind Patient. Clin Med Insights Case Rep 2022; 15:11795476221125164. [PMID: 36159182 PMCID: PMC9493681 DOI: 10.1177/11795476221125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic headaches sometimes prefer non-pharmacological methods for
pain management. We have shown previously that green light exposure (GLED, Green
Light Emitting Diode) reversed thermal hyperalgesia and mechanical allodynia in
a rat model of neuropathic pain. This effect is mediated through the visual
system. Moreover, we recently showed that GLED was effective in decreasing the
severity of headache pain and the number of headache-days per month in migraine
patients. The visual system is comprised of image-forming and non-image-forming
pathways; however, the contribution of different photosensitive cells to the
effect of GLED is not yet known. Here, we report a 66-year-old man with
headaches attributed to other disorders of homeostasis and color blindness who
was recruited in the GLED study. The subject, diagnosed with protanomaly, cannot
differentiate green, yellow, orange, and red colors. After completing the GLED
exposure protocol, the subject noted significant decreases in headache pain
intensity without reduction in the number of headache-days per month. The
subject also reported improvement in the quality of his sleep. These findings
suggest that green light therapy mediates the decrease of the headache pain
intensity through non-image-forming intrinsically photosensitive retinal
ganglion cells. However, the subject did not report a change in the frequency of
his headaches, suggesting the involvement of cones in reduction of headache
frequency by GLED. This is the first case reported of a colorblind man with
chronic headache using GLED to manage his headache pain and may increase our
understanding of the contribution of different photosensitive cells in mediating
the pain-relieving effects of GLED.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Laurent F Martin
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hugo Calligaro
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amol Patwardhan
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| | - Mohab M Ibrahim
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
The caudal prethalamus: Inhibitory switchboard for behavioral control? Neuron 2022; 110:2728-2742. [PMID: 36076337 DOI: 10.1016/j.neuron.2022.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
Abstract
Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.
Collapse
|
29
|
|
30
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|