1
|
Liu C, Wang J, Li H, Shangguan Q, Jin W, Zhu W, Wang P, Chen X, Wang Q. Loss aversion and evidence accumulation in short-video addiction: A behavioral and neuroimaging investigation. Neuroimage 2025; 313:121250. [PMID: 40324736 DOI: 10.1016/j.neuroimage.2025.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025] Open
Abstract
Excessive use of short-video platforms not only impairs decision-making processes but also predisposes individuals to addictive behaviors. This study investigated the relationship between short-video addiction (SVA) symptoms and loss aversion (LA), delving into the underlying computational and neural mechanisms using the drift diffusion model (DDM) and the inter-subject representational similarity analysis (IS-RSA). Behavioral analyses revealed a significant negative correlation between SVA symptoms and the LA coefficient (lnλ). Additionally, the DDM-based drift rate (v) was found to mediate this relationship. Neuroimaging analyses further indicated that SVA symptoms were negatively associated with gain-related activity in the right precuneus, while positively correlating with loss-related activity in the right cerebellum and left postcentral gyrus. Notably, precuneus activation during gain processing mediated the relationship between SVA symptoms and both lnλ and drift rate. IS-RSA revealed that inter-subject variations in SVA symptoms were significantly associated with distinct activation patterns related to gain processing in the frontoparietal network (e.g., frontal pole, inferior frontal gyrus, and supramarginal gyrus) and motor network (e.g., precentral), as well as loss-related activation patterns in the motor networks (e.g., postcentral and pre-supplementary motor area). Similar patterns emerged when examining simultaneous gain and loss-related activation patterns. Mediation analyses further demonstrated that functional activation patterns in the motor network mediated the relationships between inter-subject variations in SVA symptoms and both loss-aversion and psychological processing patterns (e.g., decision threshold, drift rate, and non-decision time). These findings provide novel insights into the cognitive and neural mechanisms underlying the influence of SVA symptoms on loss aversion, and suggest the critical roles of evidence accumulation speed and specific brain activation patterns-particularly within the cognitive control and motor network-in shaping decision-making biases associated with addiction.
Collapse
Affiliation(s)
- Chang Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Jinlian Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Hanbing Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Qianyi Shangguan
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Weipeng Jin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Wenwei Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Pinchun Wang
- College of Early Childhood Education, Tianjin Normal University, Tianjin 300387, PR China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin 300162, PR China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Yu Y, Hu B, Yu XW, Cui YY, Cao XY, Ni MH, Li SN, Dai P, Sun Q, Bai XY, Tong Y, Jing XR, Yang AL, Liang SR, Du LJ, Guo S, Yan LF, Gao B, Cui GB. Neurovascular decoupling of frontoparietal cortex-putamen-cerebellum network in type 2 diabetes patient: Potential biomarker for abnormal eating patterns. Diabetes Res Clin Pract 2025; 224:112175. [PMID: 40233865 DOI: 10.1016/j.diabres.2025.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
AIM High rates of dropout and binge eating triggered by restrictive diet limit the effectiveness of dietary interventions in type 2 diabetes mellitus (T2DM). However, it remains unclear what the potential central underpinnings of T2DM-specific dietary behavior characteristics are. METHODS 41 T2DM patients and 43 matched healthy controls (HC) who underwent resting state functional MRI were enrolled to screen for the suspicious network by effective connectivity (EC) analysis and to explore its dynamic temporal and neurovascular coupling properties. Additionally, the timeline of neuropathological changes during T2DM progression was evaluated. RESULTS Increased uncontrolled eating, internal and external loci of hunger were found in T2DM. EC of the frontoparietal cortex-putamen-cerebellum network was significantly higher in T2DM patients (P = 0.023). The fractional windows (P = 0.009) and mean dwell time (P = 0.009) of the densest state were significantly higher in T2DM patients. Neurovascular decoupling of the frontoparietal cortex-putamen-cerebellum network was correlated with these T2DM-specific eating behavior characteristics. Neurovascular decoupling coefficient of right putamen (Putamen_R) changed at the very beginning of T2DM. CONCLUSION The frontoparietal cortex-putamen-cerebellum network was the suspicious T2DM-related abnormal eating pattern network. Neurovascular decoupling of the network, especially that of Putamen_R, occurred early and might serve as a biomarker for abnormal eating patterns in T2DM patients.
Collapse
Affiliation(s)
- Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Bo Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Xin-Wen Yu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Yan-Yan Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Si-Ning Li
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Pan Dai
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Qian Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Xiao-Yan Bai
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China
| | - Yao Tong
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Xiao-Rui Jing
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Ai-Li Yang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Sheng-Ru Liang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Li-Juan Du
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Shuo Guo
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China.
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an 710038 Shaanxi, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China.
| |
Collapse
|
3
|
D'Angelo E, Antonietti A, Geminiani A, Gambosi B, Alessandro C, Buttarazzi E, Pedrocchi A, Casellato C. Linking cellular-level phenomena to brain architecture: the case of spiking cerebellar controllers. Neural Netw 2025; 188:107538. [PMID: 40344928 DOI: 10.1016/j.neunet.2025.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Linking cellular-level phenomena to brain architecture and behavior is a holy grail for theoretical and computational neuroscience. Advances in neuroinformatics have recently allowed scientists to embed spiking neural networks of the cerebellum with realistic neuron models and multiple synaptic plasticity rules into sensorimotor controllers. By minimizing the distance (error) between the desired and the actual sensory state, and exploiting the sensory prediction, the cerebellar network acquires knowledge about the body-environment interaction and generates corrective signals. In doing so, the cerebellum implements a generalized computational algorithm, allowing it "to learn to predict the timing between correlated events" in a rich set of behavioral contexts. Plastic changes evolve trial by trial and are distributed over multiple synapses, regulating the timing of neuronal discharge and fine-tuning high-speed movements on the millisecond timescale. Thus, spiking cerebellar built-in controllers, among various computational approaches to studying cerebellar function, are helping to reveal the cellular-level substrates of network learning and signal coding, opening new frontiers for predictive computing and autonomous learning in robots.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia Italy.
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano Italy.
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia Italy; current address, Neuroscience Program, Champalimaud Center for the Unknown, Lisboa Portugal
| | - Benedetta Gambosi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano Italy
| | | | - Emiliano Buttarazzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia Italy
| | - Alessandra Pedrocchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia Italy.
| |
Collapse
|
4
|
Kruithof ES, Drop EM, Gerits D, Klaus J, Schutter DJLG. Continuous theta burst stimulation to the medial posterior cerebellum impairs reversal learning in healthy volunteers. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01273-5. [PMID: 40140242 DOI: 10.3758/s13415-025-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
The role of the cerebellum in associative learning and context-updating implies involvement in learning reward-punishment contingencies. This study examined the direct contribution of the cerebellum to reward- and punishment-based reversal learning. A total of 111 healthy right-handed adult volunteers received continuous theta burst stimulation (cTBS) to either the medial posterior cerebellum (n = 37), right posterolateral cerebellum (n = 37), or right occipital lobe (n = 37) in this single-blind between-subjects study. A gambling task with two changing reward-punishment contingencies (reversals) was administered to assess reversal learning rate and the implementation of the optimal strategy as primary endpoints. As secondary endpoints, heart rate variability (HRV), state anxiety, state anger, trait aggression, and trait impulsivity were assessed to examine interactions with cerebellar cTBS on the implementation of the optimal strategy. Results showed that medial posterior cerebellar cTBS compared with right posterolateral cerebellar and right occipital lobe cTBS reduced learning rate after the first reversal and diminished the implementation of the optimal strategy after learning the second reversal. No interactions of cTBS with HRV, state anxiety, state anger, trait aggression, and trait impulsivity on the implementation of the optimal strategy were observed. Our findings provide evidence for involvement of the cerebellum in reward- and punishment-based reversal learning and behavioral adaptation.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.
| | - Eva M Drop
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Daan Gerits
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
5
|
Huvermann DM, Berlijn AM, Thieme A, Erdlenbruch F, Groiss SJ, Deistung A, Mittelstaedt M, Wondzinski E, Sievers H, Frank B, Göricke SL, Gliem M, Köhrmann M, Siebler M, Schnitzler A, Bellebaum C, Minnerop M, Timmann D, Peterburs J. The cerebellum contributes to prediction error coding in reinforcement learning in humans. J Neurosci 2025; 45:e1972242025. [PMID: 40139806 PMCID: PMC12060651 DOI: 10.1523/jneurosci.1972-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Recent rodent data suggest that the cerebellum - a region typically associated with processing sensory prediction errors (PEs) - also processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as striatum and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans. First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested. Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female), thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact with only minor changes in behavioural flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients with cerebellar stroke, and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.Significance statement While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain, recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the cerebellum is necessary for RL-PE coding in the forebrain.
Collapse
Affiliation(s)
- Dana M Huvermann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stefan J Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Manfred Mittelstaedt
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elke Wondzinski
- Department of Neurology and Neurorehabilitation, MediClin Fachklinik Rhein/ Ruhr, Essen, Germany
| | - Heike Sievers
- Department of Neurology and Neurorehabilitation, MediClin Fachklinik Rhein/ Ruhr, Essen, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sophia L Göricke
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mario Siebler
- Department of Neurology and Neurorehabilitation, MediClin Fachklinik Rhein/ Ruhr, Essen, Germany
- Department of Neurology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Zhu T, Areshenkoff CN, De Brouwer AJ, Nashed JY, Flanagan JR, Gallivan JP. Contractions in human cerebellar-cortical manifold structure underlie motor reinforcement learning. J Neurosci 2025; 45:e2158242025. [PMID: 40101964 PMCID: PMC12044045 DOI: 10.1523/jneurosci.2158-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
How the brain learns new motor commands through reinforcement involves distributed neural circuits beyond known frontal-striatal pathways, yet a comprehensive understanding of this broader neural architecture remains elusive. Here, using human functional MRI (N = 46, 27 females) and manifold learning techniques, we identified a low-dimensional neural space that captured the dynamic changes in whole-brain functional organization during a reward-based trajectory learning task. By quantifying participants' learning rates through an Actor-Critic model, we discovered that periods of accelerated learning were characterized by significant manifold contractions across multiple brain regions, including areas of limbic and hippocampal cortex, as well as the cerebellum. This contraction reflected enhanced network integration, with notably stronger connectivity between several of these regions and the sensorimotor cerebellum correlating with higher learning rates. These findings challenge the traditional view of the cerebellum as solely involved in error-based learning, supporting the emerging view that it coordinates with other brain regions during reinforcement learning.Significance Statement This study reveals how distributed brain systems, including the cerebellum and hippocampus, alter their functional connectivity to support motor learning through reinforcement. Using advanced manifold learning techniques on functional MRI data, we examined changes in regional connectivity during reward-based learning and their relationship to learning rate. For several brain regions, we found that periods of heightened learning were associated with increased cerebellar connectivity, suggesting a key role for the cerebellum in reward-based motor learning. These findings challenge the traditional view of the cerebellum as solely involved in supervised (error-based) learning and add to a growing rodent literature supporting a role for cerebellar circuits in reward-driven learning.
Collapse
Affiliation(s)
- Tianyao Zhu
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| | - Corson N Areshenkoff
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Anouk J De Brouwer
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Joseph Y Nashed
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Jason P Gallivan
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Toyama K, Kitamura K, Kawato M. Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning. PLoS Comput Biol 2025; 21:e1012899. [PMID: 40096178 PMCID: PMC11957396 DOI: 10.1371/journal.pcbi.1012899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/31/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, with a particular emphasis on essential reward-prediction errors. We employed the Q-learning model to accurately reproduce the licking responses of mice in a Go/No-go auditory-discrimination task. This method enabled the calculation of reinforcement learning variables, such as reward, predicted reward, and reward-prediction errors in each learning trial. Through tensor component analysis of two-photon Ca2+ imaging data from more than 6,000 Purkinje cells, we found that climbing fiber inputs of the two distinct components, which were specifically activated during Go and No-go cues in the learning process, showed an inverse relationship with predictive reward-prediction errors. Assuming bidirectional parallel-fiber Purkinje-cell synaptic plasticity, we constructed a cerebellar neural-network model with 5,000 spiking neurons of granule cells, Purkinje cells, cerebellar nuclei neurons, and inferior olive neurons. The network model qualitatively reproduced distinct changes in licking behaviors, climbing-fiber firing rates, and their synchronization during discrimination learning separately for Go/No-go conditions. We found that Purkinje cells in the two components could develop specific motor commands for their respective auditory cues, guided by the predictive reward-prediction errors from their climbing fiber inputs. These results indicate a possible role of context-specific actors in modular reinforcement learning, integrating with cerebellar supervised learning capabilities.
Collapse
Affiliation(s)
- Huu Hoang
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Shinichiro Tsutsumi
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Masanobu Kano
- Department of Neurophysiology, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Keisuke Toyama
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | - Mitsuo Kawato
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
8
|
Lee JL, Casamento-Moran A, Bastian AJ, Cullen KE, Chib VS. Striatal and cerebellar interactions during reward-based motor performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636434. [PMID: 39975096 PMCID: PMC11839110 DOI: 10.1101/2025.02.06.636434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Goal-directed motor performance relies on the brain's ability to distinguish between actions that lead to successful and unsuccessful outcomes. The basal ganglia (BG) and cerebellum (CBL) are integral to processing performance outcomes, yet their functional interactions remain underexplored. This study scanned participants' brains with functional magnetic imaging (fMRI) while they performed a skilled motor task for monetary rewards, where outcomes depended on their motor performance and also probabilistic events that were not contingent on their performance. We found successful motor outcomes increased activity in the ventral striatum (VS), a functional sub-region of the BG, whereas unsuccessful motor outcomes engaged the CBL. In contrast, for probabilistic outcomes unrelated to motor performance, the BG and CBL exhibited no differences in activity between successful and unsuccessful outcomes. Dynamic causal modeling revealed that VS-to-CBL connectivity was inhibitory following successful motor outcomes, suggesting that the VS may suppress CBL error processing for correct actions. Conversely, CBL-to-VS connectivity was inhibitory after unsuccessful motor outcomes, potentially preventing reinforcement of erroneous actions. Additionally, interindividual differences in task preference, assessed by having participants choose between performing the motor task or flipping a coin for monetary rewards, were related to inhibitory VS-CBL connectivity. These findings highlight a performance-mediated functional network between the VS and CBL, modulated by motivation and subjective preferences, supporting goal-directed behavior.
Collapse
Affiliation(s)
- Joonhee Leo Lee
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Agostina Casamento-Moran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vikram S Chib
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Derosiere G, Shokur S, Vassiliadis P. Reward signals in the motor cortex: from biology to neurotechnology. Nat Commun 2025; 16:1307. [PMID: 39900901 PMCID: PMC11791067 DOI: 10.1038/s41467-024-55016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Over the past decade, research has shown that the primary motor cortex (M1), the brain's main output for movement, also responds to rewards. These reward signals may shape motor output in its final stages, influencing movement invigoration and motor learning. In this Perspective, we highlight the functional roles of M1 reward signals and propose how they could guide advances in neurotechnologies for movement restoration, specifically brain-computer interfaces and non-invasive brain stimulation. Understanding M1 reward signals may open new avenues for enhancing motor control and rehabilitation.
Collapse
Affiliation(s)
- Gerard Derosiere
- Lyon Neuroscience Research Center, Impact team, INSERM U1028 - CNRS UMR5292, Lyon 1 University, Bron, France.
| | - Solaiman Shokur
- Translational Neural Engineering Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sensorimotor Neurotechnology Lab (SNL), The BioRobotics Institute, Health Interdisciplinary Center and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
- MINE Lab, Università Vita-Salute San Raffaele, Milano, Italy
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
| |
Collapse
|
10
|
Pemberton J, Chadderton P, Costa RP. Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation. Nat Commun 2024; 15:10913. [PMID: 39738061 PMCID: PMC11686095 DOI: 10.1038/s41467-024-55315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions. First, using sensorimotor tasks, we show that cerebellar feedback in the presence of stable cortical networks is sufficient for rapid task acquisition and switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dynamics in the cortex, explaining a range of optogenetic and behavioural observations. Finally, using our model, we introduce a systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex. In summary, our findings suggest that cortico-cerebellar loops are an important component of task acquisition, switching, and consolidation in the brain.
Collapse
Affiliation(s)
- Joseph Pemberton
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Van Overwalle F, Heleven E, Haihambo N, Li M, Ma Q, Pu M, Baeken C, Deroost N, Baetens K. Mentalizing About Dynamic Social Action Sequences Is Supported by the Cerebellum, Basal Ganglia, and Neocortex: A Meta-Analysis of Activation and Connectivity. Hum Brain Mapp 2024; 45:e70098. [PMID: 39688325 PMCID: PMC11651214 DOI: 10.1002/hbm.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The posterior cerebellum and anterior basal ganglia are critical subcortical structures for learning and identifying dynamic action sequences, in concert with the neocortex. The present analysis investigates the role of action sequences during social mentalizing, termed here dynamic or sequential social mentalizing. Although the role of the cerebellum in dynamic social mentalizing was extensively investigated during the last decade, the basal ganglia were long ignored. We conducted an activation likelihood estimation coordinate-based meta-analysis of sequential social mentalizing tasks (with 485 participants in 17 studies). These tasks required participants to make social mentalizing inferences ranging from low-level goals to high-level beliefs and traits, while either memorizing, generating or predicting temporal sequences of the social actions involved (i.e., social sequencing condition), or not (i.e., social non-sequencing control condition), or did so for nonsocial objects (i.e., nonsocial sequencing control condition). The tasks also occasionally included inconsistencies in social behavior. Results revealed that the cerebellum exhibited a preference for social, sequencing, and inconsistent information, while the basal ganglia showed a preference for sequencing and inconsistency, without a general preference for social input. Meta-analytic connectivity analysis further showed evidence of coactivation between mentalizing areas of the cerebellum, basal ganglia and cerebral neocortex. The present work underscores the role of subcortical structures in social mentalizing about dynamic action sequences.
Collapse
Affiliation(s)
| | - Elien Heleven
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Naem Haihambo
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Meijia Li
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Qianying Ma
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Min Pu
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Chris Baeken
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Natacha Deroost
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Kris Baetens
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| |
Collapse
|
12
|
Qu X, Yang P, Zhai R, Xiong ZQ. Inhibition of RtTg neurons reverses methamphetamine-induced attention deficits. Acta Neuropathol Commun 2024; 12:179. [PMID: 39578917 PMCID: PMC11585149 DOI: 10.1186/s40478-024-01890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic methamphetamine (METH) use, a prevalent psychostimulant, is known to impair attention, yet the cellular mechanisms driving these deficits remain poorly understood. Here, we employed a rat model of repeated passive METH injections and evaluated attentional performance using the 5-choice serial reaction time task (5-CSRTT). Using single-nucleus RNA sequencing, immunofluorescence and in situ hybridization, we characterized the response of neurons in the reticulotegmental nucleus (RtTg) to METH exposure. Our results indicate that METH exposure disrupts RtTg neurons at the transcriptional level and results in an increased activation ratio of RtTg under 5-CSRTT conditions. Crucially, chemogenetic inactivation of these neurons or RtTg lesion attenuated METH-induced attention deficits, whereas their activation reproduced the deficits. These findings underscore the critical role of RtTg neurons in mediating METH-induced attention deficits, positioning RtTg as a promising therapeutic target for the treatment of attention deficits linked to chronic METH use.
Collapse
Affiliation(s)
- Xiaotian Qu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingyuan Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| | | | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
13
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
14
|
Sugiyama T, Uehara S, Izawa J. Meta-learning of human motor adaptation via the dorsal premotor cortex. Proc Natl Acad Sci U S A 2024; 121:e2417543121. [PMID: 39441634 PMCID: PMC11536165 DOI: 10.1073/pnas.2417543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Meta-learning enables us to learn how to learn the same or similar tasks more efficiently. Decision-making literature theorizes that a prefrontal network, including the orbitofrontal and anterior cingulate cortices, underlies meta-learning of decision making by reinforcement learning. Recently, computationally similar meta-learning has been theorized and empirically demonstrated in motor adaptation. However, it remains unclear whether meta-learning of motor adaptation also relies on a prefrontal network. Considering hierarchical information flow from the prefrontal to motor cortices, this study explores whether meta-learning is processed in the dorsolateral prefrontal cortex (DLPFC) or in the dorsal premotor cortex (PMd), which is situated upstream of the primary motor cortex, but downstream of the DLPFC. Transcranial magnetic stimulation (TMS) was delivered to either PMd or DLPFC during a motor meta-learning task, in which human participants were trained to regulate the rate and retention of motor adaptation to maximize rewards. While motor adaptation itself was intact, TMS to PMd, but not DLPFC, attenuated meta-learning, impairing the ability to regulate motor adaptation to maximize rewards. Further analyses revealed that TMS to PMd attenuated meta-learning of memory retention. These results suggest that meta-learning of motor adaptation relies more on the premotor area than on a prefrontal network. Thus, while PMd is traditionally viewed as crucial for planning motor actions, this study suggests that PMd is also crucial for meta-learning of motor adaptation, processing goal-directed planning of how long motor memory should be retained to fit the long-term goal of motor adaptation.
Collapse
Affiliation(s)
- Taisei Sugiyama
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki305-8573, Japan
| | - Shintaro Uehara
- Faculty of Rehabilitation, Fujita Health University School of Health Sciences, Toyoake, Aichi470-1192, Japan
| | - Jun Izawa
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki305-8573, Japan
| |
Collapse
|
15
|
Jin S, Hull C. Reward-driven cerebellar climbing fiber activity influences both neural and behavioral learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617466. [PMID: 39416023 PMCID: PMC11482817 DOI: 10.1101/2024.10.09.617466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The cerebellum plays a key role in motor coordination and learning. In contrast with classical supervised learning models, recent work has revealed that CFs can signal reward-predictive information in some behaviors. This raises the question of whether CFs may also operate according to principles similar to those described by reinforcement learning models. To test how CFs operate during reward-guided behavior, and evaluate the role of reward-related CF activity in learning, we have measured CF responses in Purkinje cells of the lateral cerebellum during a Pavlovian task using 2-photon calcium imaging. Specifically, we have performed multi-stimulus experiments to determine whether CF activity meets the requirements of a reward prediction error (rPE) signal for transfer from an unexpected reward to a reward-predictive cue. We find that once CF activity is transferred to a conditioned stimulus, and there is no longer a response to reward, CFs cannot generate learned responses to a second conditioned stimulus that carries the same reward prediction. In addition, by expressing the inhibitory opsin GtACR2 in neurons of the inferior olive, and optically inhibiting these neurons across behavioral training at the time of unexpected reward, we find that the transfer of CF signals to the conditioned stimulus is impaired. Moreover, this optogenetic inhibition also impairs learning, resulting in a deficit in anticipatory lick timing. Together, these results indicate that CF signals can exhibit several characteristics in common with rPEs during reinforcement learning, and that the cerebellum can harness these learning signals to generate accurately timed motor behavior.
Collapse
|
16
|
Vignali C, Mutersbaugh M, Hull C. Cerebellar climbing fibers signal flexible, rapidly adapting reward predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617467. [PMID: 39416163 PMCID: PMC11482763 DOI: 10.1101/2024.10.09.617467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Classical models of cerebellar computation posit that climbing fibers (CFs) operate according to supervised learning rules, correcting movements by signaling the occurrence of motor errors. However, recent findings suggest that in some behaviors, CF activity can exhibit features that resemble the instructional signals necessary for reinforcement learning, namely reward prediction errors (rPEs). Despite these initial observations, many key properties of reward-related CF responses remain unclear, thus limiting our understanding of how they operate to guide cerebellar learning. Here, we have measured the postsynaptic responses of CFs onto cerebellar Purkinje cells using two-photon calcium imaging to test how they respond to learned stimuli that either do or do not predict reward. We find that CFs can develop generalized responses to similar cues of the same modality, regardless of whether they are reward predictive. However, this generalization depends on temporal context, and does not extend across sensory modalities. Further, learned CF responses are flexible, and can be rapidly updated according to new reward contingencies. Together these results suggest that CFs can generate learned, reward-predictive responses that flexibly adapt to the current environment in a context-sensitive manner.
Collapse
|
17
|
Manto M, Adamaszek M, Apps R, Carlson E, Guarque-Chabrera J, Heleven E, Kakei S, Khodakhah K, Kuo SH, Lin CYR, Joshua M, Miquel M, Mitoma H, Larry N, Péron JA, Pickford J, Schutter DJLG, Singh MK, Tan T, Tanaka H, Tsai P, Van Overwalle F, Yamashiro K. Consensus Paper: Cerebellum and Reward. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2169-2192. [PMID: 38769243 DOI: 10.1007/s12311-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service Des Neurosciences, Université de Mons, 7000, Mons, Belgium.
- Unité Des Ataxies Cérébelleuses, CHU-Charleroi, Service Des Neurosciences, University of Mons, 7000, Mons, Belgium.
| | - Michael Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, 01731, Kreischa, Germany
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Erik Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, 98108, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women's University, Tokyo, 191-8510, Japan
| | - Kamran Khodakhah
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chi-Ying R Lin
- Alzheimer's Disease and Memory Disorders Center, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Marta Miquel
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205, Geneva, Switzerland
| | - Jasmine Pickford
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Manpreet K Singh
- Psychiatry and Behavioral Sciences, University of California Davis, 2230 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Tommy Tan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo, 158-8557, Japan
| | - Peter Tsai
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
- Departments of Neuroscience, Pediatrics, Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kunihiko Yamashiro
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
18
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
19
|
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The Role of the Human Cerebellum for Learning from and Processing of External Feedback in Non-Motor Learning: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1532-1551. [PMID: 38379034 PMCID: PMC11269477 DOI: 10.1007/s12311-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This review aimed to systematically identify and comprehensively review the role of the cerebellum in performance monitoring, focusing on learning from and on processing of external feedback in non-motor learning. While 1078 articles were screened for eligibility, ultimately 36 studies were included in which external feedback was delivered in cognitive tasks and which referenced the cerebellum. These included studies in patient populations with cerebellar damage and studies in healthy subjects applying neuroimaging. Learning performance in patients with different cerebellar diseases was heterogeneous, with only about half of all patients showing alterations. One patient study using EEG demonstrated that damage to the cerebellum was associated with altered neural processing of external feedback. Studies assessing brain activity with task-based fMRI or PET and one resting-state functional imaging study that investigated connectivity changes following feedback-based learning in healthy participants revealed involvement particularly of lateral and posterior cerebellar regions in processing of and learning from external feedback. Cerebellar involvement was found at different stages, e.g., during feedback anticipation and following the onset of the feedback stimuli, substantiating the cerebellum's relevance for different aspects of performance monitoring such as feedback prediction. Future research will need to further elucidate precisely how, where, and when the cerebellum modulates the prediction and processing of external feedback information, which cerebellar subregions are particularly relevant, and to what extent cerebellar diseases alter these processes.
Collapse
Affiliation(s)
- Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Dana M Huvermann
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sandra Schneider
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
22
|
Caragea VM, Méndez-Couz M, Manahan-Vaughan D. Dopamine receptors of the rodent fastigial nucleus support skilled reaching for goal-directed action. Brain Struct Funct 2024; 229:609-637. [PMID: 37615757 PMCID: PMC10978667 DOI: 10.1007/s00429-023-02685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023]
Abstract
The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Marta Méndez-Couz
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
23
|
Skovbjerg G, Fritzen AM, Svendsen CSA, Perens J, Skytte JL, Lund C, Lund J, Madsen MR, Roostalu U, Hecksher-Sørensen J, Clemmensen C. Atlas of exercise-induced brain activation in mice. Mol Metab 2024; 82:101907. [PMID: 38428817 PMCID: PMC10943479 DOI: 10.1016/j.molmet.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice. METHODS To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running. Male mice were assigned to one of four groups: a) an acute bout of voluntary wheel running, b) confinement to a cage with a locked running wheel, c) forced treadmill running, or d) placement on an inactive treadmill. Immediately following each exercise or control intervention, blood samples were collected for plasma analysis, and brains were collected for whole-brain c-Fos quantification. RESULTS Our dataset reveals 255 brain regions activated by acute exercise in mice, the majority of which have not previously been linked to exercise. We find a broad response of 140 regulated brain regions that are shared between voluntary wheel running and treadmill running, while 32 brain regions are uniquely regulated by wheel running and 83 brain regions uniquely regulated by treadmill running. In contrast to voluntary wheel running, forced treadmill running triggers activity in brain regions associated with stress, fear, and pain. CONCLUSIONS Our findings demonstrate a significant overlap in neuronal activation signatures between voluntary wheel running and distance-matched forced treadmill running. However, our analysis also reveals notable differences and subtle nuances between these two widely used paradigms. The comprehensive dataset is accessible online at www.neuropedia.dk, with the aim of enabling future research directed towards unraveling the neurobiological response to exercise.
Collapse
Affiliation(s)
- Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Gubra, Hørsholm, Denmark
| | - Andreas Mæchel Fritzen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Sashi Aier Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Ge F, Wang Z, Yu W, Yuan X, Cai Q, Wang G, Li X, Xu X, Yang P, Fan Y, Chang J, Guan X. Activating Lobule VI PC TH+-Med Pathway in Cerebellum Blocks the Acquisition of Methamphetamine Conditioned Place Preference in Mice. J Neurosci 2024; 44:e1312232024. [PMID: 38331582 PMCID: PMC10941241 DOI: 10.1523/jneurosci.1312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiya Yuan
- The first Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiasong Chang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Zhao J, Zhang G, Xu D. The effect of reward on motor learning: different stage, different effect. Front Hum Neurosci 2024; 18:1381935. [PMID: 38532789 PMCID: PMC10963647 DOI: 10.3389/fnhum.2024.1381935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Motor learning is a prominent and extensively studied subject in rehabilitation following various types of neurological disorders. Motor repair and rehabilitation often extend over months and years post-injury with a slow pace of recovery, particularly affecting the fine movements of the distal extremities. This extended period can diminish the motivation and persistence of patients, a facet that has historically been overlooked in motor learning until recent years. Reward, including monetary compensation, social praise, video gaming, music, and virtual reality, is currently garnering heightened attention for its potential to enhance motor motivation and improve function. Numerous studies have examined the effects and attempted to explore potential mechanisms in various motor paradigms, yet they have yielded inconsistent or even contradictory results and conclusions. A comprehensive review is necessary to summarize studies on the effects of rewards on motor learning and to deduce a central pattern from these existing studies. Therefore, in this review, we initially outline a framework of motor learning considering two major types, two major components, and three stages. Subsequently, we summarize the effects of rewards on different stages of motor learning within the mentioned framework and analyze the underlying mechanisms at the level of behavior or neural circuit. Reward accelerates learning speed and enhances the extent of learning during the acquisition and consolidation stages, possibly by regulating the balance between the direct and indirect pathways (activating more D1-MSN than D2-MSN) of the ventral striatum and by increasing motor dynamics and kinematics. However, the effect varies depending on several experimental conditions. During the retention stage, there is a consensus that reward enhances both short-term and long-term memory retention in both types of motor learning, attributed to the LTP learning mechanism mediated by the VTA-M1 dopaminergic projection. Reward is a promising enhancer to bolster waning confidence and motivation, thereby increasing the efficiency of motor learning and rehabilitation. Further exploration of the circuit and functional connections between reward and the motor loop may provide a novel target for neural modulation to promote motor behavior.
Collapse
Affiliation(s)
- Jingwang Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghu Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongsheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
26
|
Larry N, Zur G, Joshua M. Organization of reward and movement signals in the basal ganglia and cerebellum. Nat Commun 2024; 15:2119. [PMID: 38459003 PMCID: PMC10923830 DOI: 10.1038/s41467-024-45921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2024] [Indexed: 03/10/2024] Open
Abstract
The basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view. To compare the basal ganglia and the cerebellum directly, we recorded from oculomotor regions in both structures from the same monkeys. We partitioned the trial-by-trial variability of the neurons into reward and eye-movement signals to compare the coding across structures. Reward expectation and movement signals were the most pronounced in the output structure of the basal ganglia, intermediate in the cerebellum, and the smallest in the input structure of the basal ganglia. These findings suggest that reward and movement information is sharpened through the basal ganglia, resulting in a higher signal-to-noise ratio than in the cerebellum.
Collapse
Affiliation(s)
- Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| | - Gil Zur
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
27
|
Fuchs BA, Pearce AL, Rolls BJ, Wilson SJ, Rose EJ, Geier CF, Garavan H, Keller KL. The Cerebellar Response to Visual Portion Size Cues Is Associated with the Portion Size Effect in Children. Nutrients 2024; 16:738. [PMID: 38474866 DOI: 10.3390/nu16050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The neural mechanisms underlying susceptibility to eating more in response to large portions (i.e., the portion size effect) remain unclear. Thus, the present study examined how neural responses to portion size relate to changes in weight and energy consumed as portions increase. Associations were examined across brain regions traditionally implicated in appetite control (i.e., an appetitive network) as well as the cerebellum, which has recently been implicated in appetite-related processes. Children without obesity (i.e., BMI-for-age-and-sex percentile < 90; N = 63; 55% female) viewed images of larger and smaller portions of food during fMRI and, in separate sessions, ate four meals that varied in portion size. Individual-level linear and quadratic associations between intake (kcal, grams) and portion size (i.e., portion size slopes) were estimated. The response to portion size in cerebellar lobules IV-VI was associated with the quadratic portion size slope estimated from gram intake; a greater response to images depicting smaller compared to larger portions was associated with steeper increases in intake with increasing portion sizes. Within the appetitive network, neural responses were not associated with portion size slopes. A decreased cerebellar response to larger amounts of food may increase children's susceptibility to overeating when excessively large portions are served.
Collapse
Affiliation(s)
- Bari A Fuchs
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alaina L Pearce
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara J Rolls
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma J Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles F Geier
- Human Development and Family Science, University of Georgia, Athens, GA 31793, USA
| | - Hugh Garavan
- Department of Psychological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Kathleen L Keller
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Washburn S, Oñate M, Yoshida J, Vera J, Bhuvanasundaram R, Khatami L, Nadim F, Khodakhah K. The cerebellum directly modulates the substantia nigra dopaminergic activity. Nat Neurosci 2024; 27:497-513. [PMID: 38272967 PMCID: PMC11441724 DOI: 10.1038/s41593-023-01560-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Evidence of direct reciprocal connections between the cerebellum and basal ganglia has challenged the long-held notion that these structures function independently. While anatomical studies have suggested the presence of cerebellar projections to the substantia nigra pars compacta (SNc), the nature and function of these connections (Cb-SNc) is unknown. Here we show, in mice, that Cb-SNc projections form monosynaptic glutamatergic synapses with dopaminergic and non-dopaminergic neurons in the SNc. Optogenetic activation of Cb-SNc axons in the SNc is associated with increased SNc activity, elevated striatal dopamine levels and increased locomotion. During behavior, Cb-SNc projections are bilaterally activated before ambulation and unilateral lever manipulation. Cb-SNc projections show prominent activation for water reward and higher activation for sweet water, suggesting that the pathway also encodes reward value. Thus, the cerebellum directly, rapidly and effectively modulates basal ganglia dopamine levels and conveys information related to movement initiation, vigor and reward processing.
Collapse
Affiliation(s)
- Samantha Washburn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maritza Oñate
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Leila Khatami
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Farzan Nadim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Konosu A, Matsuki Y, Fukuhara K, Funato T, Yanagihara D. Roles of the cerebellar vermis in predictive postural controls against external disturbances. Sci Rep 2024; 14:3162. [PMID: 38326369 PMCID: PMC10850480 DOI: 10.1038/s41598-024-53186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.
Collapse
Affiliation(s)
- Akira Konosu
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yuma Matsuki
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kaito Fukuhara
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
30
|
Batsikadze G, Pakusch J, Klein M, Ernst TM, Thieme A, Nicksirat SA, Steiner KM, Nio E, Genc E, Maderwald S, Deuschl C, Merz CJ, Quick HH, Mark MD, Timmann D. Mild Deficits in Fear Learning: Evidence from Humans and Mice with Cerebellar Cortical Degeneration. eNeuro 2024; 11:ENEURO.0365-23.2023. [PMID: 38176906 PMCID: PMC10897646 DOI: 10.1523/eneuro.0365-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Klein
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Michael Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Seyed Ali Nicksirat
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Katharina Marie Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Enzo Nio
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Erhan Genc
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology and C-TNBS, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Josef Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
- High-Field and Hybrid MR Imaging, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
31
|
Donovan M, Frentz M, Lozano AR, Rao S, Rodriguez M, Noble-Haeusslein LJ. The Emerging Landscape of the Cerebellum after a Pediatric Traumatic Brain Injury: From Diaschisis to Sociality. ADVANCES IN NEUROBIOLOGY 2024; 42:165-177. [PMID: 39432042 DOI: 10.1007/978-3-031-69832-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is an expanding interest in the cerebellum in the context of focal and diffuse traumatic injuries to the cerebral cortex. In the adult brain, preclinical studies have revealed acute as well as progressive loss of Purkinje cells in the cerebellum coincident with microglial activation. This pathogenesis, remote to the site of the primary injury, is termed "diaschisis." Here we consider traumatic injuries to the developing brain, where the cerebellum likewise undergoes neurodegeneration. As injury is superimposed on a young brain, long-term adverse consequences may reflect diaschisis that is compounded by disruption of brain development.
Collapse
Affiliation(s)
- Michael Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Morgan Frentz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Anakaren Romero Lozano
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shripriya Rao
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School and the College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
32
|
Rice LC, Langan MT, Cheng DT, Sheu YS, Peterburs J, Hua J, Qin Q, Rilee JJ, Faulkner ML, Mathena JR, Munro CA, Wand GS, McCaul ME, Desmond JE. Disrupted executive cerebro-cerebellar functional connectivity in alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:33-47. [PMID: 38206281 PMCID: PMC10784638 DOI: 10.1111/acer.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) affects 283 million people worldwide and its prevalence is increasing. Despite the role of the cerebellum in executive control and its sensitivity to alcohol, few studies have assessed its involvement in AUD-relevant functional networks. The goal of this study is to compare resting-state functional connectivity (FC) patterns in abstinent adults with a history of AUD and controls (CTL). We hypothesized that group differences in cerebro-cerebellar FC would be present, particularly within the frontoparietal/executive control network (FPN). METHODS Twenty-eight participants completed a resting-state functional magnetic resonance imaging (rsfMRI) study. CTL participants had no history of AUD, comorbid psychological conditions, or recent heavy drinking and/or drug use. AUD participants had a history of AUD, with sobriety for at least 30 days prior to data collection. Multivariate pattern analysis, an agnostic, whole-brain approach, was used to identify regions with significant differences in FC between groups. Seed-based analyses were then conducted to determine the directionality and extent of these FC differences. Associations between FC strength and executive function were assessed using correlations with Wisconsin Card Sorting Test (WCST) performance. RESULTS There were significant group differences in FC in nodes of the FPN, ventral attention network, and default mode network. Post hoc analyses predominantly identified FC differences within the cerebro-cerebellar FPN, with AUD showing significantly less FC within the FPN. In AUD, FC strength between FPN clusters identified in the multivariate pattern analysis (MVPA) analysis (Left Crus II, Right Frontal Cortex) was positively associated with performance on the WCST. CONCLUSIONS Our results show less engagement of the FPN in individuals with AUD than in CTL. FC strength within this network was positively associated with performance on the WCST. These findings suggest that long-term heavy drinking alters cerebro-cerebellar FC, particularly within networks that are involved in executive function.
Collapse
Affiliation(s)
- Laura C. Rice
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Yi-Shin Sheu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jutta Peterburs
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Germany
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Qin Qin
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | | | | - Gary S. Wand
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary E. McCaul
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John E. Desmond
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Tsay JS, Schuck L, Ivry RB. Cerebellar Degeneration Impairs Strategy Discovery but Not Strategy Recall. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1223-1233. [PMID: 36464710 PMCID: PMC10239782 DOI: 10.1007/s12311-022-01500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The cerebellum is recognized to play a critical role in the automatic and implicit process by which movement errors are used to keep the sensorimotor system precisely calibrated. However, its role in other learning processes frequently engaged during sensorimotor adaptation tasks remains unclear. In the present study, we tested the performance of individuals with cerebellar degeneration on a variant of a visuomotor adaptation task in which learning requires the use of strategic re-aiming, a process that can nullify movement errors in a rapid and volitional manner. Our design allowed us to assess two components of this learning process, the discovery of an appropriate strategy and the recall of a learned strategy. Participants were exposed to a 60° visuomotor rotation twice, with the initial exposure block assessing strategy discovery and the re-exposure block assessing strategy recall. Compared to age-matched controls, individuals with cerebellar degeneration were slower to derive an appropriate aiming strategy in the initial Discovery block but exhibited similar recall of the aiming strategy during the Recall block. This dissociation underscores the multi-faceted contributions of the cerebellum to sensorimotor learning, highlighting one way in which this subcortical structure facilitates volitional action selection.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Lauren Schuck
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
34
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
35
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Yang W, Niu H, Jin Y, Cui J, Li M, Qiu Y, Lu D, Li G, Li J. Altered dynamic functional connectivity of the thalamus subregions in patients with schizophrenia. J Psychiatr Res 2023; 167:86-92. [PMID: 37862908 DOI: 10.1016/j.jpsychires.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Previous neuroimaging studies indicated that patients with schizophrenia showed impaired thalamus and thalamo-cortical circuits. However, the dynamic functional connectivity (dFC) patterns of the thalamus remain unclear. In this study, we explored the dFC of the thalamus in SZ patients and whether clinical features are correlated with altered dFC. METHODS Forty-three patients with schizophrenia and 31 healthy controls underwent 3.0 T rs-fMRI. Based on the human Brainnetome atlas, the thalamus is divided into 8 subregions. Subsequently, we performed flexible least squares method to calculate the dFC of each thalamus subregions. RESULTS Compared with healthy controls, patients with schizophrenia exhibited increased dFC between the thalamus and cerebellar, visual-related cortex, sensorimotor-related cortex, and frontal lobe. In addition, we found that the dFC of the thalamus and the right fusiform gyrus was negatively associated with age of onset. CONCLUSIONS Our findings demonstrated that the dFC of specific thalamus sub-regions is altered in patients with schizophrenia. Our results further suggested the dysconnectivity of thalamus plays an important role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Weiliang Yang
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Huiming Niu
- The Third People's Hospital of Tianshui, Tianshui, 741000, China
| | - Yiqiong Jin
- The Third People's Hospital of Tianshui, Tianshui, 741000, China
| | - Jie Cui
- The Third People's Hospital of Tianshui, Tianshui, 741000, China
| | - Meijuan Li
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yuying Qiu
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Duihong Lu
- The Third People's Hospital of Tianshui, Tianshui, 741000, China
| | - Gang Li
- The Third People's Hospital of Tianshui, Tianshui, 741000, China
| | - Jie Li
- Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| |
Collapse
|
37
|
Zang Y, De Schutter E. Recent data on the cerebellum require new models and theories. Curr Opin Neurobiol 2023; 82:102765. [PMID: 37591124 DOI: 10.1016/j.conb.2023.102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The cerebellum has been a popular topic for theoretical studies because its structure was thought to be simple. Since David Marr and James Albus related its function to motor skill learning and proposed the Marr-Albus cerebellar learning model, this theory has guided and inspired cerebellar research. In this review, we summarize the theoretical progress that has been made within this framework of error-based supervised learning. We discuss the experimental progress that demonstrates more complicated molecular and cellular mechanisms in the cerebellum as well as new cell types and recurrent connections. We also cover its involvement in diverse non-motor functions and evidence of other forms of learning. Finally, we highlight the need to explain these new experimental findings into an integrated cerebellar model that can unify its diverse computational functions.
Collapse
Affiliation(s)
- Yunliang Zang
- Academy of Medical Engineering and Translational Medicine, Medical Faculty, Tianjin University, Tianjin 300072, China; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan. https://twitter.com/DeschutterOIST
| |
Collapse
|
38
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
39
|
Ikezoe K, Hidaka N, Manita S, Murakami M, Tsutsumi S, Isomura Y, Kano M, Kitamura K. Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice. Commun Biol 2023; 6:924. [PMID: 37689776 PMCID: PMC10492837 DOI: 10.1038/s42003-023-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar climbing fibers convey sensorimotor information and their errors, which are used for motor control and learning. Furthermore, they represent reward-related information. Despite such functional diversity of climbing fiber signals, it is still unclear whether each climbing fiber conveys the information of single or multiple modalities and how the climbing fibers conveying different information are distributed over the cerebellar cortex. Here we perform two-photon calcium imaging from cerebellar Purkinje cells in mice engaged in a voluntary forelimb lever-pull task and demonstrate that climbing fiber responses in 68% of Purkinje cells can be explained by the combination of multiple behavioral variables such as lever movement, licking, and reward delivery. Neighboring Purkinje cells exhibit similar climbing fiber response properties, form functional clusters, and share noise fluctuations of responses. Taken together, individual climbing fibers convey behavioral information on multiplex variables and are spatially organized into the functional modules of the cerebellar cortex.
Collapse
Affiliation(s)
- Koji Ikezoe
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| | - Naoki Hidaka
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoshi Manita
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Masayoshi Murakami
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichiro Tsutsumi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kazuo Kitamura
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
40
|
Sugiyama T, Schweighofer N, Izawa J. Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance. Nat Commun 2023; 14:3988. [PMID: 37422476 PMCID: PMC10329706 DOI: 10.1038/s41467-023-39536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Humans and animals develop learning-to-learn strategies throughout their lives to accelerate learning. One theory suggests that this is achieved by a metacognitive process of controlling and monitoring learning. Although such learning-to-learn is also observed in motor learning, the metacognitive aspect of learning regulation has not been considered in classical theories of motor learning. Here, we formulated a minimal mechanism of this process as reinforcement learning of motor learning properties, which regulates a policy for memory update in response to sensory prediction error while monitoring its performance. This theory was confirmed in human motor learning experiments, in which the subjective sense of learning-outcome association determined the direction of up- and down-regulation of both learning speed and memory retention. Thus, it provides a simple, unifying account for variations in learning speeds, where the reinforcement learning mechanism monitors and controls the motor learning process.
Collapse
Affiliation(s)
- Taisei Sugiyama
- Empowerment Informatics, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90089-9006, USA
| | - Jun Izawa
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
41
|
Melchor-Eixea I, Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Pastor R, Miquel M. Putting forward a model for the role of the cerebellum in cocaine-induced pavlovian memory. Front Syst Neurosci 2023; 17:1154014. [PMID: 37388941 PMCID: PMC10303950 DOI: 10.3389/fnsys.2023.1154014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Substance Use Disorder (SUD) involves emotional, cognitive, and motivational dysfunction. Long-lasting molecular and structural changes in brain regions functionally and anatomically linked to the cerebellum, such as the prefrontal cortex, amygdala, hippocampus, basal ganglia, and ventral tegmental area, are characteristic of SUD. Direct and indirect reciprocal connectivity between the cerebellum and these brain regions can explain cerebellar roles in Pavlovian and reinforcement learning, fear memory, and executive functions. It is increasingly clear that the cerebellum modulates brain functions altered in SUD and other neuropsychiatric disorders that exhibit comorbidity with SUD. In the present manuscript, we review and discuss this evidence and present new research exploring the role of the cerebellum in cocaine-induced conditioned memory using chemogenetic tools (designer receptor exclusively activated by designer drug, DREADDs). Our preliminary data showed that inactivation of a region that includes the interposed and lateral deep cerebellar nuclei reduces the facilitating effect of a posterior vermis lesion on cocaine-induced preference conditioning. These findings support our previous research and suggest that posterior vermis damage may increase drug impact on the addiction circuitry by regulating activity in the DCN. However, they raise further questions that will also be discussed.
Collapse
|
42
|
Al-Fawakhiri N, Ma A, Taylor JA, Kim OA. Exploring the role of task success in implicit motor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526533. [PMID: 36778277 PMCID: PMC9915693 DOI: 10.1101/2023.02.01.526533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We learn to improve our motor skills using different forms of feedback: sensory-prediction error, task success, and reward/punishment. While implicit motor adaptation is driven by sensory-prediction errors, recent work has shown that task success modulates this process. Task success is often confounded with reward, so we sought to determine if the effects of these two signals on adaptation can be dissociated. To address this question, we conducted five experiments that isolated implicit learning using error-clamp visuomotor reach adaptation paradigms. Task success was manipulated by changing the size and position of the target relative to the cursor providing visual feedback, and reward expectation was established using monetary cues and auditory feedback. We found that neither monetary cues nor auditory feedback affected implicit adaptation, suggesting that task success influences implicit adaptation via mechanisms distinct from conventional reward-related processes. Additionally, we found that changes in target size, which caused the target to either exclude or fully envelop the cursor, only affected implicit adaptation for a narrow range of error sizes, while jumping the target to overlap with the cursor more reliably and robustly affected implicit adaptation. Taken together, our data indicate that, while task success exerts a small effect on implicit adaptation, these effects are susceptible to methodological variations and unlikely to be mediated by reward.
Collapse
Affiliation(s)
| | - Ambri Ma
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | - Olivia A Kim
- Department of Psychology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
43
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
44
|
Su W, Zhao L, Bao S, Qin R, Cao J, Tian J, Han Y, Zhang T, Chen C, Shi Q, Guo Q, Shao F, Tian L. Alterations in gray matter morphology and functional connectivity in adult patients with newly diagnosed, untreated hypothyroidism. Thyroid 2023. [PMID: 37130043 DOI: 10.1089/thy.2022.0476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Untreated adult hypothyroidism may be associated with cognitive and emotional impairment, but the precise underlying neuropathological mechanism is unknown. We investigated the brain morphological and functional abnormalities associated with cognition and emotion in hypothyroidism. METHODS This is a cross-sectional observational study. Forty-four newly diagnosed adult hypothyroid patients and 54 well-matched healthy controls (HC) were enrolled. All participants underwent 3D T1WI and resting-state functional brain MRI. Morphological and seed-based functional connectivity (FC) analyses were performed to compare the inter-group differences. Neuropsychological tests, including the Montreal Cognitive Assessment Scale (MoCA), 24-item Hamilton Depression Rating Scale (HAMD-24), and Hamilton Anxiety Rating Scale (HAMA) were administered. Thyroid function test and blood lipid levels were measured. Correlations were computed between neuropsychological and biochemical measures with neuroimaging indices. Sensitive morphological or functional neuroimaging indicators were identified using ROC analysis. RESULTS Compared with HC, hypothyroid patients demonstrated lower total and subdomain scores on the MoCA and higher HAMD-24 and HAMA scores. Morphological analysis revealed the hypothyroid patients had significantly reduced gray matter (GM) volumes in the right superior frontal gyrus, superior temporal gyrus, left dorsolateral superior frontal gyrus, middle frontal gyrus, and supplementary motor area as well as significantly increased GM volumes in the bilateral cerebellar CrusⅠand left precentral gyrus. Furthermore, MRIs of hypothyroid patients showed increased FC between the right cerebellar CrusⅠand left precentral gyrus, triangular part of the inferior frontal gyrus, and angular gyrus of the inferior parietal lobe. The language scores of the MoCA were positively correlated with Jacobian values of the left supplementary motor area (r = 0.391, P = 0.046) and precentral gyrus (r = 0.401, P = 0.039). ROC analysis revealed FC value between cerebellar CrusⅠand angular gyrus could differentiate groups with relatively high accuracy (sensitivity: 75%, specificity: 77.8%, AUC: 0.794, 95% CI: 0.701-0.888, P < 0.001). CONCLUSION Untreated adult-onset hypothyroidism may be associated with impaired cognition and anxiety or depression. GM morphological alterations and FC of the cerebellum with subregions of the frontal and parietal lobes may represent key neuropathological mechanisms underlying the cognitive deterioration and mood dysregulation observed in hypothyroid adults.
Collapse
Affiliation(s)
- Wenxiu Su
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China
- Ningxia Medical University, 105002, School of Clinical Medicine, Yinchuan, Ningxia, China;
| | - Lianping Zhao
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Shisan Bao
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia;
| | - Rui Qin
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Jiancang Cao
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Jing Tian
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Yalan Han
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Taotao Zhang
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Chen Chen
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Qian Shi
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Qian Guo
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Feifei Shao
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Limin Tian
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| |
Collapse
|
45
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
46
|
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and reward outcome processing: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 149:105171. [PMID: 37060968 DOI: 10.1016/j.neubiorev.2023.105171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The cerebellum generates internal prediction models and actively compares anticipated and actual outcomes in order to reach a desired end state. In this process, reward can serve as a reinforcer that shapes internal prediction models, enabling context-appropriate behavior. While the involvement of the cerebellum in reward processing has been established in animals, there is no detailed account of which cerebellar regions are involved in reward anticipation and reward outcome processing in humans. To this end, an activation likelihood estimation meta-analysis of functional neuroimaging studies was performed to investigate cerebellar functional activity patterns associated with reward anticipation and reward outcome processing in healthy adults. Results showed that reward anticipation (k=31) was associated with regional activity in the bilateral anterior lobe, bilateral lobule VI, left Crus I and the posterior vermis, while reward outcome (k=16) was associated with regional activity in the declive and left lobule VI. The findings of this meta-analysis show distinct involvement of the cerebellum in reward anticipation and reward outcome processing as part of a predictive coding routine.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
47
|
Dunin-Barkowski W, Gorban A. Editorial: Toward and beyond human-level AI, volume II. Front Neurorobot 2023; 16:1120167. [PMID: 36687208 PMCID: PMC9853958 DOI: 10.3389/fnbot.2022.1120167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Witali Dunin-Barkowski
- Department of Neuroinformatics, Center for Optical Neural Technologies, Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Gorban
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
- Scientific and Educational Mathematical Center “Mathematics of Future Technology,” Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
48
|
Bae H, Park SY, Kim SJ, Kim CE. Cerebellum as a kernel machine: A novel perspective on expansion recoding in granule cell layer. Front Comput Neurosci 2022; 16:1062392. [PMID: 36618271 PMCID: PMC9815768 DOI: 10.3389/fncom.2022.1062392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Sensorimotor information provided by mossy fibers (MF) is mapped to high-dimensional space by a huge number of granule cells (GrC) in the cerebellar cortex's input layer. Significant studies have demonstrated the computational advantages and primary contributor of this expansion recoding. Here, we propose a novel perspective on the expansion recoding where each GrC serve as a kernel basis function, thereby the cerebellum can operate like a kernel machine that implicitly use high dimensional (even infinite) feature spaces. We highlight that the generation of kernel basis function is indeed biologically plausible scenario, considering that the key idea of kernel machine is to memorize important input patterns. We present potential regimes for developing kernels under constrained resources and discuss the advantages and disadvantages of each regime using various simulation settings.
Collapse
Affiliation(s)
- Hyojin Bae
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| | - Sa-Yoon Park
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Eop Kim
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| |
Collapse
|
49
|
Yoshida J, Oñate M, Khatami L, Vera J, Nadim F, Khodakhah K. Cerebellar Contributions to the Basal Ganglia Influence Motor Coordination, Reward Processing, and Movement Vigor. J Neurosci 2022; 42:8406-8415. [PMID: 36351826 PMCID: PMC9665921 DOI: 10.1523/jneurosci.1535-22.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Both the cerebellum and the basal ganglia are known for their roles in motor control and motivated behavior. These two systems have been classically considered as independent structures that coordinate their contributions to behavior via separate cortico-thalamic loops. However, recent evidence demonstrates the presence of a rich set of direct connections between these two regions. Although there is strong evidence for connections in both directions, for brevity we limit our discussion to the better-characterized connections from the cerebellum to the basal ganglia. We review two sets of such connections: disynaptic projections through the thalamus and direct monosynaptic projections to the midbrain dopaminergic nuclei, the VTA and the SNc. In each case, we review the evidence for these pathways from anatomic tracing and physiological recordings, and discuss their potential functional roles. We present evidence that the disynaptic pathway through the thalamus is involved in motor coordination, and that its dysfunction contributes to motor deficits, such as dystonia. We then discuss how cerebellar projections to the VTA and SNc influence dopamine release in the respective targets of these nuclei: the NAc and the dorsal striatum. We argue that the cerebellar projections to the VTA may play a role in reward-based learning and therefore contribute to addictive behavior, whereas the projection to the SNc may contribute to movement vigor. Finally, we speculate how these projections may explain many of the observations that indicate a role for the cerebellum in mental disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maritza Oñate
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leila Khatami
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Farzan Nadim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
50
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|