1
|
Wang Y, Li Z, Ye Y, Li Y, Wei R, Gan K, Qian Y, Xu L, Kong Y, Guan L, Fang H, Jiao G, Ke X. HD-tDCS effects on social impairment in autism spectrum disorder with sensory processing abnormalities: a randomized controlled trial. Sci Rep 2025; 15:9772. [PMID: 40118999 PMCID: PMC11928555 DOI: 10.1038/s41598-025-93631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
This study examined the effects of high-definition transcranial direct current stimulation (HD-tDCS) on social impairment in children with autism spectrum disorder (ASD), focusing on those with and without sensory processing abnormalities. A randomized double-blind sham-controlled trial involved 72 children with ASD, divided into three groups based on sensory integration status. A post-hoc analysis of 51 children aged 4-8 years who received true HD-tDCS was conducted, categorizing them into hypo-tactile, hyper-tactile, and typical tactile sensitivity groups. Therapeutic efficacy was compared across these groups. (1) The randomized cntrolled Trial: The typical sensory integration group showed significant improvements in social awareness (t = 5.032, p < 0.000) and autistic mannerisms (t = 3.085, p = 0.004) compared to the sensory integration dysfunction group. (2)The result of the post-hoc analysis: The hypo-tactile and typical tactile sensitivity groups exhibited notable improvements in social awareness, cognition, communication, autistic mannerisms, and total SRS scores. In contrast, the hyper-tactile group only had a significant reduction in social communication (t = 2.385, p = 0.022) post-intervention. HD-tDCS effectively improved social impairment symptoms in children with ASD, particularly those with typical sensory integration and either typical or hypo-tactile responsiveness.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhijia Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China
| | - Yupei Ye
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ran Wei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Child Health Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu, China
| | - Kaiyan Gan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Lanzilotto M, Dal Monte O, Diano M, Panormita M, Battaglia S, Celeghin A, Bonini L, Tamietto M. Learning to fear novel stimuli by observing others in the social affordance framework. Neurosci Biobehav Rev 2025; 169:106006. [PMID: 39788170 DOI: 10.1016/j.neubiorev.2025.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL. In this context, we highlight the potential role of subcortical structures of ancient evolutionary origin in encoding social signals and argue that they play a pivotal function in transforming observed emotional expressions into adaptive behavioural responses. This perspective extends the social affordance hypothesis to subcortical circuits underlying vicarious learning in social contexts. Recognising the interplay between these two modes of fear learning paves the way for new empirical studies focusing on interspecies comparisons and broadens the boundaries of our knowledge of fear acquisition.
Collapse
Affiliation(s)
- M Lanzilotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Psychology, University of Turin, Turin, Italy.
| | - O Dal Monte
- Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, Yale University, New Haven, USA
| | - M Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - M Panormita
- Department of Psychology, University of Turin, Turin, Italy; Department of Neuroscience, KU Leuven University, Leuven, Belgium
| | - S Battaglia
- Department of Psychology, University of Turin, Turin, Italy; Department of Psychology, University of Bologna, Cesena, Italy
| | - A Celeghin
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Tamietto
- Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy.
| |
Collapse
|
3
|
Xing F, Sheffield AG, Jadi MP, Chang SWC, Nandy AS. Dynamic modulation of social gaze by sex and familiarity in marmoset dyads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580693. [PMID: 38405818 PMCID: PMC10888878 DOI: 10.1101/2024.02.16.580693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Social communication relies on the ability to perceive and interpret the direction of others' attention, and is commonly conveyed through head orientation and gaze direction in humans and nonhuman primates. However, traditional social gaze experiments in nonhuman primates require restraining head movements, significantly limiting their natural behavioral repertoire. Here, we developed a novel framework for accurately tracking facial features and three-dimensional head gaze orientations of multiple freely moving common marmosets (Callithrix jacchus). By combining deep learning-based computer vision tools with triangulation algorithms, we were able to track the facial features of marmoset dyads within an arena. This method effectively generates dynamic 3D geometrical facial frames while overcoming common challenges like occlusion. To detect the head gaze direction, we constructed a virtual cone, oriented perpendicular to the facial frame. Using this pipeline, we quantified different types of interactive social gaze events, including partner-directed gaze and joint gaze to a shared spatial location. We observed clear effects of sex and familiarity on both interpersonal distance and gaze dynamics in marmoset dyads. Unfamiliar pairs exhibited more stereotyped patterns of arena occupancy, more sustained levels of social gaze across social distance, and increased social gaze monitoring. On the other hand, familiar pairs exhibited higher levels of joint gazes. Moreover, males displayed significantly elevated levels of gazes toward females' faces and the surrounding regions, irrespective of familiarity. Our study reveals the importance of two key social factors in driving the gaze behaviors of a prosocial primate species and lays the groundwork for a rigorous quantification of primate behaviors in naturalistic settings.
Collapse
Affiliation(s)
- Feng Xing
- Inderdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Neuroscience, Yale University, New Haven, CT
| | - Alec G Sheffield
- Inderdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychiatry, Yale University, New Haven, CT
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychiatry, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
| | - Steve W C Chang
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychology, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
- Kavli Institute for Neuroscience, Yale University, New Haven, CT
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychology, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
- Kavli Institute for Neuroscience, Yale University, New Haven, CT
| |
Collapse
|
4
|
Leopold DA. The big mixup: Neural representation during natural modes of primate visual behavior. Curr Opin Neurobiol 2024; 88:102913. [PMID: 39214044 PMCID: PMC11392606 DOI: 10.1016/j.conb.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The primate brain has evolved specialized visual capacities to navigate complex physical and social environments. Researchers studying cortical circuits underlying these capacities have traditionally favored the use of simplified tasks and brief stimulus presentations in order to isolate cognitive variables with tight experimental control. As a result, operational theories about visual brain function have come to emphasize feature detection, hierarchical stimulus encoding, top-down task modulation, and functional segregation in distinct cortical areas. Recently, however, experimental paradigms combining natural behavior with electrophysiological recordings have begun to offer a distinctly different portrait of how the brain takes in and analyzes its visual surroundings. The present article reviews recent work in this area, highlighting some of the more surprising findings in domains of social vision and spatial navigation along with shifts in thinking that have begun to emanate from this approach.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Simon Iv J, Rich EL. Neural populations in macaque anterior cingulate cortex encode social image identities. Nat Commun 2024; 15:7500. [PMID: 39209844 PMCID: PMC11362159 DOI: 10.1038/s41467-024-51825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The anterior cingulate cortex gyrus (ACCg) has been implicated in prosocial behaviors and reasoning about social cues. While this indicates that ACCg is involved in social behavior, it remains unclear whether ACCg neurons also encode social information during goal-directed actions without social consequences. To address this, we assessed how social information is processed by ACCg neurons in a reward localization task. Here we show that neurons in the ACCg of female rhesus monkeys differentiate the identities of conspecifics in task images, even when identity was task-irrelevant. This was in contrast to the prearcuate cortex (PAC), which has not been strongly linked to social behavior, where neurons differentiated identities in both social and nonsocial images. Many neurons in the ACCg also categorically distinguished social from nonsocial trials, but this encoding was only slightly more common in ACCg compared to the PAC. Together, our results suggest that ACCg neurons are uniquely sensitive to social information that differentiates individuals, which may underlie its role in complex social reasoning.
Collapse
Affiliation(s)
- Joseph Simon Iv
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin L Rich
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Simon J, Rich EL. Stimulating social interest: The translational value of basic investigations into frontal cortex function. Neuron 2024; 112:2461-2463. [PMID: 39116838 DOI: 10.1016/j.neuron.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Fan et al. use electrical stimulation during a novel social interaction paradigm to demonstrate a role for the orbitofrontal cortex in directing social attention. Their results shed new light on the basic functions of the orbitofrontal cortex and have translational value in understanding circuit modulation for psychiatric disorders.
Collapse
Affiliation(s)
- Joseph Simon
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin L Rich
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 2024; 112:2631-2644.e6. [PMID: 38823391 PMCID: PMC11309918 DOI: 10.1016/j.neuron.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA; The Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Jara-Ettinger J, Rubio-Fernandez P. Demonstratives as attention tools: Evidence of mentalistic representations within language. Proc Natl Acad Sci U S A 2024; 121:e2402068121. [PMID: 39088395 PMCID: PMC11317602 DOI: 10.1073/pnas.2402068121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 08/03/2024] Open
Abstract
Linguistic communication is an intrinsically social activity that enables us to share thoughts across minds. Many complex social uses of language can be captured by domain-general representations of other minds (i.e., mentalistic representations) that externally modulate linguistic meaning through Gricean reasoning. However, here we show that representations of others' attention are embedded within language itself. Across ten languages, we show that demonstratives-basic grammatical words (e.g., "this"/"that") which are evolutionarily ancient, learned early in life, and documented in all known languages-are intrinsic attention tools. Beyond their spatial meanings, demonstratives encode both joint attention and the direction in which the listener must turn to establish it. Crucially, the frequency of the spatial and attentional uses of demonstratives varies across languages, suggesting that both spatial and mentalistic representations are part of their conventional meaning. Using computational modeling, we show that mentalistic representations of others' attention are internally encoded in demonstratives, with their effect further boosted by Gricean reasoning. Yet, speakers are largely unaware of this, incorrectly reporting that they primarily capture spatial representations. Our findings show that representations of other people's cognitive states (namely, their attention) are embedded in language and suggest that the most basic building blocks of the linguistic system crucially rely on social cognition.
Collapse
Affiliation(s)
- Julian Jara-Ettinger
- Department of Psychology, Yale University, New Haven, CT06510
- Department of Computer Science, Yale University, New Haven, CT06520
- Wu Tsai Institute, Yale University, New Haven, CT06510
| | - Paula Rubio-Fernandez
- Multimodal Language Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, Netherlands
- Department of Philosophy, Classics, History of Art and Ideas, University of Oslo, Oslo0315, Norway
| |
Collapse
|
9
|
Zeisler ZR, Heslin KA, Stoll FM, Hof PR, Clem RL, Rudebeck PH. Comparative basolateral amygdala connectomics reveals dissociable single-neuron projection patterns to frontal cortex in macaques and mice. Curr Biol 2024; 34:3249-3257.e3. [PMID: 38964318 PMCID: PMC11293557 DOI: 10.1016/j.cub.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Basolateral amygdala (BLA) is a key hub for affect in the brain,1,2,3 and dysfunction within this area contributes to a host of psychiatric disorders.4,5 BLA is extensively and reciprocally interconnected with frontal cortex,6,7,8,9 and some aspects of its function are evolutionarily conserved across rodents, anthropoid primates, and humans.10 Neuron density in BLA is substantially lower in primates compared to murine rodents,11 and frontal cortex (FC) is dramatically expanded in primates, particularly the more anterior granular and dysgranular areas.12,13,14 Yet, how these anatomical differences influence the projection patterns of single BLA neurons to frontal cortex across rodents and primates is unknown. Using a barcoded connectomic approach, we assessed the single BLA neuron connections to frontal cortex in mice and macaques. We found that BLA neurons are more likely to project to multiple distinct parts of FC in mice than in macaques. Further, while single BLA neuron projections to nucleus accumbens were similarly organized in mice and macaques, BLA-FC connections differed substantially. Notably, BLA connections to subcallosal anterior cingulate cortex (scACC) in macaques were least likely to branch to other medial frontal cortex areas compared to perigenual ACC (pgACC). This pattern of connections was reversed in the mouse homologues of these areas, infralimbic and prelimbic cortex (IL and PL), mirroring functional differences between rodents and non-human primates. Taken together, these results indicate that BLA connections to FC are not linearly scaled from mice to macaques and instead the organization of single-neuron BLA connections is distinct between these species.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kelsey A Heslin
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, 787 11(th) Avenue, New York, NY 10019, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Lin A, Akafia C, Dal Monte O, Fan S, Fagan N, Putnam P, Tye KM, Chang S, Ba D, Allsop AZAS. An unbiased method to partition diverse neuronal responses into functional ensembles reveals interpretable population dynamics during innate social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593229. [PMID: 38766234 PMCID: PMC11100741 DOI: 10.1101/2024.05.08.593229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In neuroscience, understanding how single-neuron firing contributes to distributed neural ensembles is crucial. Traditional methods of analysis have been limited to descriptions of whole population activity, or, when analyzing individual neurons, criteria for response categorization varied significantly across experiments. Current methods lack scalability for large datasets, fail to capture temporal changes and rely on parametric assumptions. There's a need for a robust, scalable, and non-parametric functional clustering approach to capture interpretable dynamics. To address this challenge, we developed a model-based, statistical framework for unsupervised clustering of multiple time series datasets that exhibit nonlinear dynamics into an a-priori-unknown number of parameterized ensembles called Functional Encoding Units (FEUs). FEU outperforms existing techniques in accuracy and benchmark scores. Here, we apply this FEU formalism to single-unit recordings collected during social behaviors in rodents and primates and demonstrate its hypothesis-generating and testing capacities. This novel pipeline serves as an analytic bridge, translating neural ensemble codes across model systems.
Collapse
Affiliation(s)
- Alexander Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cyril Akafia
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Siqi Fan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Nicholas Fagan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Philip Putnam
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| | - Steve Chang
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Demba Ba
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Sciences, Harvard University, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Artificial and Natural Intelligence, Harvard University, Cambridge, Massachusetts, USA
| | - AZA Stephen Allsop
- Center for Collective Healing, Department of Psychiatry and Behavioral Sciences, Howard University, Washington DC, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Testard C, Tremblay S, Parodi F, DiTullio RW, Acevedo-Ithier A, Gardiner KL, Kording K, Platt ML. Neural signatures of natural behaviour in socializing macaques. Nature 2024; 628:381-390. [PMID: 38480888 DOI: 10.1038/s41586-024-07178-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Québec, Canada
| | - Felipe Parodi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron W DiTullio
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kristin L Gardiner
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Konrad Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Franch M, Yellapantula S, Parajuli A, Kharas N, Wright A, Aazhang B, Dragoi V. Visuo-frontal interactions during social learning in freely moving macaques. Nature 2024; 627:174-181. [PMID: 38355804 PMCID: PMC10959748 DOI: 10.1038/s41586-024-07084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.
Collapse
Affiliation(s)
- Melissa Franch
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Arun Parajuli
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Natasha Kharas
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Anthony Wright
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Valentin Dragoi
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
13
|
Mahmoodi A, Harbison C, Bongioanni A, Emberton A, Roumazeilles L, Sallet J, Khalighinejad N, Rushworth MFS. A frontopolar-temporal circuit determines the impact of social information in macaque decision making. Neuron 2024; 112:84-92.e6. [PMID: 37863039 PMCID: PMC10914637 DOI: 10.1016/j.neuron.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
When choosing, primates are guided not only by personal experience of objects but also by social information such as others' attitudes toward the objects. Crucially, both sources of information-personal and socially derived-vary in reliability. To choose optimally, one must sometimes override choice guidance by personal experience and follow social cues instead, and sometimes one must do the opposite. The dorsomedial frontopolar cortex (dmFPC) tracks reliability of social information and determines whether it will be attended to guide behavior. To do this, dmFPC activity enters specific patterns of interaction with a region in the mid-superior temporal sulcus (mSTS). Reversible disruption of dmFPC activity with transcranial ultrasound stimulation (TUS) led macaques to fail to be guided by social information when it was reliable but to be more likely to use it when it was unreliable. By contrast, mSTS disruption uniformly downregulated the impact of social information on behavior.
Collapse
Affiliation(s)
- Ali Mahmoodi
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Andrew Emberton
- Department of Biomedical Services, University of Oxford, Oxford, UK
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572176. [PMID: 38187638 PMCID: PMC10769221 DOI: 10.1101/2023.12.18.572176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prefrontal cortex is extensively involved in social exchange. During dyadic gaze interaction, multiple prefrontal areas exhibit neuronal encoding of social gaze events and context-specific mutual eye contact, supported by a widespread neural mechanism of social gaze monitoring. To explore causal manipulation of real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events to three prefrontal areas in monkeys. Microstimulations of orbitofrontal cortex (OFC), but not dorsomedial prefrontal or anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing distance of one's gaze fixations relative to partner monkey's eyes. In the temporal dimension, microstimulations of OFC reduced the inter-looking interval for attending to another agent and the latency to reciprocate other's directed gaze. These findings demonstrate that primate OFC serves as a functionally accessible node in controlling dynamic social attention and suggest its potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R. Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Zeisler ZR, Heslin KA, Stoll FM, Hof PR, Clem RL, Rudebeck PH. Comparative basolateral amygdala connectomics reveals dissociable single-neuron projection patterns to frontal cortex in macaques and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571711. [PMID: 38187599 PMCID: PMC10769239 DOI: 10.1101/2023.12.18.571711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The basolateral amygdala (BLA) projects to the frontal cortex (FC) in both rodents and primates, but the comparative organization of single-neuron BLA-FC projections is unknown. Using a barcoded connectomic approach, we found that BLA neurons are more likely to project to multiple distinct parts of FC in mice than in macaques. Further, while single BLA neuron projections to nucleus accumbens are similarly organized in mice and macaques, BLA-FC connections differ.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelsey A Heslin
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
16
|
Testard C, Tremblay S, Parodi F, DiTullio RW, Acevedo-Ithier A, Gardiner K, Kording KP, Platt M. Neural signatures of natural behavior in socializing macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547833. [PMID: 37461580 PMCID: PMC10349985 DOI: 10.1101/2023.07.05.547833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Our understanding of the neurobiology of primate behavior largely derives from artificial tasks in highly-controlled laboratory settings, overlooking most natural behaviors primate brains evolved to produce1. In particular, how primates navigate the multidimensional social relationships that structure daily life and shape survival and reproductive success remains largely unexplored at the single neuron level. Here, we combine ethological analysis with new wireless recording technologies to uncover neural signatures of natural behavior in unrestrained, socially interacting pairs of rhesus macaques within a larger colony. Population decoding of single neuron activity in prefrontal and temporal cortex unveiled robust encoding of 24 species-typical behaviors, which was strongly modulated by the presence and identity of surrounding monkeys. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioral mechanism supporting friendships and alliances, and neural activity maintained a running account of these social investments. When confronted with an aggressive intruder, behavioral and neural population responses reflected empathy and were buffered by the presence of a partner. Surprisingly, neural signatures in prefrontal and temporal cortex were largely indistinguishable and irreducible to visual and motor contingencies. By employing an ethological approach to the study of primate neurobiology, we reveal a highly-distributed neurophysiological record of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.
Collapse
|
17
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
18
|
Mazza A, Cariola M, Capiotto F, Diano M, Schintu S, Pia L, Dal Monte O. Hedonic and autonomic responses in promoting affective touch. Sci Rep 2023; 13:11201. [PMID: 37433850 DOI: 10.1038/s41598-023-37471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Interpersonal touch is intrinsically reciprocal since it entails a person promoting and another receiving the touch. While several studies have investigated the beneficial effects of receiving affective touch, the affective experience of caressing another individual remains largely unknown. Here, we investigated the hedonic and autonomic responses (skin conductance and heart rate) in the person promoting affective touch. We also examined whether interpersonal relationship, gender, and eye contact modulate these responses. As expected, caressing the partner was perceived as more pleasant than caressing a stranger, especially if the affective touch occurred together with mutual eye contact. Promoting affective touch to the partner also resulted in a decrease of both autonomic responses and anxiety levels, suggesting the occurrence of a calming effect. Additionally, these effects were more pronounced in females compared to males, indicating that hedonic and autonomic aspects of affective touch are modulated by both social relationship and gender. These findings show for the first time that caressing a beloved one is not only pleasant but also reduces autonomic responses and anxiety in the person promoting the touch. This might suggest that affective touch has an instrumental role for romantic partners in promoting and reinforcing their affective bonding.
Collapse
Affiliation(s)
- Alessandro Mazza
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy
| | - Monia Cariola
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy
| | - Francesca Capiotto
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy
| | - Matteo Diano
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy
| | - Selene Schintu
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
- Department of Psychology, The George Washington University, Washington, DC, USA
| | - Lorenzo Pia
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy
| | - Olga Dal Monte
- Department of Psychology, University of Turin, Via Verdi 10, Turin, Italy.
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Chong I, Ramezanpour H, Thier P. Causal Manipulation of Gaze-Following in the Macaque Temporal Cortex. Prog Neurobiol 2023; 226:102466. [PMID: 37211234 DOI: 10.1016/j.pneurobio.2023.102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Gaze-following, the ability to shift one's own attention to places or objects others are looking at, is essential for social interactions. Single unit recordings from the monkey cortex and neuroimaging work on the human and monkey brain suggest that a distinct region in the temporal cortex, the gaze-following patch (GFP), underpins this ability. Since previous studies of the GFP have relied on correlational techniques, it remains unclear whether gaze-following related activity in the GFP indicates a causal role rather than being just a reverberation of behaviorally relevant information produced elsewhere. To answer this question, we applied focal electrical and pharmacological perturbation to the GFP. Both approaches, when applied to the GFP, disrupted gaze-following if the monkeys had been instructed to follow gaze, along with the ability to suppress it if vetoed by the context. Hence the GFP is necessary for gaze-following as well as its cognitive control.
Collapse
Affiliation(s)
- Ian Chong
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Hamidreza Ramezanpour
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Peter Thier
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal Circuits guiding Social Preference: Implications in Autism Spectrum Disorder. Neurosci Biobehav Rev 2022; 141:104803. [PMID: 35908593 PMCID: PMC10122914 DOI: 10.1016/j.neubiorev.2022.104803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits. Therefore, an improved understanding of neural circuit-level dysfunction in ASD may be a more productive path to developing broader treatments that are effective across a greater spectrum of ASD. Given the social preference behavioral deficits commonly seen in ASD, dysfunction in circuits mediating social preference may contribute to the atypical development of social cognition. We discuss some of the animal models used to study ASD and examine the function and effects of dysregulation of the social preference circuits, notably the medial prefrontal cortex-amygdala and the medial prefrontal cortex-nucleus accumbens circuits, in these animal models. Using the common circuits underlying similar behavioral disruptions of social preference behaviors as an example, we highlight the importance of identifying disruption in convergent circuits to improve the translational success of animal model research for ASD treatment development.
Collapse
Affiliation(s)
- Abigail V Fortier
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, Developmental Biology, New Haven, CT 06520, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
21
|
A stare like yours: Naturalistic social gaze interactions reveal robust neuronal representations. Neuron 2022; 110:2048-2049. [DOI: 10.1016/j.neuron.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|