1
|
Wu LY, Zhai MN, Bai XQ, He C, Guo YY, Zhang YQ, Wang J, Gao YT, Tu QF, Liu M, Chen JJ, Zhang ZJ. Deficiency of KIF15 contributes to oxaliplatin-induced cold hypersensitivity by limiting annexin A2 and enhancing TRPA1 localization in DRG neuronal membrane. Neuropharmacology 2025; 269:110343. [PMID: 39914618 DOI: 10.1016/j.neuropharm.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Effective treatments for oxaliplatin-induced cold hypersensitivity remain a significant clinical challenge, primarily due to gaps in our understanding of the underlying pathophysiology. Our previous studies have indicated that kinesin-12 (KIF15) is expressed in neurons, suggesting its potential involvement in neurodevelopment and neuronal plasticity. However, its role in mediating chemotherapy-induced pain in primary sensory neurons has not yet been reported. In this study, we found that KIF15-knockout (Kif15-KO) mice showed an increase in cold sensitivity, with this heightened cold hypersensitivity being dependent on the accumulation of the TRP ankyrin 1 (TRPA1) channel on the cell membrane. We further demonstrated that in a model of oxaliplatin-induced peripheral neuropathy (OIPN), KIF15 expression was markedly reduced, coinciding with an increase in TRPA1 membrane localization and a physical interaction between KIF15 and Annexin A2 in peripheral sensory neurons. This suggests a mechanistic link where the loss of KIF15 disrupts the function of Annexin A2, enhancing the localization of TRPA1 on the cell membrane of dorsal root ganglion (DRG) neurons, thereby contributing to cold hypersensitivity. Our results offer a new understanding of the molecular mechanisms underlying chemotherapy-induced cold hypersensitivity, highlighting KIF15 as a key regulator and a potential therapeutic target for conditions like OIPN.
Collapse
Affiliation(s)
- Liu-Ying Wu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China; Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Meng-Nan Zhai
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China; Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xue-Qiang Bai
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Cheng He
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yun-Ying Guo
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yu-Qi Zhang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Juan Wang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yong-Tao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qi-Feng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jun-Jie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhi-Jun Zhang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China; Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| |
Collapse
|
2
|
Zhang MD, Kupari J, Su J, Magnusson KA, Hu Y, Calvo-Enrique L, Usoskin D, Albisetti GW, Ceder MM, Henriksson K, Leavitt AD, Zeilhofer HU, Hökfelt T, Lagerström MC, Ernfors P. Neural ensembles that encode nocifensive mechanical and heat pain in mouse spinal cord. Nat Neurosci 2025; 28:1012-1023. [PMID: 40128392 DOI: 10.1038/s41593-025-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Acute pain is an unpleasant experience caused by noxious stimuli. How the spinal neural circuits attribute differences in quality of noxious information remains unknown. By means of genetic capturing, activity manipulation and single-cell RNA sequencing, we identified distinct neural ensembles in the adult mouse spinal cord encoding mechanical and heat pain. Reactivation or silencing of these ensembles potentiated or stopped, respectively, paw shaking, lifting and licking within but not across the stimuli modalities. Within ensembles, polymodal Gal+ inhibitory neurons with monosynaptic contacts to A-fiber sensory neurons gated pain transmission independent of modality. Peripheral nerve injury led to inferred microglia-driven inflammation and an ensemble transition with decreased recruitment of Gal+ inhibitory neurons and increased excitatory drive. Forced activation of Gal+ neurons reversed hypersensitivity associated with neuropathy. Our results reveal the existence of a spinal representation that forms the neural basis of the discriminative and defensive qualities of acute pain, and these neurons are under the control of a shared feed-forward inhibition.
Collapse
Affiliation(s)
- Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Kupari
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - Dmitry Usoskin
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andrew D Leavitt
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Erdei V, Mészár Z, Varga A. The Burning Pain Transcriptome in the Mouse Primary Somatosensory Cortex. Int J Mol Sci 2025; 26:3538. [PMID: 40332032 PMCID: PMC12027419 DOI: 10.3390/ijms26083538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Our previous research has demonstrated that the spinal cord undergoes epigenetic and molecular alterations following non-severe burn injury (BI). However, the primary somatosensory cortex (S1), crucial for pain perception, remains unexplored in this context. Here, we investigated transcriptomic alterations in the S1 cortex of mice subjected to BI or formalin application (FA) to the hind paw, utilizing RNA sequencing (RNA-seq) one hour after injury. RNA-seq identified 1116 differentially expressed genes (DEGs) in BI and 136 DEGs in formalin-induced inflammatory pain. Notably, 82.4% of DEGs in BI and 32.4% in FA were downregulated. A total of 42 upregulated and 17 downregulated overlapping DEGs were identified, indicating significant differences in the cortical processing of pain based on its origins. Gene Ontology analysis reveals that BI upregulated mitochondrial functions and ribosome synthesis, whereas axon guidance, synaptic plasticity, and neurotransmission-related processes were downregulated. By contrast, formalin treatment mainly impacted metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis highlights the significance of retrograde endocannabinoid signaling (REC) in the response to burn injury. These findings demonstrate that transcriptomic remodeling in the S1 cortex is dependent on the sensory modality and suggest that the REC network is activated during acute pain responses following BI.
Collapse
Affiliation(s)
- Virág Erdei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
- Department of Radiology, Central Hospital of Northern Pest—Military Hospital, Budapest, H-1134 Budapest, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
| | - Angelika Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
| |
Collapse
|
4
|
Shen C, Cui W, Xiong W, Mei L. Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex. J Comp Neurol 2025; 533:e70030. [PMID: 40034091 PMCID: PMC11877257 DOI: 10.1002/cne.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF+ L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.
Collapse
Affiliation(s)
- Chen Shen
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Wanpeng Cui
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Wen‐Cheng Xiong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandOhioUSA
| | - Lin Mei
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandOhioUSA
- Chinese Institutes for Medical ResearchBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Ding Y, Yan Y, Song W, Li Y, Zhao J, Gui B, Zhang Y, Zhang L. NRG1-ErbB4 signaling in the cerebrospinal fluid-contacting nucleus regulates thermal pain in mice. Neuroscience 2025; 566:132-141. [PMID: 39733821 DOI: 10.1016/j.neuroscience.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The cerebrospinal fluid-contacting nucleus(CSF-contacting nucleus) is a pair of unique nuclei in the brain parenchyma which has long been demonstrated to play an important role in pain signal processing. However, the mechanisms by which the CSF-contacting nucleus intervenes in pain is unclear. The NRG1-ErbB4 signaling plays an important role in the nervous system and has been shown to be involved in the regulation of pain. Whether there is an involvement of NRG1-ErbB4 signaling in the regulation of pain in the CSF-contacting nucleus is currently unknown. Here, our works showed that c-Fos expression in the CSF-contacting nucleus was increased in response to incisional pain. The activation of the CSF-contacting nucleus by chemogenetics could induce thermal hyperalgesia in naive mice without effecting the pain in mice suffering from incision pain. The inhibition of the CSF-contacting nucleus alleviated incision pain, but had no effect on the pain response in naive mice. With immunofluorescence staining and Western blot, the NRG1-ErbB4 signaling in the CSF-contacting nucleus showed upregulated during the acute pain phase. And, activating NRG1-ErbB4 signaling in the CSF-contacting nucleus specifically by intracranial injection of drugs, the naïve mice displayed thermal hyperalgesia while inhibiting this signaling by intracranial injection could reverse the hyperalgesia caused by CSF-contacting nucleus activation, and execute an analgesic effect during the painful phase in mice. Our study suggested that the CSF-contacting nucleus plays a regulatory role in thermal pain in mice via NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Yuhan Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Yao Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Jing Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Bin Gui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Yijun Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Licai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
| |
Collapse
|
6
|
Qiao B, Yao J, Fan Y, Zhang N, Feng M, Zhao J, Song X, Luan Y, Zhuang B, Zhang N, Xie X, Xu M. Intrinsic anti-inflammatory nanomedicines for enhanced pain management. Front Bioeng Biotechnol 2024; 12:1514245. [PMID: 39737056 PMCID: PMC11683077 DOI: 10.3389/fbioe.2024.1514245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties. Methods Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity. Our nanoplatform utilizes dendritic mesoporous silica nanoparticles (MSNs) loaded with levobupivacaine and coated with Rg3-based liposomes derived from ginsenoside Rg3, termed LMSN-bupi. Results The MSNs enable sustained and controlled release of the local anesthetic, while the Rg3-liposome coating provides intrinsic anti-inflammatory effects by inhibiting macrophage activation. In animal models, LMSN-bupi demonstrates significantly prolonged analgesic effects and attenuated inflammatory responses compared to traditional liposome-decorated nanoparticles (TMSN-bupi) (n = 5). Discussion These findings underscore the potential of intrinsic anti-inflammatory nanomedicines in enhancing pain management, offering a promising strategy to overcome the limitations of current therapies and improve patient outcomes in postoperative care.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaqian Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu’ang Fan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Feng
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaju Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yang T, Liu X, Cao R, Zhou X, Li W, Wu W, Yu W, Zhang X, Guo Z, Cui S. Establishment of a Magnetically Controlled Scalable Nerve Injury Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405265. [PMID: 39287118 PMCID: PMC11538664 DOI: 10.1002/advs.202405265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Animal models of peripheral nerve injury (PNI) serve as the fundamental basis for the investigations of nerve injury, regeneration, and neuropathic pain. The injury properties of such models, including the intensity and duration, significantly influence the subsequent pathological changes, pain development, and therapeutic efficacy. However, precise control over the intensity and duration of nerve injury remains challenging within existing animal models, thereby impeding accurate and comparative assessments of relevant cases. Here, a new model that provides quantitative and off-body controllable injury properties via a magnetically controlled clamp, is presented. The clamp can be implanted onto the rat sciatic nerve and exert varying degrees of compression under the control of an external magnetic field. It is demonstrated that this model can accurately simulate various degrees of pathology of human patients by adjusting the magnetic control and reveal specific pathological changes resulting from intensity heterogeneity that are challenging to detect previously. The controllability and quantifiability of this model may significantly reduce the uncertainty of central response and inter-experimenter variability, facilitating precise investigations into nerve injury, regeneration, and pain mechanisms.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xilin Liu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering of Jilin University5988 Renmin StreetChangchun130025China
| | - Wei Yu
- Department of Wound Repair, Plastic and Reconstructive MicrosurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Xianyu Zhang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| |
Collapse
|
8
|
Li X, Zhang H, Li W, Tuo H, He B, Jiang H. The role and mechanism of NRG1/ErbB4 in inducing the differentiation of induced pluripotent stem cells into cardiomyocytes. BMC Cardiovasc Disord 2024; 24:559. [PMID: 39407109 PMCID: PMC11481795 DOI: 10.1186/s12872-024-04224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We aimed to investigate the effect and potential mechanism of enhancing Neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression on the differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. METHODS We utilized CRISPR-CAS9 technology to knock in ErbB4 and obtained a single-cell clone IPSN-AAVS1-CMV-ErbB4 (iPSCs-ErbB4). Subsequently, we induced the differentiation of iPSCs into cardiomyocytes and quantified the number of beating embryoid bodies. Furthermore, quantitative real-time PCR assessed the expression of cardiomyocyte markers, including ANP (atrial natriuretic peptide), Nkx2.5 (NK2 transcription factor related locus 5), and GATA4 (GATA binding protein 4). On the 14th day of differentiation, we observed the α-MHC (α-myosin heavy chain)-positive area using immunofluorescent staining and conducted western blotting to detect the expression of cTnT (cardiac troponin) protein and PI3K/Akt signaling pathway-related proteins. Additionally, we intervened the iPSCs-ErbB4 + NRG1 group with the PI3K/Akt inhibitor LY294002 and observed alterations in the expression of cardiomyocyte differentiation-related genes. RESULTS The number of beating embryoid bodies increased after promoting the expression of NRG1/ErbB4 compared to the iPSCs control group. Cardiomyocyte markers ANP, Nkx2.5, and GATA4 significantly increased on day 14 of differentiation, and the positive area of α-MHC was three times that of the iPSCs control group. Moreover, there was a marked increase in cTnT protein expression. However, there was no significant difference in cardiomyocyte differentiation between the iPSCs-ErbB4 group and the iPSCs control group. Akt phosphorylation was significantly increased in the iPSCs-ErbB4 + NRG1 group. LY294002 significantly reversed the enhancing effect of NRG1/ErbB4 overexpression on Akt phosphorylation as well as the increase in α-MHC and cTnT expression. CONCLUSIONS In conclusion, promoting the expression of NRG1/ErbB4 induced the differentiation of iPSC into cardiomyocytes, possibly through modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Heng Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Bing He
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| |
Collapse
|
9
|
Harbour K, Baccei ML. Influence of Early-Life Stress on the Excitability of Dynorphin Neurons in the Adult Mouse Dorsal Horn. THE JOURNAL OF PAIN 2024; 25:104609. [PMID: 38885917 PMCID: PMC11815514 DOI: 10.1016/j.jpain.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
While early-life adversity has been associated with a higher risk of developing chronic pain in adulthood, the cellular and molecular mechanisms by which chronic stress during the neonatal period can persistently sensitize developing nociceptive circuits remain poorly understood. Here, we investigate the effects of early-life stress (ELS) on synaptic integration and intrinsic excitability in dynorphin-lineage (DYN) interneurons within the adult mouse superficial dorsal horn (SDH), which are important for inhibiting mechanical pain and itch. The administration of neonatal limited bedding between postnatal days (P)2 and P9 evoked sex-dependent effects on spontaneous glutamatergic signaling, as female SDH neurons exhibited a higher amplitude of miniature excitatory postsynaptic currents (mEPSCs) after ELS, while mEPSC frequency was reduced in DYN neurons of the male SDH. Furthermore, ELS decreased the frequency of miniature inhibitory postsynaptic currents selectively in female DYN neurons. As a result, ELS increased the balance of spontaneous excitation versus inhibition (E:I ratio) in mature DYN neurons of the female, but not male, SDH network. Nonetheless, ELS weakened the total primary afferent-evoked glutamatergic drive onto adult DYN neurons selectively in females, without modifying afferent-evoked inhibitory signaling onto the DYN population. Finally, ELS failed to significantly change the intrinsic membrane excitability of mature DYN neurons in either males or females. Collectively, these data suggest that ELS exerts a long-term influence on the properties of synaptic transmission onto DYN neurons within the adult SDH, which includes a reduction in the overall strength of sensory input onto this important subset of inhibitory interneurons. PERSPECTIVE: This study suggests that chronic stress during the neonatal period influences synaptic function within adult spinal nociceptive circuits in a sex-dependent manner. These findings yield new insight into the potential mechanisms by which early-life adversity might shape the maturation of pain pathways in the central nervous system (CNS).
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio.
| |
Collapse
|
10
|
Xu JF, Liu L, Liu Y, Lu KX, Zhang J, Zhu YJ, Fang F, Dou YN. Spinal Nmur2-positive Neurons Play a Crucial Role in Mechanical Itch. THE JOURNAL OF PAIN 2024; 25:104504. [PMID: 38442838 DOI: 10.1016/j.jpain.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The dorsal spinal cord is crucial for the transmission and modulation of multiple somatosensory modalities, such as itch, pain, and touch. Despite being essential for the well-being and survival of an individual, itch and pain, in their chronic forms, have increasingly been recognized as clinical problems. Although considerable progress has been made in our understanding of the neurochemical processing of nociceptive and chemical itch sensations, the neural substrate that is crucial for mechanical itch processing is still unclear. Here, using genetic and functional manipulation, we identified a population of spinal neurons expressing neuromedin U receptor 2 (Nmur2+) as critical elements for mechanical itch. We found that spinal Nmur2+ neurons are predominantly excitatory neurons, and are enriched in the superficial laminae of the dorsal horn. Pharmacogenetic activation of cervical spinal Nmur2+ neurons evoked scratching behavior. Conversely, the ablation of these neurons using a caspase-3-based method decreased von Frey filament-induced scratching behavior without affecting responses to other somatosensory modalities. Similarly, suppressing the excitability of cervical spinal Nmur2+ neurons via the overexpression of functional Kir2.1 potassium channels reduced scratching in response to innocuous mechanical stimuli, but not to pruritogen application. At the lumbar level, pharmacogenetic activation of these neurons evoked licking and lifting behaviors. However, ablating these neurons did not affect the behavior associated with acute pain. Thus, these results revealed the crucial role of spinal Nmur2+ neurons in mechanical itch. Our study provides important insights into the neural basis of mechanical itch, paving the way for developing novel therapies for chronic itch. PERSPECTIVE: Excitatory Nmur2+ neurons in the superficial dorsal spinal cord are essential for mechanical but not chemical itch information processing. These spinal Nmur2+ neurons represent a potential cellular target for future therapeutic interventions against chronic itch. Spinal and supraspinal Nmur2+ neurons may play different roles in pain signal processing.
Collapse
Affiliation(s)
- Jun-Feng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lian Liu
- Department of Endocrinology and Metabolic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Lingang Laboratory, Shanghai, China
| | - Ke-Xing Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan-Jing Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Fang
- Department of Endocrinology and Metabolic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Nong Dou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Bell AM, Utting C, Dickie AC, Kucharczyk MW, Quillet R, Gutierrez-Mecinas M, Razlan ANB, Cooper AH, Lan Y, Hachisuka J, Weir GA, Bannister K, Watanabe M, Kania A, Hoon MA, Macaulay IC, Denk F, Todd AJ. Deep sequencing of Phox2a nuclei reveals five classes of anterolateral system neurons. Proc Natl Acad Sci U S A 2024; 121:e2314213121. [PMID: 38805282 PMCID: PMC11161781 DOI: 10.1073/pnas.2314213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.
Collapse
Affiliation(s)
- Andrew M. Bell
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
- Small Animal Clinical Sciences, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | | | - Allen C. Dickie
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Mateusz W. Kucharczyk
- The Wolfson Centre for Age-Related Diseases, King’s College London, LondonWC2R 2LS, United Kingdom
- Cancer Neurophysiology Group, Lukasiewicz-PORT, Polish Center for Technology Development, Wroclaw54-066, Poland
| | - Raphaëlle Quillet
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Maria Gutierrez-Mecinas
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Aimi N. B. Razlan
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Andrew H. Cooper
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Yuxuan Lan
- Earlham Institute, NorwichNRU 7UZ, United Kingdom
| | - Junichi Hachisuka
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Greg A. Weir
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Kirsty Bannister
- The Wolfson Centre for Age-Related Diseases, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Artur Kania
- Neural Circuit Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Mark A. Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD 20892
| | | | - Franziska Denk
- The Wolfson Centre for Age-Related Diseases, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Andrew J. Todd
- Spinal Cord Group, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| |
Collapse
|
12
|
Li WW, Zhao Y, Liu HC, Liu J, Chan SO, Zhong YF, Zhang TY, Liu Y, Zhang W, Xia YQ, Chi XC, Xu J, Wang Y, Wang J. Roles of Thermosensitive Transient Receptor Channels TRPV1 and TRPM8 in Paclitaxel-Induced Peripheral Neuropathic Pain. Int J Mol Sci 2024; 25:5813. [PMID: 38892000 PMCID: PMC11171746 DOI: 10.3390/ijms25115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.
Collapse
Affiliation(s)
- Wen-Wen Li
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yan Zhao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Huai-Cun Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China;
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Fei Zhong
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Tang-Yu Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Wei Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu-Qi Xia
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Xiao-Chun Chi
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jian Xu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, Peking University Health Science Center, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jun Wang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| |
Collapse
|
13
|
Wu Z, Zhou Y, Hou X, Liu W, Yin W, Wang L, Cao Y, Jiang Z, Guo Y, Chen Q, Xie W, Wang Z, Shi N, Liu Y, Gao X, Luo L, Dai J, Ren C, Jiang X. Construction of functional neural network tissue combining CBD-NT3-modified linear-ordered collagen scaffold and TrkC-modified iPSC-derived neural stem cells for spinal cord injury repair. Bioact Mater 2024; 35:242-258. [PMID: 38333615 PMCID: PMC10850738 DOI: 10.1016/j.bioactmat.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Lei Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Quan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Wen Xie
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Ziqiang Wang
- College of Biology, Hunan University, Changsha, 410000, China
| | - Ning Shi
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
14
|
Zhang D, Chen Y, Wei Y, Chen H, Wu Y, Wu L, Li J, Ren Q, Miao C, Zhu T, Liu J, Ke B, Zhou C. Spatial transcriptomics and single-nucleus RNA sequencing reveal a transcriptomic atlas of adult human spinal cord. eLife 2024; 12:RP92046. [PMID: 38289829 PMCID: PMC10945563 DOI: 10.7554/elife.92046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Despite the recognized importance of the spinal cord in sensory processing, motor behaviors, and neural diseases, the underlying organization of neuronal clusters and their spatial location remain elusive. Recently, several studies have attempted to define the neuronal types and functional heterogeneity in the spinal cord using single-cell or single-nucleus RNA sequencing in animal models or developing humans. However, molecular evidence of cellular heterogeneity in the adult human spinal cord is limited. Here, we classified spinal cord neurons into 21 subclusters and determined their distribution from nine human donors using single-nucleus RNA sequencing and spatial transcriptomics. Moreover, we compared the human findings with previously published single-nucleus data of the adult mouse spinal cord, which revealed an overall similarity in the neuronal composition of the spinal cord between the two species while simultaneously highlighting some degree of heterogeneity. Additionally, we examined the sex differences in the spinal neuronal subclusters. Several genes, such as SCN10A and HCN1, showed sex differences in motor neurons. Finally, we classified human dorsal root ganglia (DRG) neurons using spatial transcriptomics and explored the putative interactions between DRG and spinal cord neuronal subclusters. In summary, these results illustrate the complexity and diversity of spinal neurons in humans and provide an important resource for future research to explore the molecular mechanisms underlying spinal cord physiology and diseases.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenhenChina
| | - Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Jin Li
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qiyang Ren
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Nelson TS, Allen HN, Basu P, Prasoon P, Nguyen E, Arokiaraj CM, Santos DF, Seal RP, Ross SE, Todd AJ, Taylor BK. Alleviation of neuropathic pain with neuropeptide Y requires spinal Npy1r interneurons that coexpress Grp. JCI Insight 2023; 8:e169554. [PMID: 37824208 PMCID: PMC10721324 DOI: 10.1172/jci.insight.169554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
| | - Heather N. Allen
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Paramita Basu
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Eileen Nguyen
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cynthia M. Arokiaraj
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diogo F.S. Santos
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Rebecca P. Seal
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Todd
- Spinal Cord Group, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Guo Z, Huang Q, Zhang W, Shi K, Yuan J, Qi S, Wang B, Li K, Li S, Gong J, Jing X, Liu Y, Tan G. Tyrosine Kinase Receptor ErbB4 in Advillin-Positive Neurons Contributes to Inflammatory Pain Hypersensitivity in Mouse DRG. Aging Dis 2023; 15:2799-2812. [PMID: 38029398 PMCID: PMC11567271 DOI: 10.14336/ad.2023.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Inflammatory pain is a common type of pathological pain. Although the dorsal root ganglion (DRG) is key to pathogenesis of inflammatory pain, the underlying specific molecular and cellular mechanisms remain unclear. In this study, we used mouse models of acute or chronic inflammatory pain, induced by formalin or complete Freund' s adjuvant (CFA), respectively, to explore whether tyrosine kinase receptor ErbB4 participates in the pathogenesis of inflammatory pain. Firstly, we found that both the expression of Neuregulin 1 (Nrg1) and phosphorylation of ErbB4 receptor were upregulated in DRG after inflammatory pain, implying the activation of ErbB4 in DRG. Using ErbB4-mutant mice, we found reduced pain sensitivity of mice when ErbB4 gene expression was largely ablated; furthermore, ErbB4 deletion decreased the inflammatory pain hypersensitivity of either formalin- or CFA-induced mouse models. Moreover, the pain sensitivity was reduced in mice with specific deletion of ErbB4 on advillin-positive neurons within DRG. Importantly, pain hypersensitivity also decreased in Advillin-Cre;ErbB4-/- cKO mice after formalin- or CFA-induced inflammatory pain. Finally, gene quantification differential expression analysis, using RNAseq technology in combination with GO and KEGG enrichment analysis, suggested that calcium signaling pathway possibly mediated the roles of ErbB4 on DRG sensory neurons in inflammatory pain models. Together, these results indicate that ErbB4 on advillin-positive sensory neurons enhances inflammatory pain sensitivity, providing new clues towards the pathogenic mechanisms of inflammatory pain.
Collapse
Affiliation(s)
- Zhongxin Guo
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Qingyun Huang
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Wei Zhang
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Kaiyue Shi
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Jie Yuan
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
| | - Shuya Qi
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Bingyan Wang
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Kuotao Li
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Shuntang Li
- Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Nanning, Guangxi, China.
| | - Jiangu Gong
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xuechao Jing
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Yuanyuan Liu
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Nanning, Guangxi, China.
| | - Guohe Tan
- Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| |
Collapse
|
17
|
Bai Y, Sun Y, Pei Y, Zhou C, Yan J, Qin L. Transient receptor potential M2 channel in the hypothalamic preoptic area and its impact on thermoregulation during menopause. Ann Anat 2023; 250:152132. [PMID: 37454827 DOI: 10.1016/j.aanat.2023.152132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Decreased estrogen levels can cause abnormal thermosensitivity of the preoptic area (POA) in the hypothalamus during menopause, which may cause hot flashes. Thermosensitive transient receptors (ThermoTRPs) affect the thermosensitivity of neurons. It is worth exploring whether ThermoTRPs change under low estrogen state and participate in the abnormal thermoregulation of POA. METHODS Adult female Sprague-Dawley rats were randomly divided into sham operation (SHAM), ovariectomy (OVX) and estrogen treatment after ovariectomy (OVX+E) groups. Under 10 ℃, 18 ℃, 25 ℃, 37 ℃ and 45 ℃ incubations, their skin temperature was monitored and the expression of TRPA1, TRPM8, TRPM2, and TRPV1 in POA were investigated. RESULTS The skin temperature of ovariectomized rats changed faster and more dramatically under different incubation temperatures. The results at mRNA level show that only the expression of TRPM2 decreased in POA of OVX group compared with the other two groups at 25 ℃, TRPA1 expression in POA of the three groups increased at 10 ℃, TRPM8 increased at 10 ℃ and 18 ℃, TRPV1 increased at 10 ℃ and 45 ℃, while the expression of TRPM2 decreased at 10 ℃ and 18 ℃ and increased at 37 ℃ and 45 ℃. In all these cases, the magnitudes of the changes were less in the OVX group relative to the other two groups. The further immunohistochemical and Western blot results of TRPM2 and the activated TRPM2 positive cells labeled by c-Fos were consistent with the results of mRNA level. CONCLUSIONS The expression and thermosensitivity of TRPM2 in POA changed greatly under different incubation temperatures, but the changes in ovariectomized rats were less. This may be the key factor triggering thermoregulation dysfunction under low estrogen and may cause hot flashes.
Collapse
Affiliation(s)
- Ying Bai
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Yanrong Sun
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanhong Pei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changman Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junhao Yan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, China.
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
18
|
Bell AM, Utting C, Dickie AC, Kucharczyk MW, Quillet R, Gutierrez-Mecinas M, Razlan AN, Cooper AH, Lan Y, Hachisuka J, Weir GA, Bannister K, Watanabe M, Kania A, Hoon MA, Macaulay IC, Denk F, Todd AJ. Deep sequencing of Phox2a nuclei reveals five classes of anterolateral system neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553715. [PMID: 37786726 PMCID: PMC10541585 DOI: 10.1101/2023.08.20.553715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify 3 clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 & ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.
Collapse
Affiliation(s)
- Andrew M. Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Allen C. Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mateusz W. Kucharczyk
- The Wolfson Centre for Age-Related Diseases, King’s College London, London WC2R 2LS, UK
- Laboratory of Neurophysiology, Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, PL30-668 Krakow, Poland
| | - Raphaëlle Quillet
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aimi N.B. Razlan
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew H. Cooper
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Junichi Hachisuka
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Greg A. Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kirsty Bannister
- The Wolfson Centre for Age-Related Diseases, King’s College London, London WC2R 2LS, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Mark A. Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | | | - Franziska Denk
- The Wolfson Centre for Age-Related Diseases, King’s College London, London WC2R 2LS, UK
| | - Andrew J. Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Santiago-Marrero I, Liu F, Wang H, Arzola EP, Xiong WC, Mei L. Energy Expenditure Homeostasis Requires ErbB4, an Obesity Risk Gene, in the Paraventricular Nucleus. eNeuro 2023; 10:ENEURO.0139-23.2023. [PMID: 37669858 PMCID: PMC10521346 DOI: 10.1523/eneuro.0139-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Obesity affects more than a third adult population in the United States; the prevalence is even higher in patients with major depression disorders. GWAS studies identify the receptor tyrosine kinase ErbB4 as a risk gene for obesity and for major depression disorders. We found that ErbB4 was enriched in the paraventricular nucleus of the hypothalamus (PVH). To investigate its role in metabolism, we deleted ErbB4 by injecting a Cre-expressing virus into the PVH of ErbB4-floxed male mice and found that PVH ErbB4 deletion increased weight gain without altering food intake. ErbB4 PVH deletion also reduced nighttime activity and decreased intrascapular brown adipose tissue (iBAT) thermogenesis. Analysis of covariance (ANCOVA) revealed that ErbB4 PVH deletion reduced O2 consumption, CO2 production and heat generation in a manner independent of body weight. Immunostaining experiments show that ErbB4+ neurons in the PVH were positive for oxytocin (OXT); ErbB4 PVH deletion reduces serum levels of OXT. We characterized mice where ErbB4 was specifically mutated in OXT+ neurons and found reduction in energy expenditure, phenotypes similar to PVH ErbB4 deletion. Taken together, our data indicate that ErbB4 in the PVH regulates metabolism likely through regulation of OXT expressing neurons, reveal a novel function of ErbB4 and provide insight into pathophysiological mechanisms of depression-associated obesity.
Collapse
Affiliation(s)
- Ivan Santiago-Marrero
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Emily P Arzola
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Chinese Institutes for Medical Research, Beijing 100005, China
- Capital Medical University, Beijing 100054, China
| |
Collapse
|
20
|
Wang L, Su X, Yan J, Wu Q, Xu X, Wang X, Liu X, Song X, Zhang Z, Hu W, Liu X, Zhang Y. Involvement of Mrgprd-expressing nociceptors-recruited spinal mechanisms in nerve injury-induced mechanical allodynia. iScience 2023; 26:106764. [PMID: 37250305 PMCID: PMC10214713 DOI: 10.1016/j.isci.2023.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Mechanical allodynia and hyperalgesia are intractable symptoms lacking effective clinical treatments in patients with neuropathic pain. However, whether and how mechanically responsive non-peptidergic nociceptors are involved remains elusive. Here, we showed that von Frey-evoked static allodynia and aversion, along with mechanical hyperalgesia after spared nerve injury (SNI) were reduced by ablation of MrgprdCreERT2-marked neurons. Electrophysiological recordings revealed that SNI-opened Aβ-fiber inputs to laminae I-IIo and vIIi, as well as C-fiber inputs to vIIi, were all attenuated in Mrgprd-ablated mice. In addition, priming chemogenetic or optogenetic activation of Mrgprd+ neurons drove mechanical allodynia and aversion to low-threshold mechanical stimuli, along with mechanical hyperalgesia. Mechanistically, gated Aβ and C inputs to vIIi were opened, potentially via central sensitization by dampening potassium currents. Altogether, we uncovered the involvement of Mrgprd+ nociceptors in nerve injury-induced mechanical pain and dissected the underlying spinal mechanisms, thus providing insights into potential therapeutic targets for pain management.
Collapse
Affiliation(s)
- Liangbiao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaojing Su
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinjin Yan
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiaofeng Wu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Xu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinyue Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoqing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinfeng Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
21
|
Pan Q, Guo SS, Chen M, Su XY, Gao ZL, Wang Q, Xu TL, Liu MG, Hu J. Representation and control of pain and itch by distinct prefrontal neural ensembles. Neuron 2023:S0896-6273(23)00342-2. [PMID: 37224813 DOI: 10.1016/j.neuron.2023.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/18/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Pain and itch are two closely related but essentially distinct sensations that elicit different behavioral responses. However, it remains mysterious how pain and itch information is encoded in the brain to produce differential perceptions. Here, we report that nociceptive and pruriceptive signals are separately represented and processed by distinct neural ensembles in the prelimbic (PL) subdivision of the medial prefrontal cortex (mPFC) in mice. Pain- and itch-responsive cortical neural ensembles were found to significantly differ in electrophysiological properties, input-output connectivity profiles, and activity patterns to nociceptive or pruriceptive stimuli. Moreover, these two groups of cortical neural ensembles oppositely modulate pain- or itch-related sensory and emotional behaviors through their preferential projections to specific downstream regions such as the mediodorsal thalamus (MD) and basolateral amygdala (BLA). These findings uncover separate representations of pain and itch by distinct prefrontal neural ensembles and provide a new framework for understanding somatosensory information processing in the brain.
Collapse
Affiliation(s)
- Qian Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Su-Shan Guo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin-Yu Su
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zi-Long Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Ming-Gang Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China.
| |
Collapse
|
22
|
Qiao B, Song X, Zhang N, Xu M, Zhuang B, Guo H, Wu W, Yang Z, Xie X, Luan Y, Zhang C. Artificial nano-red blood cells nanoplatform with lysosomal escape capability for ultrasound imaging-guided on-demand pain management. Acta Biomater 2023; 158:798-810. [PMID: 36638944 DOI: 10.1016/j.actbio.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Postoperative pain management would benefit significantly from an anesthetic that could take effect in an on-demand manner. An ultrasound would be an appropriate tool for such nanoplatform because it is widely used in clinical settings for ultrasound-guided anesthesia. Herein, we report a nanoplatform for postoperative on-demand pain management that can effectively enhance their analgesic time while providing ultrasonic imaging. Levobupivacaine and perfluoropentane were put into dendritic mesoporous silica and covered with red blood cell membranes to make the pain relief last longer in living organisms. The generated nanoplatform with gas-producing capability is ultrasonic responsive and can finely escape from the lysosomal in cells under ultrasound irradiation, maximizing the anesthetic effect with minimal toxicity. Using an incision pain model in vivo, levobupivacaine's sustained and controlled release gives pain reduction for approximately 3 days straight. The duration of pain relief is over 20 times greater than with a single injection of free levobupivacaine. Effective pain management was reached in vivo, and the pain reduction was enhanced by repeated ultrasonic irradiation. There was no detectable systemic or tissue injury under either of the treatments. Thus, our results suggest that nanoplatform with lysosomal escape capability can provide a practical ultrasound imaging-guided on-demand pain management strategy. STATEMENT OF SIGNIFICANCE: On-demand pain management is essential to postoperative patients. However, the traditional on-demand pain management strategy is hampered by the limited tissue penetration depth of near-infrared stimuli and the lack of proper imaging guidance. The proposed research is significant because it provides a nanoplatform for deep penetrated ultrasound controlled pain management under clinical applicable ultrasound imaging guidance. Moreover, the nanoplatform with prolonged retention time and lysosomal escape capability can provide long-term pain alleviation. Therefore, our results suggest that nanoplatform with lysosomal escape capability can provide an effective strategy for ultrasound imaging-guided on-demand pain management.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huanling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Wenxin Wu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhuyang Yang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
23
|
Shehab S, Javed H, Khan G. Somatotopic localization of c-Fos expression in the spinal cord in response to noxious heat sensation. Front Neuroanat 2022; 16:1035257. [PMID: 36249868 PMCID: PMC9554256 DOI: 10.3389/fnana.2022.1035257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Safa Shehab
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Yu H, Cranfill SL, Luo W. ErbB4 + spinal cord dorsal horn neurons process heat pain. Neuron 2022; 110:2206-2208. [PMID: 35863318 DOI: 10.1016/j.neuron.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How the spinal cord transmits heat signals from the periphery to the brain remains unclear. In this issue of Neuron, Wang et al. (2022) identify a population of spinal cord neurons functioning in this pathway.
Collapse
Affiliation(s)
- Huasheng Yu
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Suna L Cranfill
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, 145 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|