1
|
Jurkovicova-Tarabova B, Stringer RN, Sevcikova Tomaskova Z, Weiss N. Electrophysiological characterization of sourced human iPSC-derived motor neurons. Channels (Austin) 2025; 19:2480713. [PMID: 40131207 PMCID: PMC11938304 DOI: 10.1080/19336950.2025.2480713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived motor neurons provide a powerful platform for studying motor neuron diseases. These cells enable human-specific modeling of disease mechanisms and high-throughput drug screening. While commercially available iPSC-derived motor neurons offer a convenient alternative to time-intensive differentiation protocols, their electrophysiological properties and maturation require comprehensive evaluation to validate their utility for research and therapeutic applications. In this study, we characterized the electrophysiological properties of commercially available iPSC-derived motor neurons. Immunofluorescence confirmed the expression of motor neuron-specific biomarkers, indicating successful differentiation and maturation. Electrophysiological recordings revealed stable passive membrane properties, maturation-dependent improvements in action potential kinetics, and progressive increases in repetitive firing. Voltage-clamp analyses confirmed the functional expression of key ion channels, including high- and low-voltage-activated calcium channels, TTX-sensitive and TTX-insensitive sodium channels, and voltage-gated potassium channels. While the neurons exhibited hallmark features of motor neuron physiology, high input resistance, depolarized resting membrane potentials, and limited firing capacity suggest incomplete electrical maturation. Altogether, these findings underscore the potential of commercially available iPSC-derived motor neurons as a practical resource for MND research, while highlighting the need for optimized protocols to support prolonged culture and full maturation.
Collapse
Affiliation(s)
- Bohumila Jurkovicova-Tarabova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Robin N. Stringer
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Sevcikova Tomaskova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Weiss
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Dai Z, Yu Y, Chen R, Zhu H, Fong H, Kuang J, Jiang Y, Chen Y, Niu Y, Chen T, Shi L. Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model. Biomaterials 2025; 316:123011. [PMID: 39708777 DOI: 10.1016/j.biomaterials.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model. Interestingly, our results showed that SeNPs@LNT could not only accelerate the proliferation of neural progenitor cells (NPCs) by upregulating glutathione peroxidase 4 (GPX4) during the NPC stage, but also can promote neuronal differentiation by increasing selenoprotein P (SEPP1) during the neuronal stage, resulting in efficient and rapid neural development. In addition, further mechanistic studies showed that SeNPs@LNT can regulate selenoproteins by activating the PI3K/Akt/Nrf2 signaling pathway, thereby affecting neuronal development. Notably, Further analysis of ASD patients in National Center for Biotechnology Information single-cell RNA-seq datasets also revealed significantly lower GPX4 expression within NRGN-expressing neurons in ASD patients, and GO enrichment analysis of genes in NRGN-expressing neurons from ASD patients showed that the downregulation of selenoproteins due to aberrant selenoprotein synthesis may be closely associated with decreased ATP synthesis resulting from abnormal mitochondrial and respiratory chain signaling pathways. Taken together, this study provides evidence that SeNPs@LNT exerts a beneficial effect on early neural development through the regulation of selenoproteins.
Collapse
Affiliation(s)
- Zhenzhu Dai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruhai Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongyao Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou, 510632, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yunbo Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yalan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yimei Niu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Lingling Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China.
| |
Collapse
|
3
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Carroll E, Scaber J, Huber KVM, Brennan PE, Thompson AG, Turner MR, Talbot K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin Drug Discov 2025; 20:447-464. [PMID: 40029669 PMCID: PMC11974926 DOI: 10.1080/17460441.2025.2474661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Identifying treatments that can alter the natural history of amyotrophic lateral sclerosis (ALS) is challenging. For years, drug discovery in ALS has relied upon traditional approaches with limited success. Drug repurposing, where clinically approved drugs are reevaluated for other indications, offers an alternative strategy that overcomes some of the challenges associated with de novo drug discovery. AREAS COVERED In this review, the authors discuss the challenge of drug discovery in ALS and examine the potential of drug repurposing for the identification of new effective treatments. The authors consider a range of approaches, from screening in experimental models to computational approaches, and outline some general principles for preclinical and clinical research to help bridge the translational gap. Literature was reviewed from original publications, press releases and clinical trials. EXPERT OPINION Despite remaining challenges, drug repurposing offers the opportunity to improve therapeutic options for ALS patients. Nevertheless, stringent preclinical research will be necessary to identify the most promising compounds together with innovative experimental medicine studies to bridge the translational gap. The authors further highlight the importance of combining expertise across academia, industry and wider stakeholders, which will be key in the successful delivery of repurposed therapies to the clinic.
Collapse
Affiliation(s)
- Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Ye L, Dittlau KS, Sicart A, Janky R, Van Damme P, Van Den Bosch L. Sporadic ALS hiPSC-derived motor neurons show axonal defects linked to altered axon guidance pathways. Neurobiol Dis 2025; 206:106815. [PMID: 39884586 DOI: 10.1016/j.nbd.2025.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the selective and progressive loss of motor neurons, leading to gradual paralysis and death within 2 to 5 years after diagnosis. The exact underlying pathogenic mechanism(s) remain elusive. This is particularly the case for sporadic ALS (sALS), representing 90 % of cases, as modelling a sporadic disease is extremely difficult. We used human induced pluripotent stem cell (hiPSC)-derived motor neurons from sALS patients to investigate early disease mechanisms. The earliest phenotype that we observed were profound axonal defects including impaired axonal transport, defective axonal outgrowth and a reduced formation of neuromuscular junctions. Transcriptomic profiling revealed significant dysregulation in axon guidance pathways, with upregulation of specific axonal regeneration-inhibiting genes, such as EphA4 and DCC in sALS motor neurons. Our findings suggest that dysregulation of axon guidance pathways contributes to axonal defects and that this could play a crucial role in the pathogenesis of sALS.
Collapse
Affiliation(s)
- Lisha Ye
- KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Adria Sicart
- KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | | | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
6
|
Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer MM, Denoth-Lippuner A, Kalčic F, Nievergelt AS, Peters Al-Bayati M, Sidiropoulos ND, Beier V, Mann M, Jessberger S, Jinek M, Schulman BA, Bode JW, Corn JE. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 2025; 638:519-527. [PMID: 39880951 PMCID: PMC11821526 DOI: 10.1038/s41586-024-08475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts1. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites2,3. Such modifications have been proposed to trigger the selective removal of chemically marked proteins3-6; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
Collapse
Affiliation(s)
- Matthias F Muhar
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jakob Farnung
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Raphael Hofmann
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Filip Kalčic
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ajse S Nievergelt
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marwa Peters Al-Bayati
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nikolaos D Sidiropoulos
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey W Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Dawoody Nejad L, Pioro EP. Modeling ALS with Patient-Derived iPSCs: Recent Advances and Future Potentials. Brain Sci 2025; 15:134. [PMID: 40002468 PMCID: PMC11852857 DOI: 10.3390/brainsci15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal complex neurodegenerative disease, with 10-15% of cases being familial and the majority being sporadic with no known cause. There are no animal models for the 85-90% of sporadic ALS cases. More creative, sophisticated models of ALS disease are required to unravel the mysteries of this complicated disease. While ALS patients urgently require new medications and treatments, suitable preclinical in vitro models for drug screening are lacking. Therefore, human-derived induced pluripotent stem cell (hiPSC) technology offers the opportunity to model diverse and unreachable cell types in a culture dish. In this review, we focus on recent hiPSC-derived ALS neuronal and non-neuronal models to examine the research progress of current ALS 2D monocultures, co-cultures, and more complex 3D-model organoids. Despite the challenges inherent to hiPSC-based models, their application to preclinical drug studies is enormous.
Collapse
Affiliation(s)
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
8
|
Li S, Liu Y, Luo X, Hong W. Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons. Int J Mol Sci 2024; 26:230. [PMID: 39796088 PMCID: PMC11720352 DOI: 10.3390/ijms26010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized. In this study, we report the use of four commonly used extracellular matrixes, poly-D-lysine (PDL), poly-L-ornithine (PLO), Laminin and Matrigel, which we applied to compare the single-coating and double-coating conditions on iNs differentiation and maturation. Using the IncuCyte live-cell imaging system, we found that iNs cultured on single Matrigel- and Laminin-coated vessels have significantly higher density of neurite outgrowth and branch points than PLO or PDL but produce abnormal highly straight neurite outgrowth and larger cell body clumps. All the four double-coating conditions significantly reduced the clumping of neurons, in which the combination of PDL+Matrigel also enhanced neuronal purity. Double coating with PDL+Matrigel also tended to improve dendritic and axonal development and the distribution of pre and postsynaptic markers. These results demonstrate that the extracellular matrix contributes to the differentiation of cultured neurons and that double coating with PDL+Matrigel gives the best outcomes. Our study indicates that neuronal differentiation and maturation can be manipulated, to a certain extent, by adjusting the ECM recipe, and provides important technical guidance for the use of the ECM in neurological studies.
Collapse
Affiliation(s)
| | | | | | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (Y.L.); (X.L.)
| |
Collapse
|
9
|
Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, Chin BY, Wong CY. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024; 13:35. [PMID: 39857620 PMCID: PMC11763168 DOI: 10.3390/biomedicines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. METHODS This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). RESULTS MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. CONCLUSIONS This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity.
Collapse
Affiliation(s)
- Lauren Frawley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Noam Tomer Taylor
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Olivia Sivills
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Ella McPhillamy
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Timothy Duy To
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Yibo Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Beek Yoke Chin
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
- Center for Cancer & Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
10
|
Pappalardo XG, Jansen G, Amaradio M, Costanza J, Umeton R, Guarino F, De Pinto V, Oliver SG, Messina A, Nicosia G. Inferring gene regulatory networks of ALS from blood transcriptome profiles. Heliyon 2024; 10:e40696. [PMID: 39687198 PMCID: PMC11648123 DOI: 10.1016/j.heliyon.2024.e40696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most robust approaches to the prediction of causal driver genes of complex diseases is to apply reverse engineering methods to infer a gene regulatory network (GRN) from gene expression profiles (GEPs). In this work, we analysed 794 GEPs of 1117 human whole-blood samples from Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects reported in the GSE112681 dataset. GRNs for ALS and healthy individuals were reconstructed by ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks - Adaptive Partitioning). In order to examine phenotypic differences in the ALS population surveyed, several datasets were built by arranging GEPs according to sex, spinal or bulbar onset, and survival time. The designed reverse engineering methodology identified a significant number of potential ALS-promoting mechanisms and putative transcriptional biomarkers that were previously unknown. In particular, the characterization of ALS phenotypic networks by pathway enrichment analysis has identified a gender-specific disease signature, namely network activation related to the radiation damage response, reported in the networks of bulbar and female ALS patients. Also, focusing on a smaller interaction network, we selected some hub genes to investigate their inferred pathological and healthy subnetworks. The inferred GRNs revealed the interconnection of the four selected hub genes (TP53, SOD1, ALS2, VDAC3) with p53-mediated pathways, suggesting the potential neurovascular response to ALS neuroinflammation. In addition to being well consistent with literature data, our results provide a novel integrated view of ALS transcriptional regulators, expanding information on the possible mechanisms underlying ALS and also offering important insights for diagnostic purposes and for developing possible therapies for a disease yet incurable.
Collapse
Affiliation(s)
- Xena G. Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Jansen
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matteo Amaradio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jole Costanza
- The National Institute of Molecular Genetics “Romeo and Enrica Invernizzi”, Milano, Italy
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | | | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
13
|
Weng M, Jauch R. Advancements in personalized stem cell models for aging-related neurodegenerative disorders. Neural Regen Res 2024; 19:2333-2334. [PMID: 38526261 PMCID: PMC11090431 DOI: 10.4103/nrr.nrr-d-23-01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Roggenbuck J, Kaschalk M, Eustace R, Vicini L, Gokun Y, Harms MB, Kolb SJ. The Answer ALS return of results study: Answering the duty to disclose. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:743-750. [PMID: 39091255 DOI: 10.1080/21678421.2024.2385004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Objective: The Return of Answer ALS Results (RoAR) Study was designed to provide a mechanism for participants in Answer ALS, a large, prospectively designed natural history and biorepository study to receive select clinical genetic testing results and study participants' experience with the results disclosure. Methods: Participants consented to receive results of five ALS genes (C9orf72, SOD1, FUS, TARDP, TBK1) and/or 59 medically actionable genes as designated by the American College of Medical Genetics. Patient-reported genetic testing outcomes were measured via a post-disclosure survey. Results: Of 645 eligible Answer ALS enrollees, 143 (22%) enrolled and completed participation in RoAR. Pathogenic variants were identified in 22/143 (15.4%) participants, including 13/143 (9.0%) in ALS genes and 9/143 (6.3%) in ACMG genes. Participant-reported measures of result utility indicated the research result disclosure was as or more successful than published patient-reported outcomes of result disclosure the clinical setting. Conclusions: This study serves as a model of a "disclosure study" to share results from genomic research with participants who were not initially offered the option to receive results, and our findings can inform the design of future, large scale genomic projects to empower research participants to access their genetic information.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mackenzie Kaschalk
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rory Eustace
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Leah Vicini
- Genetic Counseling Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yevgeniya Gokun
- Department of Biostatistics, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Matthew B Harms
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA, and
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
15
|
Zhao Y, Li X, Wang K, Iyer G, Sakowski SA, Zhao L, Teener S, Bakulski KM, Dou JF, Traynor BJ, Karnovsky A, Batterman SA, Feldman EL, Sartor MA, Goutman SA. Epigenetic age acceleration is associated with occupational exposures, sex, and survival in amyotrophic lateral sclerosis. EBioMedicine 2024; 109:105383. [PMID: 39369616 PMCID: PMC11491892 DOI: 10.1016/j.ebiom.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is linked to ageing and genetic and environmental risk factors, yet underlying mechanisms are incompletely understood. We aimed to evaluate epigenetic age acceleration (EAA), i.e., DNA methylation (DNAm) age acceleration, and its association with ALS case status and survival. METHODS In this study, we included 428 ALS and 288 control samples collected between 2011 and 2021. We calculated EAA using the GrimAge residual method from ALS and control blood samples and grouped participants with ALS into three ageing groups (fast, normal, slow). We associated EAA with ALS case status and survival, stratified by sex, and correlated it with environmental and biological factors through occupational exposure assessments, immune cell proportions, and transcriptome changes. FINDINGS Participants with ALS had higher average EAA by 1.80 ± 0.30 years (p < 0.0001) versus controls. Participants with ALS in the fast ageing group had a hazard ratio of 1.52 (95% confidence interval 1.16-2.00, p = 0.0028) referenced to the normal ageing group. In males, this hazard ratio was 1.55 (95% confidence interval 1.11-2.17, p = 0.010), and EAA was positively correlated with high-risk occupational exposures including particulate matter (adj.p < 0.0001) and metals (adj.p = 0.0087). Also, in male participants with ALS, EAA was positively correlated with neutrophil proportions and was negatively correlated with CD4+ T cell proportions. Pathways dysregulated in participants with ALS with fast ageing included spliceosome, nucleocytoplasmic transport, axon guidance, and interferons. INTERPRETATION EAA was associated with ALS case status and, at least in males, with shorter survival after diagnosis. The effect of EAA on ALS was partially explained by occupational exposures and immune cell proportions in a sex-dependent manner. These findings highlight the complex interactions of ageing and exposures in ALS. FUNDING NIH, CDC/National ALS Registry, ALS Association, Dr. Randall Whitcomb Fund for ALS Genetics, Peter Clark Fund for ALS Research, Sinai Medical Staff Foundation, Scott L. Pranger ALS Clinic Fund, NeuroNetwork Therapeutic Discovery Fund, NeuroNetwork for Emerging Therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiayan Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gayatri Iyer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel Teener
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Sheeler C, Labrada E, Duvick L, Thompson LM, Zhang Y, Orr HT, Cvetanovic M. Expanded ATXN1 alters transcription and calcium signaling in SCA1 human motor neurons differentiated from induced pluripotent stem cells. Neurobiol Dis 2024; 201:106673. [PMID: 39307401 PMCID: PMC11514977 DOI: 10.1016/j.nbd.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States of America
| | - Emmanuel Labrada
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, United States of America
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Department of Lab Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
17
|
Wells CA, Guhr A, Bairoch A, Chen Y, Hu M, Löser P, Ludwig TE, Mah N, Mueller SC, Seiler Wulczyn AEM, Seltmann S, Rossbach B, Kurtz A. Guidelines for managing and using the digital phenotypes of pluripotent stem cell lines. Stem Cell Reports 2024; 19:1369-1378. [PMID: 39332404 PMCID: PMC11561460 DOI: 10.1016/j.stemcr.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Each pluripotent stem cell line has a physical entity as well as a digital phenotype, but linking the two unambiguously is confounded by poor naming practices and assumed knowledge. Registration gives each line a unique and persistent identifier that links to phenotypic data generated over the lifetime of that line. Registration is a key recommendation of the 2023 ISSCR Standards for the use of human stem cells in research. Here we consider how community adoption of stem cell line registration could facilitate the establishment of integrated digital phenotypes of specific human pluripotent stem cell (hPSC) lines.
Collapse
Affiliation(s)
- Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anke Guhr
- Robert Koch Institute, 13353 Berlin, Germany
| | - Amos Bairoch
- University of Geneva and SIB Swiss Institute of Bioinformatics, CMU, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ying Chen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Mengqi Hu
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Löser
- Robert Koch Institute, 13353 Berlin, Germany
| | | | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Sabine C Mueller
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | | | - Stefanie Seltmann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Bella Rossbach
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany; Berlin Institute of Health Center for Regenerative Therapies at Charité, Berlin, Germany.
| |
Collapse
|
18
|
Evangelisti C, Ramadan S, Orlacchio A, Panza E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9747. [PMID: 39273694 PMCID: PMC11396244 DOI: 10.3390/ijms25179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Experimental models play a pivotal role in biomedical research, facilitating the understanding of disease mechanisms and the development of novel therapeutics. This is particularly true for neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and motor neuron disease, which present complex challenges for research and therapy development. In this work, we review the recent literature about experimental models and motor neuron disease. We identified three main categories of models that are highly studied by scientists. In fact, experimental models for investigating these diseases encompass a variety of approaches, including modeling the patient's cell culture, patient-derived induced pluripotent stem cells, and organoids. Each model offers unique advantages and limitations, providing researchers with a range of tools to address complex biological questions. Here, we discuss the characteristics, applications, and recent advancements in terms of each model system, highlighting their contributions to advancing biomedical knowledge and translational research.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sherin Ramadan
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Antonio Orlacchio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Laboratory of Neurogenetics, European Center for Brain Research (CERC), IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuele Panza
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
19
|
Lehmann J, Aly A, Steffke C, Fabbio L, Mayer V, Dikwella N, Halablab K, Roselli F, Seiffert S, Boeckers TM, Brenner D, Kabashi E, Mulaw M, Ho R, Catanese A. Heterozygous knockout of Synaptotagmin13 phenocopies ALS features and TP53 activation in human motor neurons. Cell Death Dis 2024; 15:560. [PMID: 39097602 PMCID: PMC11297993 DOI: 10.1038/s41419-024-06957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.
Collapse
Affiliation(s)
- Johannes Lehmann
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Luca Fabbio
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Valentin Mayer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Natalie Dikwella
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Kareen Halablab
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - Simone Seiffert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, Paris, France
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Ulm, Germany.
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
20
|
Zhang N, Westerhaus A, Wilson M, Wang E, Goff L, Sockanathan S. Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function. EMBO J 2024; 43:3388-3413. [PMID: 38918634 PMCID: PMC11329687 DOI: 10.1038/s44318-024-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Collapse
Affiliation(s)
- Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Macey Wilson
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- Department of Cellular Biology, University of Georgia, Biological Sciences 302, 120 Cedar St., Athens, GA, 30602, USA
| | - Ethan Wang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Kavli Neurodiscovery Institute, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Scaber J, Thomas-Wright I, Clark AJ, Xu Y, Vahsen BF, Carcolé M, Dafinca R, Farrimond L, Isaacs AM, Bennett DL, Talbot K. Cellular and axonal transport phenotypes due to the C9ORF72 HRE in iPSC motor and sensory neurons. Stem Cell Reports 2024; 19:957-972. [PMID: 38876108 PMCID: PMC11252479 DOI: 10.1016/j.stemcr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs. We demonstrated that the typical hallmarks of C9ORF72-ALS, including RNA foci and dipeptide formation, as well as specific axonal transport defects, occurred equally in MNs and SNs, suggesting that these in vitro phenotypes are not sufficient to explain the cell-type selectivity of ALS in isolation.
Collapse
Affiliation(s)
- Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK.
| | - Iona Thomas-Wright
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University, E1 2AT London, UK
| | - Yinyan Xu
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, WCIN 3BG London, UK
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Lucy Farrimond
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, WCIN 3BG London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK.
| |
Collapse
|
23
|
Feringa FM, Hertog SJKD, Wang L, Derks RJE, Kruijff I, Erlebach L, Heijneman J, Miramontes R, Pömpner N, Blomberg N, Olivier-Jimenez D, Johansen LE, Cammack AJ, Giblin A, Toomey CE, Rose IVL, Yuan H, Ward M, Isaacs AM, Kampmann M, Kronenberg-Versteeg D, Lashley T, Thompson LM, Ori A, Mohammed Y, Giera M, van der Kant R. The Neurolipid Atlas: a lipidomics resource for neurodegenerative diseases uncovers cholesterol as a regulator of astrocyte reactivity impaired by ApoE4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601474. [PMID: 39005258 PMCID: PMC11244892 DOI: 10.1101/2024.07.01.601474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Lipid changes in the brain have been implicated in many neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's disease and Amyotrophic Lateral Sclerosis. To facilitate comparative lipidomic research across brain-diseases we established a data commons named the Neurolipid Atlas, that we have pre-populated with novel human, mouse and isogenic induced pluripotent stem cell (iPSC)-derived lipidomics data for different brain diseases. We show that iPSC-derived neurons, microglia and astrocytes display distinct lipid profiles that recapitulate in vivo lipotypes. Leveraging multiple datasets, we show that the AD risk gene ApoE4 drives cholesterol ester (CE) accumulation in human astrocytes recapitulating CE accumulation measured in the human AD brain. Multi-omic interrogation of iPSC-derived astrocytes revealed that cholesterol plays a major role in astrocyte interferon-dependent pathways such as the immunoproteasome and major histocompatibility complex (MHC) class I antigen presentation. We show that through enhanced cholesterol esterification ApoE4 suppresses immune activation of astrocytes. Our novel data commons, available at neurolipidatlas.com, provides a user-friendly tool and knowledge base for a better understanding of lipid dyshomeostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Femke M Feringa
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Sascha J Koppes-den Hertog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lian Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Rico J E Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Iris Kruijff
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lena Erlebach
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jorin Heijneman
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ricardo Miramontes
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Nadine Pömpner
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Niek Blomberg
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Damien Olivier-Jimenez
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Lill Eva Johansen
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander J Cammack
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ashling Giblin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Christina E Toomey
- Department of Clinical and Molecular Neuroscience, Queen Square Institute of Neurology, University College London, London, UK
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Deborah Kronenberg-Versteeg
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Yassene Mohammed
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Rik van der Kant
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Gisevius B, Duscha A, Poschmann G, Stühler K, Motte J, Fisse AL, Augustyniak S, Rehm A, Renk P, Böse C, Hubert D, Peters K, Jagst M, Gömer A, Todt D, Bader V, Tokic M, Hirschberg S, Krogias C, Trampe N, Coutourier C, Winnesberg C, Steinmann E, Winklhofer K, Gold R, Haghikia A. Propionic acid promotes neurite recovery in damaged multiple sclerosis neurons. Brain Commun 2024; 6:fcae182. [PMID: 38894951 PMCID: PMC11184351 DOI: 10.1093/braincomms/fcae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.
Collapse
Affiliation(s)
- Barbara Gisevius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander Duscha
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Sanja Augustyniak
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Adriana Rehm
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Pia Renk
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Celina Böse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Diana Hubert
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Kathrin Peters
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michelle Jagst
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Marianne Tokic
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nadine Trampe
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Charlotta Coutourier
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carmen Winnesberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Konstanze Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
25
|
Tsitkov S, Valentine K, Kozareva V, Donde A, Frank A, Lei S, E Van Eyk J, Finkbeiner S, Rothstein JD, Thompson LM, Sareen D, Svendsen CN, Fraenkel E. Disease related changes in ATAC-seq of iPSC-derived motor neuron lines from ALS patients and controls. Nat Commun 2024; 15:3606. [PMID: 38697975 PMCID: PMC11066062 DOI: 10.1038/s41467-024-47758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.
Collapse
Affiliation(s)
- Stanislav Tsitkov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey Valentine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Frank
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Dhruv Sareen
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
27
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
28
|
Swindell WR. Meta-analysis of differential gene expression in lower motor neurons isolated by laser capture microdissection from post-mortem ALS spinal cords. Front Genet 2024; 15:1385114. [PMID: 38689650 PMCID: PMC11059082 DOI: 10.3389/fgene.2024.1385114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction ALS is a fatal neurodegenerative disease for which underlying mechanisms are incompletely understood. The motor neuron is a central player in ALS pathogenesis but different transcriptome signatures have been derived from bulk analysis of post-mortem tissue and iPSC-derived motor neurons (iPSC-MNs). Methods This study performed a meta-analysis of six gene expression studies (microarray and RNA-seq) in which laser capture microdissection (LCM) was used to isolate lower motor neurons from post-mortem spinal cords of ALS and control (CTL) subjects. Differentially expressed genes (DEGs) with consistent ALS versus CTL expression differences across studies were identified. Results The analysis identified 222 ALS-increased DEGs (FDR <0.10, SMD >0.80) and 278 ALS-decreased DEGs (FDR <0.10, SMD < -0.80). ALS-increased DEGs were linked to PI3K-AKT signaling, innate immunity, inflammation, motor neuron differentiation and extracellular matrix. ALS-decreased DEGs were associated with the ubiquitin-proteosome system, microtubules, axon growth, RNA-binding proteins and synaptic membrane. ALS-decreased DEG mRNAs frequently interacted with RNA-binding proteins (e.g., FUS, HuR). The complete set of DEGs (increased and decreased) overlapped significantly with genes near ALS-associated SNP loci (p < 0.01). Transcription factor target motifs with increased proximity to ALS-increased DEGs were identified, most notably DNA elements predicted to interact with forkhead transcription factors (e.g., FOXP1) and motor neuron and pancreas homeobox 1 (MNX1). Some of these DNA elements overlie ALS-associated SNPs within known enhancers and are predicted to have genotype-dependent MNX1 interactions. DEGs were compared to those identified from SOD1-G93A mice and bulk spinal cord segments or iPSC-MNs from ALS patients. There was good correspondence with transcriptome changes from SOD1-G93A mice (r ≤ 0.408) but most DEGs were not differentially expressed in bulk spinal cords or iPSC-MNs and transcriptome-wide effect size correlations were weak (bulk tissue: r ≤ 0.207, iPSC-MN: r ≤ 0.037). Conclusion This study defines a robust transcriptome signature from LCM-based motor neuron studies of post-mortem tissue from ALS and CTL subjects. This signature differs from those obtained from analysis of bulk spinal cord segments and iPSC-MNs. Results provide insight into mechanisms underlying gene dysregulation in ALS and highlight connections between these mechanisms, ALS genetics, and motor neuron biology.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, Division of Hospital Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
29
|
Zhang S, Moll T, Rubin-Sigler J, Tu S, Li S, Yuan E, Liu M, Butt A, Harvey C, Gornall S, Alhalthli E, Shaw A, Souza CDS, Ferraiuolo L, Hornstein E, Shelkovnikova T, van Dijk CH, Timpanaro IS, Kenna KP, Zeng J, Tsao PS, Shaw PJ, Ichida JK, Cooper-Knock J, Snyder MP. Deep learning modeling of rare noncoding genetic variants in human motor neurons defines CCDC146 as a therapeutic target for ALS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.30.24305115. [PMID: 38633814 PMCID: PMC11023684 DOI: 10.1101/2024.03.30.24305115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Jasper Rubin-Sigler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Sharon Tu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Shuya Li
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Enming Yuan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Menghui Liu
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Afreen Butt
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Gornall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Elham Alhalthli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Eran Hornstein
- Department of Molecular Genetics and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tatyana Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Charlotte H. van Dijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilia S. Timpanaro
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jianyang Zeng
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P. Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 PMCID: PMC10969521 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
31
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
32
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024; 16:693-713. [PMID: 38739934 PMCID: PMC11964425 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China.
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
33
|
Watts ME, Giadone RM, Ordureau A, Holton KM, Harper JW, Rubin LL. Analyzing the ER stress response in ALS patient derived motor neurons identifies druggable neuroprotective targets. Front Cell Neurosci 2024; 17:1327361. [PMID: 38314348 PMCID: PMC10834640 DOI: 10.3389/fncel.2023.1327361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron (MN) disease with severely limited treatment options. Identification of effective treatments has been limited in part by the lack of predictive animal models for complex human disorders. Here, we utilized pharmacologic ER stressors to exacerbate underlying sensitivities conferred by ALS patient genetics in induced pluripotent stem cell (iPSC)-derived motor neurons (MNs). In doing so, we found that thapsigargin and tunicamycin exposure recapitulated ALS-associated degeneration, and that we could rescue this degeneration via MAP4K4 inhibition (MAP4K4i). We subsequently identified mechanisms underlying MAP4K4i-mediated protection by performing phosphoproteomics on iPSC-derived MNs treated with ER stressors ±MAP4K4i. Through these analyses, we found JNK, PKC, and BRAF to be differentially modulated in MAP4K4i-protected MNs, and that inhibitors to these proteins could also rescue MN toxicity. Collectively, this study highlights the value of utilizing ER stressors in ALS patient MNs to identify novel druggable targets.
Collapse
Affiliation(s)
- Michelle E. Watts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| | - Richard M. Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
34
|
Paris A, Lakatos A. Cell and gene therapy for amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:217-241. [PMID: 39341656 DOI: 10.1016/b978-0-323-90120-8.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disorder with rapidly progressive skeletal muscle weakness, which can also cause a variable cognitive deficit. Genetic causes are only identified in approximately 10% of all cases, with complex genotype-phenotype associations, making it challenging to identify treatment targets. What further hampers therapeutic development is a broad heterogeneity in mechanisms, possible targets, and disturbances across various cell types, aside from the cortical and spinal motor neurons that lie at the heart of the pathology of ALS. Over the last decade, significant progress in biotechnologic techniques, cell and ribonucleic acid (RNA) engineering, animal models, and patient-specific human stem cell and organoid models have accelerated both mechanistic and therapeutic discoveries. The growing number of clinical trials mirrors this. This chapter reviews the current state of human preclinical models supporting trial strategies as well as recent clinical cell and gene therapy approaches.
Collapse
Affiliation(s)
- Alvar Paris
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - András Lakatos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Wang C, Cerneckis J, Shi Y. Directed Differentiation of Neurons from Human iPSCs for Modeling Neurological Disorders. Methods Mol Biol 2024; 2794:141-155. [PMID: 38630226 DOI: 10.1007/978-1-0716-3810-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Human-induced pluripotent stem cell (hiPSC) technology has enabled comprehensive human cell-based disease modeling in vitro. Due to limited accessibility of primary human neurons as well as species-specific divergence between human and rodent brain tissues, hiPSC-derived neurons have become a popular tool for studying neuronal biology in a dish. Here, we provide methods for transcription factor-driven directed differentiation of neurons from hiPSCs via a neural progenitor cell (NPC) intermediate. Doxycycline-inducible expression of neuron fate-determining transcription factors neurogenin 2 (NGN2) and achaete-scute homolog 1 (ASCL1) enables rapid and controllable differentiation of human neurons for disease modeling applications. The provided method is also designed to improve the reproducibility of human neuron differentiation by reducing the batch-to-batch variation of NPC differentiation and lentiviral transduction.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
36
|
Andrysiak K, Stępniewski J, Spaczyńska-Boczar M, Łapicka-Bodzioch K, Słowik A, Dulak J. Generation of Human-Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells of C9ORF72-Associated Amyotrophic Lateral Sclerosis Patients. Methods Mol Biol 2024; 2835:135-146. [PMID: 39105912 DOI: 10.1007/978-1-0716-3995-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Disease modeling of neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), is hindered by limited accessibility of affected cells. This problem can be overcome by generation of human induced pluripotent stem cells (hiPSC), which can be then differentiated into required cells. Here, we describe the detailed protocol of hiPSC establishment from peripheral blood mononuclear cells (PBMC) of two ALS patients with detected expansion of G4C2 (GGGGCC) repeats in the first intron of C9ORF72 gene, known to be linked with the most common form of familial ALS.Successful PBMC reprogramming with non-integrating Sendai vectors was confirmed by expression of pluripotency markers: OCT4, NANOG, SSEA4, and TRA-1-60 in obtained hiPSC and their ability to differentiate into cells of three germ layers.The generated ALS-patient-specific hiPSC create a possibility for deciphering molecular basis of this devastating neuromuscular disease.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland.
| | | | | | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland.
| |
Collapse
|
37
|
Okano H, Morimoto S, Kato C, Nakahara J, Takahashi S. Induced pluripotent stem cells-based disease modeling, drug screening, clinical trials, and reverse translational research for amyotrophic lateral sclerosis. J Neurochem 2023; 167:603-614. [PMID: 37952981 DOI: 10.1111/jnc.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
It has been more than 10 years since the hopes for disease modeling and drug discovery using induced pluripotent stem cell (iPSC) technology boomed. Recently, clinical trials have been conducted with drugs identified using this technology, and some promising results have been reported. For amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, several groups have identified candidate drugs, ezogabine (retigabine), bosutinib, and ropinirole, using iPSCs-based drug discovery, and clinical trials using these drugs have been conducted, yielding interesting results. In our previous study, an iPSCs-based drug repurposing approach was utilized to show the potential of ropinirole hydrochloride (ROPI) in reducing ALS-specific pathological phenotypes. Recently, a phase 1/2a trial was conducted to investigate the effects of ropinirole on ALS further. This double-blind, randomized, placebo-controlled study confirmed the safety and tolerability of and provided evidence of its ability to delay disease progression and prolong the time to respiratory failure in ALS patients. Furthermore, in the reverse translational research, in vitro characterization of patient-derived iPSCs-motor neurons (MNs) mimicked the therapeutic effects of ROPI in vivo, suggesting the potential application of this technology to the precision medicine of ALS. Interestingly, RNA-seq data showed that ROPI treatment suppressed the sterol regulatory element-binding protein 2-dependent cholesterol biosynthesis pathway. Therefore, this pathway may be involved in the therapeutic effect of ROPI on ALS. The possibility that this pathway may be involved in the therapeutic effect of ALS was demonstrated. Finally, new future strategies for ALS using iPSCs technology will be discussed in this paper.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
38
|
Zhou L, Chen W, Jiang S, Xu R. In Vitro Models of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2023; 43:3783-3799. [PMID: 37870685 PMCID: PMC11407737 DOI: 10.1007/s10571-023-01423-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the commonest neurodegenerative diseases of adult-onset, which is characterized by the progressive death of motor neurons in the cerebral cortex, brain stem and spinal cord. The dysfunction and death of motor neurons lead to the progressive muscle weakness, atrophy, fasciculations, spasticity and ultimately the whole paralysis of body. Despite the identification of several genetic mutations associated with the pathogenesis of ALS, including mutations in chromosome 9 open reading frame 72 leading to the abnormal expansion of GGGGCC repeat sequence, TAR DNA-binding protein 43, fused in sarcoma/translocated in liposarcoma, copper/zinc superoxide dismutase 1 (SOD1) and TANK-binding kinase 1, the exact mechanisms underlying the specific degeneration of motor neurons that causes ALS remain incompletely understood. At present, since the transgenic model expressed SOD1 mutants was established, multiple in vitro models of ALS have been developed for studying the pathology, pathophysiology and pathogenesis of ALS as well as searching the effective neurotherapeutics. This review reviewed the details of present established in vitro models used in studying the pathology, pathophysiology and pathogenesis of ALS. Meanwhile, we also discussed the advantages, disadvantages, cost and availability of each models.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China.
- Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
39
|
Held A, Adler M, Marques C, Reyes CJ, Kavuturu AS, Quadros ARAA, Ndayambaje IS, Lara E, Ward M, Lagier-Tourenne C, Wainger BJ. iPSC motor neurons, but not other derived cell types, capture gene expression changes in postmortem sporadic ALS motor neurons. Cell Rep 2023; 42:113046. [PMID: 37651231 PMCID: PMC10622181 DOI: 10.1016/j.celrep.2023.113046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Motor neuron degeneration, the defining feature of amyotrophic lateral sclerosis (ALS), is a primary example of cell-type specificity in neurodegenerative diseases. Using isogenic pairs of induced pluripotent stem cells (iPSCs) harboring different familial ALS mutations, we assess the capacity of iPSC-derived lower motor neurons, sensory neurons, astrocytes, and superficial cortical neurons to capture disease features including transcriptional and splicing dysregulation observed in human postmortem neurons. At early time points, differentially regulated genes in iPSC-derived lower motor neurons, but not other cell types, overlap with one-third of the differentially regulated genes in laser-dissected motor neurons from ALS compared with control postmortem spinal cords. For genes altered in both the iPSC model and bona fide human lower motor neurons, expression changes correlate between the two populations. In iPSC-derived lower motor neurons, but not other derived cell types, we detect the downregulation of genes affected by TDP-43-dependent splicing. This reduction takes place exclusively within genotypes known to involve TDP-43 pathology.
Collapse
Affiliation(s)
- Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michelle Adler
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charles Jourdan Reyes
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Amey S Kavuturu
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ana R A A Quadros
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - I Sandra Ndayambaje
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Erika Lara
- iPSC Neurodegenerative Research Initiative, Center for Alzheimer's and Related Dementias, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge MA 02142, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge MA 02142, USA; Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston MA 02114, USA; Harvard Stem Cell Institute, Cambridge MA 02138, USA.
| |
Collapse
|
40
|
Beckers J, Tharkeshwar AK, Fumagalli L, Contardo M, Van Schoor E, Fazal R, Thal DR, Chandran S, Mancuso R, Van Den Bosch L, Van Damme P. A toxic gain-of-function mechanism in C9orf72 ALS impairs the autophagy-lysosome pathway in neurons. Acta Neuropathol Commun 2023; 11:151. [PMID: 37723585 PMCID: PMC10506245 DOI: 10.1186/s40478-023-01648-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Motor neurons (MNs), which are primarily affected in amyotrophic lateral sclerosis (ALS), are a specialized type of neurons that are long and non-dividing. Given their unique structure, these cells heavily rely on transport of organelles along their axons and the process of autophagy to maintain their cellular homeostasis. It has been shown that disruption of the autophagy pathway is sufficient to cause progressive neurodegeneration and defects in autophagy have been associated with various subtypes of ALS, including those caused by hexanucleotide repeat expansions in the C9orf72 gene. A more comprehensive understanding of the dysfunctional cellular mechanisms will help rationalize the design of potent and selective therapies for C9orf72-ALS. METHODS In this study, we used induced pluripotent stem cell (iPSC)-derived MNs from C9orf72-ALS patients and isogenic control lines to identify the underlying mechanisms causing dysregulations of the autophagy-lysosome pathway. Additionally, to ascertain the potential impact of C9orf72 loss-of-function on autophagic defects, we characterized the observed phenotypes in a C9orf72 knockout iPSC line (C9-KO). RESULTS Despite the evident presence of dysfunctions in several aspects of the autophagy-lysosome pathway, such as disrupted lysosomal homeostasis, abnormal lysosome morphology, inhibition of autophagic flux, and accumulation of p62 in C9orf72-ALS MNs, we were surprised to find that C9orf72 loss-of-function had minimal influence on these phenotypes. Instead, we primarily observed impairment in endosome maturation as a result of C9orf72 loss-of-function. Additionally, our study shed light on the pathological mechanisms underlying C9orf72-ALS, as we detected an increased TBK1 phosphorylation at S172 in MNs derived from C9orf72 ALS patients. CONCLUSIONS Our data provides further insight into the involvement of defects in the autophagy-lysosome pathway in C9orf72-ALS and strongly indicate that those defects are mainly due to the toxic gain-of-function mechanisms underlying C9orf72-ALS.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium.
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Laura Fumagalli
- Center for Molecular Neurology, Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matilde Contardo
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Louvain, Belgium
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Renzo Mancuso
- Center for Molecular Neurology, Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium.
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Louvain, Belgium.
| |
Collapse
|
41
|
Catanese A, Rajkumar S, Sommer D, Masrori P, Hersmus N, Van Damme P, Witzel S, Ludolph A, Ho R, Boeckers TM, Mulaw M. Multiomics and machine-learning identify novel transcriptional and mutational signatures in amyotrophic lateral sclerosis. Brain 2023; 146:3770-3782. [PMID: 36883643 PMCID: PMC10473564 DOI: 10.1093/brain/awad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal and incurable neurodegenerative disease that mainly affects the neurons of the motor system. Despite the increasing understanding of its genetic components, their biological meanings are still poorly understood. Indeed, it is still not clear to which extent the pathological features associated with amyotrophic lateral sclerosis are commonly shared by the different genes causally linked to this disorder. To address this point, we combined multiomics analysis covering the transcriptional, epigenetic and mutational aspects of heterogenous human induced pluripotent stem cell-derived C9orf72-, TARDBP-, SOD1- and FUS-mutant motor neurons as well as datasets from patients' biopsies. We identified a common signature, converging towards increased stress and synaptic abnormalities, which reflects a unifying transcriptional program in amyotrophic lateral sclerosis despite the specific profiles due to the underlying pathogenic gene. In addition, whole genome bisulphite sequencing linked the altered gene expression observed in mutant cells to their methylation profile, highlighting deep epigenetic alterations as part of the abnormal transcriptional signatures linked to amyotrophic lateral sclerosis. We then applied multi-layer deep machine-learning to integrate publicly available blood and spinal cord transcriptomes and found a statistically significant correlation between their top predictor gene sets, which were significantly enriched in toll-like receptor signalling. Notably, the overrepresentation of this biological term also correlated with the transcriptional signature identified in mutant human induced pluripotent stem cell-derived motor neurons, highlighting novel insights into amyotrophic lateral sclerosis marker genes in a tissue-independent manner. Finally, using whole genome sequencing in combination with deep learning, we generated the first mutational signature for amyotrophic lateral sclerosis and defined a specific genomic profile for this disease, which is significantly correlated to ageing signatures, hinting at age as a major player in amyotrophic lateral sclerosis. This work describes innovative methodological approaches for the identification of disease signatures through the combination of multiomics analysis and provides novel knowledge on the pathological convergencies defining amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Pegah Masrori
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Nicole Hersmus
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Experimental Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Simon Witzel
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Albert Ludolph
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
- Department of Neurology, Ulm University School of Medicine, 89081 Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, 89081 Ulm, Germany
- Translational Protein Biochemistry, German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
42
|
Kandhavivorn W, Glaß H, Herrmannsdörfer T, Böckers TM, Uhlarz M, Gronemann J, Funk RHW, Pietzsch J, Pal A, Hermann A. Restoring Axonal Organelle Motility and Regeneration in Cultured FUS-ALS Motoneurons through Magnetic Field Stimulation Suggests an Alternative Therapeutic Approach. Cells 2023; 12:1502. [PMID: 37296623 PMCID: PMC10252208 DOI: 10.3390/cells12111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease characterized by sustained loss of neuromuscular junctions, degenerating corticospinal motoneurons and rapidly progressing muscle paralysis. Motoneurons have unique features, essentially a highly polarized, lengthy architecture of axons, posing a considerable challenge for maintaining long-range trafficking routes for organelles, cargo, mRNA and secretion with a high energy effort to serve crucial neuronal functions. Impaired intracellular pathways implicated in ALS pathology comprise RNA metabolism, cytoplasmic protein aggregation, cytoskeletal integrity for organelle trafficking and maintenance of mitochondrial morphology and function, cumulatively leading to neurodegeneration. Current drug treatments only have marginal effects on survival, thereby calling for alternative ALS therapies. Exposure to magnetic fields, e.g., transcranial magnetic stimulations (TMS) on the central nervous system (CNS), has been broadly explored over the past 20 years to investigate and improve physical and mental activities through stimulated excitability as well as neuronal plasticity. However, studies of magnetic treatments on the peripheral nervous system are still scarce. Thus, we investigated the therapeutic potential of low frequency alternating current magnetic fields on cultured spinal motoneurons derived from induced pluripotent stem cells of FUS-ALS patients and healthy persons. We report a remarkable restoration induced by magnetic stimulation on axonal trafficking of mitochondria and lysosomes and axonal regenerative sprouting after axotomy in FUS-ALS in vitro without obvious harmful effects on diseased and healthy neurons. These beneficial effects seem to derive from improved microtubule integrity. Thus, our study suggests the therapeutic potential of magnetic stimulations in ALS, which awaits further exploration and validation in future long-term in vivo studies.
Collapse
Affiliation(s)
- Wonphorn Kandhavivorn
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
- Institute of Anatomy, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Hannes Glaß
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
| | - Thomas Herrmannsdörfer
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Tobias M. Böckers
- Institute of Anatomy and Cell Biology, University of Ulm, D-89081 Ulm, Germany;
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Ulm, D-89081 Ulm, Germany
| | - Marc Uhlarz
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Jonas Gronemann
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Richard H. W. Funk
- Institute of Anatomy, Technische Universität Dresden, D-01307 Dresden, Germany
- Dresden International University, D-01067 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
| | - Andreas Hermann
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, D-18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
| |
Collapse
|
43
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|