1
|
Gholipour P, Ebrahimi Z, Mohammadkhani R, Ghahremani R, Salehi I, Sarihi A, Komaki A, Karimi SA. Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in prenatal valproic acid-induced rat model of autism. Sci Rep 2024; 14:13168. [PMID: 38849397 PMCID: PMC11161498 DOI: 10.1038/s41598-024-63728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition characterized by social interaction deficits, communication impairments, repetitive behaviors, and sensory sensitivities. While the etiology of ASD is multifaceted, abnormalities in glutamatergic neurotransmission and synaptic plasticity have been implicated. This study investigated the role of metabotropic glutamate receptor 8 (mGlu8) in modulating long-term potentiation (LTP) in a rat model of ASD induced by prenatal valproic acid (VPA) exposure. To induce an animal model with autism-like characteristics, pregnant rats received an intraperitoneal injection of 500 mg/kg of sodium valproate (NaVPA) on embryonic day 12.5. High-frequency stimulation was applied to the perforant path-dentate gyrus (PP-DG) synapse to induce LTP, while the mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) was administered into the DG. The results revealed that VPA-exposed rats exhibited reduced LTP compared to controls. DCPG had contrasting effects, inhibiting LTP in controls and enhancing it in VPA-exposed rats. Moreover, reduced social novelty preference index (SNPI) in VPA-exposed rats was reversed by intra-DG administration of S-3,4-DCPG. In conclusion, our study advances our understanding of the complex relationship between glutamatergic neurotransmission, synaptic plasticity, and VPA-induced autism model. The findings suggest that mGlu8 receptor dysfunction plays a role in the impaired synaptic plasticity seen in ASD.
Collapse
Affiliation(s)
- Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reihaneh Mohammadkhani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
3
|
Lüffe TM, Bauer M, Gioga Z, Özbay D, Romanos M, Lillesaar C, Drepper C. Loss-of-Function Models of the Metabotropic Glutamate Receptor Genes Grm8a and Grm8b Display Distinct Behavioral Phenotypes in Zebrafish Larvae (Danio rerio). Front Mol Neurosci 2022; 15:901309. [PMID: 35769333 PMCID: PMC9234528 DOI: 10.3389/fnmol.2022.901309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Members of the family of metabotropic glutamate receptors are involved in the pathomechanism of several disorders of the nervous system. Besides the well-investigated function of dysfunctional glutamate receptor signaling in neurodegenerative diseases, neurodevelopmental disorders (NDD), like autism spectrum disorders (ASD) and attention-deficit and hyperactivity disorder (ADHD) might also be partly caused by disturbed glutamate signaling during development. However, the underlying mechanism of the type III metabotropic glutamate receptor 8 (mGluR8 or GRM8) involvement in neurodevelopment and disease mechanism is largely unknown. Here we show that the expression pattern of the two orthologs of human GRM8, grm8a and grm8b, have evolved partially distinct expression patterns in the brain of zebrafish (Danio rerio), especially at adult stages, suggesting sub-functionalization of these two genes during evolution. Using double in situ hybridization staining in the developing brain we demonstrate that grm8a is expressed in a subset of gad1a-positive cells, pointing towards glutamatergic modulation of GABAergic signaling. Building on this result we generated loss-of-function models of both genes using CRISPR/Cas9. Both mutant lines are viable and display no obvious gross morphological phenotypes making them suitable for further analysis. Initial behavioral characterization revealed distinct phenotypes in larvae. Whereas grm8a mutant animals display reduced swimming velocity, grm8b mutant animals show increased thigmotaxis behavior, suggesting an anxiety-like phenotype. We anticipate that our two novel metabotropic glutamate receptor 8 zebrafish models may contribute to a deeper understanding of its function in normal development and its role in the pathomechanism of disorders of the central nervous system.
Collapse
|
4
|
Borsani E, Bonomini F, Bonini SA, Premoli M, Maccarinelli G, Giugno L, Mastinu A, Aria F, Memo M, Rezzani R. Role of melatonin in autism spectrum disorders in a male murine transgenic model: Study in the prefrontal cortex. J Neurosci Res 2022; 100:780-797. [PMID: 35043490 DOI: 10.1002/jnr.24997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of clinically heterogeneous neurodevelopmental disorders sharing common features related to impaired social and communication abilities in addition to stereotyped behaviors. ASD patients present encephalic morphological, physiological, and biomolecular alterations with low levels of melatonin due to alterations in its pathways. Therefore, even if ASDs have traditionally been framed as behavioral disorders, several lines of evidence are accumulating that ASDs are characterized by certain anatomical and physiological abnormalities, including oxidative stress and inflammation in peripheral biomarkers, but likewise present in human brain tissue also characterized by alterations in synaptic remodeling and neuromodulation. Melatonin has also protective and antioxidant properties, so we can therefore hypothesize that alterations in melatonin's pathways may be one of the causes of the symptomatology of autism. The aim of the present study was to analyze the beneficial effect induced by melatonin administration and its possible mechanism of action in a transgenic mouse model of autism, immediately after weaning. The male mice were daily treated per os with melatonin (10 mg/Kg/day) or vehicle for 8 weeks starting from the sixth week of life. The antioxidant modulation, the GABAergic/glutamatergic impairment, and the synaptic remodeling in the prefrontal cortex have been evaluated. Social and repetitive behaviors were also evaluated. The behavioral results showed no statistical evidences, instead the immunohistochemical results indicated the ability of melatonin to promote the activity of antioxidant system, the GABAergic/glutamatergic equilibrium, and the synaptic remodeling. The results show that melatonin may be a possible adjuvant therapeutic strategy in ASDs.
Collapse
Affiliation(s)
- Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
6
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
7
|
Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat. Pharmacol Rep 2016; 69:97-104. [PMID: 27914294 DOI: 10.1016/j.pharep.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metabotropic glutamate receptors (mGlu) play a role in a number of physiological processes and behaviors, as well as in certain pathological conditions and diseases. New drugs targetting mGlu receptors are being developed with treatment purposes. Recent data indicates that glutamate is involved in sleep, and pharmacological manipulation of distinct subtypes of mGlu receptors affect sleep. Here the consequences of selective pharmacological agonism of mGlu8 receptor upon sleep and wakefulness are explored for the first time. METHODS 32 male Wistar rats were stereotaxically prepared for polysomnography. (S)-3,4-dicarboxyphenylglycine (S)-3,4-DCPG (5, 10, and 20mg/kg, ip), a selective and potent mGlu8 receptor agonist, or physiological saline was administered one hour after the light period began. RESULTS Compared to control vehicle, (S)-3,4-DCPG, did not affect, at any of the doses given, the sleep and wakefulness parameters examined in the general analysis of the three hours of recording. Drug effects across time were studied analyzing three one-hour time blocks, control and experimental groups did not show any significant difference in the sleep and wakefulness parameters analyzed. Latency to sleep stages did not significantly vary between vehicle and treatment groups. CONCLUSIONS Results indicate that pharmacological activation of mGlu8 receptor by (S)-3,4-DCPG (5, 10, 20mg/kg, ip) does not affect sleep and wakefulness in the rat, suggesting that pharmacological agonism of these receptors may not influence sleep. Further research is needed to verify whether new drugs acting on these receptors lack of effect upon sleep and wakefulness.
Collapse
|
8
|
Bosch D, Ehrlich I. Postnatal maturation of GABAergic modulation of sensory inputs onto lateral amygdala principal neurons. J Physiol 2015; 593:4387-409. [PMID: 26227545 DOI: 10.1113/jp270645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Throughout life, fear learning is indispensable for survival and neural plasticity in the lateral amygdala underlies this learning and storage of fear memories. During development, properties of fear learning continue to change into adulthood, but currently little is known about changes in amygdala circuits that enable these behavioural transitions. In recordings from neurons in lateral amygdala brain slices from infant up to adult mice, we show that spontaneous and evoked excitatory and inhibitory synaptic transmissions mature into adolescence. At this time, increased inhibitory activity and signalling has the ability to restrict the function of excitation by presynaptic modulation, and may thus enable precise stimulus associations to limit fear generalization from adolescence onward. Our results provide a basis for addressing plasticity mechanisms that underlie altered fear behaviour in young animals. ABSTRACT Convergent evidence suggests that plasticity in the lateral amygdala (LA) participates in acquisition and storage of fear memory. Sensory inputs from thalamic and cortical areas activate principal neurons and local GABAergic interneurons, which provide feed-forward inhibition that tightly controls LA activity and plasticity via pre- and postsynaptic GABAA and GABAB receptors. GABAergic control is also critical during fear expression, generalization and extinction in adult animals. During rodent development, properties of fear and extinction learning continue to change into early adulthood. Currently, few studies have assessed physiological changes in amygdala circuits that may enable these behavioural transitions. To obtain first insights, we investigated changes in spontaneous and sensory input-evoked inhibition onto LA principal neurons and then focused on GABAB receptor-mediated modulation of excitatory sensory inputs in infant, juvenile, adolescent and young adult mice. We found that spontaneous and sensory-evoked inhibition increased during development. Physiological changes were accompanied by changes in dendritic morphology. While GABAB heteroreceptors were functionally expressed on sensory afferents already early in development, they could only be physiologically recruited by sensory-evoked GABA release to mediate heterosynaptic inhibition from adolescence onward. Furthermore, we found GABAB -mediated tonic inhibition of sensory inputs by ambient GABA that also emerged in adolescence. The observed increase in GABAergic drive may be a substrate for providing modulatory GABA. Our data suggest that GABAB -mediated tonic and evoked presynaptic inhibition can suppress sensory input-driven excitation in the LA to enable precise stimulus associations and limit generalization of conditioned fear from adolescence onward.
Collapse
Affiliation(s)
- Daniel Bosch
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany
| |
Collapse
|
9
|
Mercier MS, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014; 39:1876-94. [PMID: 25146900 DOI: 10.1007/s11064-014-1415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023]
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
Collapse
Affiliation(s)
- Marion S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK,
| | | |
Collapse
|
10
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
11
|
Palazzo E, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids 2014; 46:1441-8. [PMID: 24623118 DOI: 10.1007/s00726-014-1703-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/18/2014] [Indexed: 12/28/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy,
| | | | | | | |
Collapse
|
12
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
13
|
Sears RM, Schiff HC, LeDoux JE. Molecular Mechanisms of Threat Learning in the Lateral Nucleus of the Amygdala. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:263-304. [DOI: 10.1016/b978-0-12-420170-5.00010-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Fendt M, Imobersteg S, Peterlik D, Chaperon F, Mattes C, Wittmann C, Olpe HR, Mosbacher J, Vranesic I, van der Putten H, McAllister KH, Flor PJ, Gee CE. Differential roles of mGlu(7) and mGlu(8) in amygdala-dependent behavior and physiology. Neuropharmacology 2013; 72:215-23. [PMID: 23664812 DOI: 10.1016/j.neuropharm.2013.04.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 11/26/2022]
Abstract
Glutamate transmission and synaptic plasticity in the amygdala are essential for the learning and expression of conditioned fear. Glutamate activates both ionotropic glutamate receptors and eight subtypes of metabotropic glutamate receptors (mGlu1-8). In the present study, we investigated the roles of mGlu7 and mGlu8 in amygdala-dependent behavior and synaptic plasticity. We show that ablation of mGlu7 but not mGlu8 attenuates long-term potentiation (LTP) at thalamo-lateral amygdala (LA) synapses where a strong association between LTP and learning has been demonstrated. mGlu7-deficient mice express a general deficit in conditioned fear whereas mGlu8-deficient mice show a dramatic reduction in contextual fear. The mGlu7 agonist AMN082 reduced thalamo-LA LTP and intra-amygdala administration blocked conditioned fear learning. In contrast, the mGlu8 agonist DCPG decreased synaptic transmission but not LTP at thalamo-LA synapses. Intra-amygdala DCPG selectively reduced the expression of contextual fear but did not affect the acquisition and expression of cued fear. Taken together, these data revealed very different roles for mGlu7 and mGlu8 in amygdala synaptic transmission, fear learning and its expression. These receptors seem promising targets for treating anxiety disorders with different underlying pathologies with exaggerated fear learning (mGlu7) or contextual fear (mGlu8).
Collapse
Affiliation(s)
- Markus Fendt
- Novartis Institutes for BioMedical Research, Neuroscience DA, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mercier MS, Lodge D, Fang G, Nicolas CS, Collett VJ, Jane DE, Collingridge GL, Bortolotto ZA. Characterisation of an mGlu8 receptor-selective agonist and antagonist in the lateral and medial perforant path inputs to the dentate gyrus. Neuropharmacology 2012; 67:294-303. [PMID: 23220400 DOI: 10.1016/j.neuropharm.2012.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 02/06/2023]
Abstract
Since its characterisation in 2001, the mGlu8-selective agonist DCPG has been widely used to explore the potential functional role of this group III mGlu receptor within the central nervous system. This research has implicated mGlu8 receptors in a number of disease states and conditions such as epilepsy and anxiety, suggesting that mGlu8-selective ligands may hold important therapeutic potential. However, there is evidence that DCPG exerts off-target effects at higher concentrations, limiting its use as an mGlu8-selective agonist. Here, we have used field recordings in rat hippocampal slices to investigate the effects of DCPG in the lateral perforant path (LPP), a pathway known to express high levels of mGlu8. We show that DCPG does inhibit excitatory transmission in this pathway, but produces a biphasic concentration-response curve suggesting activation of two distinct receptor types. The putative mGlu8-selective antagonist MDCPG antagonises the high, but not the low, potency component of this concentration-response curve. In addition, higher concentrations of DCPG also depress excitatory transmission in the medial perforant path (MPP), a pathway expressing very low levels of mGlu8 receptors. Experiments in slices from mice lacking mGlu8 receptors indicate that concentrations of DCPG >1 μM produce large non-selective effects in both the LPP and MPP. Further experiments in slices from mGlu2, 4 and 7 knock-out mice, as well as in an mGlu2-deficient substrain of Wistar rat, reveal that these non-selective effects are mediated primarily by mGlu2 receptors. Taken together, our results confirm the mGlu8-selectivity of DCPG at submicromolar concentrations, but suggest that care must be taken when employing higher concentrations of the agonist, which may additionally activate mGlu2 receptors, especially at synapses where their expression is high. MDCPG may be a useful tool in determining whether observable DCPG effects are attributable to mGlu8, versus mGlu2, receptor activation.
Collapse
Affiliation(s)
- Marion S Mercier
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Julio-Pieper M, O'Connor RM, Dinan TG, Cryan JF. Regulation of the brain-gut axis by group III metabotropic glutamate receptors. Eur J Pharmacol 2012; 698:19-30. [PMID: 23123053 DOI: 10.1016/j.ejphar.2012.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 01/14/2023]
Abstract
L-glutamate is produced by a great variety of peripheral tissues in both health and disease. Like other components of the glutamatergic system, metabotropic glutamate (mGlu) receptors also have a widespread distribution outside the central nervous system (CNS). In particular, group III mGlu receptors have been recently found in human stomach and colon revealing an extraordinary potential for these receptors in the treatment of peripheral disorders, including gastrointestinal dysfunction. The significance of these findings is that pharmacological tools originally designed for mGlu receptors in the CNS may also be directed towards new disease targets in the periphery. Targeting mGlu receptors can also be beneficial in the treatment of disorders involving central components together with gastrointestinal dysfunction, such as irritable bowel syndrome, which can be co-morbid with anxiety and depression. Conversely, the development of more specific therapeutic approaches for mGlu ligands both centrally as in the gut will depend on the elucidation of tissue-specific elements in mGlu receptor signalling.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av Universidad 330, Curauma, Valparaíso, Chile.
| | | | | | | |
Collapse
|
17
|
Flor PJ, Acher FC. Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol 2012; 84:414-24. [PMID: 22554564 DOI: 10.1016/j.bcp.2012.04.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Group-III metabotropic glutamate receptors (mGluRs) comprise four structurally related brain and retinal G protein-coupled receptors (GPCRs), mGluR4, mGluR6, mGluR7 and mGluR8, which receive much attention as promising targets for nervous system drugs. In particular, activation of mGluR4 is a major focus for the development of new therapeutics in Parkinson's disease, while mGluR7 activation is considered a potential approach for future treatments of specific psychiatric conditions. The first generation group-III mGluR agonists, e.g.l-AP4 and l-SOP, are characterized by an essential phosphonate functional group, which became a major limitation for the development of systemically active, potent and receptor subtype-selective drugs. Recently however, two approaches emerged in parallel providing resolution to this constraint: in silico high-throughput screening of chemical libraries against a 3D-model of the mGluR4 extracellular domain identified a hit that was optimized into a series of potent and subtype-selective orthosteric agonists with drug-like properties and novel chemotype structures; secondly, high-throughput random screening of chemical libraries against recombinantly expressed group-III receptors identified diverse chemical sets of allosteric agonists and positive modulators, which are drug-like, display selectivity for mGluR4, mGluR7, or mGluR8 and act via novel pharmacological sites. Here, we illustrate new scientific insights obtained via the use of those strategies. Also, we compare advantages and disadvantages of both approaches to identify the desired group-III mGluR activators and we conclude with suggestions how to employ those discovery strategies with success for the identification, optimization, and development of clinical drug candidates; this may have important implications for the entire field of GPCR research.
Collapse
Affiliation(s)
- Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
18
|
Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell 2011; 147:509-24. [PMID: 22036561 DOI: 10.1016/j.cell.2011.10.009] [Citation(s) in RCA: 733] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.
Collapse
Affiliation(s)
- Joshua P Johansen
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
19
|
Ren W, Palazzo E, Maione S, Neugebauer V. Differential effects of mGluR7 and mGluR8 activation on pain-related synaptic activity in the amygdala. Neuropharmacology 2011; 61:1334-44. [PMID: 21854791 DOI: 10.1016/j.neuropharm.2011.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/18/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Pain-related plasticity in the laterocapsular division of the central nucleus of the amygdala (CeLC) depends on the activation of group I metabotropic glutamate receptors (mGluRs) whereas groups II and III mGluRs generally serve inhibitory functions. Recent evidence suggests differential roles of group III subtypes mGluR7 (pain enhancing) and mGluR8 (pain inhibiting) in the amygdala (Palazzo et al., 2008). Here we addressed the underlying synaptic mechanisms of mGluR7 and mGluR8 function in the CeLC under normal conditions and in an arthritis pain model. Using patch-clamp recordings in rat brain slices, we measured monosynaptic excitatory post-synaptic currents (EPSCs), mono- and polysynaptic inhibitory synaptic currents (IPSCs), and synaptically evoked action potentials (E-S coupling) in CeLC neurons. Synaptic responses were evoked by electrical stimulation in the basolateral amygdala (BLA). A selective mGluR8 agonist (DCPG) inhibited evoked EPSCs and synaptic spiking more potently in slices from arthritic rats than in slices from normal rats. In contrast, a selective mGluR7 agonist (AMN082) increased EPSCs and E-S coupling in slices from normal rats but not in the pain model. The effects of AMN082 and DCPG were blocked by a group III antagonist (MAP4). AMN082 increased frequency, but not amplitude, of spontaneous EPSCs but had no effect on miniature EPSCs (in TTX). DCPG decreased frequency, but not amplitude, of spontaneous and miniature EPSCs. The data suggest that mGluR8 acts presynaptically to inhibit excitatory transmission whereas the facilitatory effects of mGluR7 are indirect through action potential-dependent network action. AMN082 decreased evoked IPSCs and frequency, but not amplitude, of spontaneous and miniature IPSCs in slices from normal rats. DCPG had no effect on inhibitory transmission. The results suggest that presynaptic mGluR7 inhibits inhibitory synaptic transmission to gate glutamatergic transmission to CeLC neurons under normal conditions but not in pain. Presynaptic mGluR8 inhibits pain-related enhanced excitatory transmission in the CeLC.
Collapse
Affiliation(s)
- Wenjie Ren
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| | | | | | | |
Collapse
|
20
|
Gosnell HB, Silberman Y, Grueter BA, Duvoisin RM, Raber J, Winder DG. mGluR8 modulates excitatory transmission in the bed nucleus of the stria terminalis in a stress-dependent manner. Neuropsychopharmacology 2011; 36:1599-607. [PMID: 21451497 PMCID: PMC3138653 DOI: 10.1038/npp.2011.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are important modulators of excitatory transmission, and have been implicated in anxiety and stress-related behaviors. Previously, we showed that group III mGluR agonists could depress excitatory synaptic transmission in the bed nucleus of the stria terminalis (BNST), an integral component of the anxiety circuitry. Here, we provide converging evidence indicating that this effect is mediated primarily by mGluR8, is exerted presynaptically, and is modulated by noradrenergic signaling and stress. The effects of the group III mGluR agonist L-AP4 on excitatory transmission are not potentiated by the mGluR4-selective allosteric potentiator PHCCC, but are mimicked by the mGluR8-selective agonist DCPG. Consistent with these results, mGluR8-like immunoreactivity is seen in the BNST, and the actions of L-AP4 on excitatory transmission are absent in slices from mGluR8 knockout (KO) mice. Application of DCPG is associated with an increase in paired-pulse evoked glutamate synaptic currents, and a decrease in spontaneous glutamate synaptic current frequency, consistent with a primarily presynaptic action. mGluR8-mediated suppression of excitatory transmission is disrupted ex vivo by activation of α1 adrenergic receptors (α1 ARs). BNST mGluR8 function is also disrupted by both acute and chronic in vivo exposure to restraint stress, and in brain slices from α2A AR KO mice. These studies show that mGluR8 is an important regulator of excitatory transmission in the BNST, and suggest that this receptor is selectively disrupted by noradrenergic signaling and by both acute and chronic stress.
Collapse
Affiliation(s)
- Heather B Gosnell
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA,Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brad A Grueter
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert M Duvoisin
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Division of Neuroscience, Departments of Behavioral Neuroscience, and Neurology, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA,Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA,Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA. Tel: +1 615 322 1144; Fax: +1 615 322 1462; E-mail:
| |
Collapse
|
21
|
Palazzo E, Marabese I, Soukupova M, Luongo L, Boccella S, Giordano C, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci 2011; 31:4687-97. [PMID: 21430167 PMCID: PMC6622912 DOI: 10.1523/jneurosci.2938-10.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022] Open
Abstract
The amygdala is a crucial area in controlling the threshold of pain and its emotional component. The present study has evaluated the effect of a metabotropic glutamate 8 receptor (mGluR8) stimulation in the central nucleus of the amygdala (CeA) on the thermoceptive threshold and on CeA serotonin (5-HT), glutamate (Glu), and GABA release in normal and carrageenan-induced inflammatory pain conditions in rats. Furthermore, the activity of rostral ventromedial medulla (RVM) putative "pronociceptive" ON and "antinociceptive" OFF cells has been evaluated. (S)-3,4-Dicarboxyphenylglycine [(S)-3,4-DCPG], a selective mGluR8 agonist, administered into the CeA, did not change 5-HT, Glu, and GABA release, or the thermoceptive threshold, nor did it modify the activity of ON and OFF cells of the RVM in normal animals. In rats treated with carrageenan, intra-CeA (S)-3,4-DCPG perfusion produced antinociception, and increased 5-HT and Glu, whereas it decreased GABA release. Intra-CeA (S)-3,4-DCPG inhibited ON and increased OFF cell activities. Furthermore, an increase in mGluR8 gene, protein, and staining, the latter being associated with vesicular GABA transporter-positive profiles, has been found in the CeA after carrageenan-induced inflammatory pain. These results show that stimulation of mGluR8, which was overexpressed within the CeA in inflammatory pain conditions, inhibits nociceptive behavior. Such an effect is associated with an increase in 5-HT and Glu release, a decrease in GABA, and the inhibition of ON- and the stimulation of OFF-cell activities within RVM.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Ida Marabese
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Marie Soukupova
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
- Department of Pharmacology, Third Faculty of Medicine, Charles University of Prague, 100 34 Prague, Czech Republic
| | - Livio Luongo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Catia Giordano
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Vito de Novellis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Francesca Rossi
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| |
Collapse
|
22
|
Wierońska JM, Stachowicz K, Pałucha-Poniewiera A, Acher F, Brański P, Pilc A. Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant-like activity, mediated by serotonergic and GABAergic systems. Neuropharmacology 2010; 59:627-34. [PMID: 20713068 DOI: 10.1016/j.neuropharm.2010.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 11/28/2022]
Abstract
Our earlier studies have demonstrated that the non-selective group III mGlu receptor agonist, ACPT-I, produced anxiolytic rather than antidepressant-like actions after its peripheral administration. Here, we describe the effects of LSP1-2111 ((2S)-2-amino-4-[hydroxy[hydroxy(4-hydroxy-3-methoxy-5-nitro-phenyl)methyl]phosphoryl]butanoic acid), a novel orthosteric, preferential agonist of the mGlu4 receptor, a member of the group III mGlu receptors family, in the stress-induced hyperthermia (SIH) and elevated plus-maze (EPM) tests in mice. In both tests an anxiolytic-like effect was clearly seen in doses of 2 and 5 mg/kg, i.p. The compound did not produce antidepressant-like effects in the tail suspension test (TST) or in the forced swim test (FST) in mice. The potential anxiolytic effect of LSP1-2111 (5 mg/kg) in the SIH test was inhibited by the benzodiazepine receptor antagonist flumazenil (given i.p., 10 mg/kg), and by a 5-HT(1A) receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl)cyclohexane-carboxamide (WAY100635) (0.1 mg/kg, s.c.). At the same time, ritanserin (0.5 mg/kg i.p.), the 5-HT(2A/C) receptor antagonist, did not change the anxiolytic-like effects of LSP1-2111. Moreover, the compound was not effective in 5-HT depleted animals. The results of these studies indicate that the GABAergic and serotonergic systems are involved in the potential anxiolytic action of LSP1-2111.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Duvoisin RM, Pfankuch T, Wilson JM, Grabell J, Chhajlani V, Brown DG, Johnson E, Raber J. Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behav Brain Res 2010; 212:168-73. [PMID: 20385173 DOI: 10.1016/j.bbr.2010.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/27/2010] [Accepted: 04/05/2010] [Indexed: 11/19/2022]
Abstract
Metabotropic glutamate receptors (mGluRs), which are coupled to second messenger pathways via G proteins, modulate glutamatergic and GABAergic neurotransmission. Because of their role in modulating neurotransmission, mGluRs are attractive therapeutic targets for anxiety disorders. Previously we showed that mGluR8(-/-) male mice showed higher measures of anxiety in the open field and elevated plus maze than age-matched wild-type mice. In this study, we assessed the potential effects of acute pharmacological modulation of mGluR8 on measures of avoidable and unavoidable anxiety. In addition to wild-type mice, we also tested apolipoprotein E-deficient (Apoe(-/-)) mice, as these mice show increased levels of anxiety-like behaviors and therefore might show an altered sensitivity to mGluR8 stimulation. mGluR8 stimulation with the specific agonist DCPG, or modulation with AZ12216052, a new, positive allosteric modulator of mGluR8 reduced measures of anxiety in both wild-type mice. The effects of mGluR8 positive allosteric modulators, which only affect neurotransmission in the presence of extracellular glutamate, seem particularly promising for patients with anxiety disorders showing benzodiazepine insensitivity.
Collapse
Affiliation(s)
- Robert M Duvoisin
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2010; 2:391-413. [PMID: 21309118 DOI: 10.1007/7854_2010_36] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.
Collapse
Affiliation(s)
- Will Spooren
- CNS Disease Biology Area, pRED, Building 74/3W308, Basel CH-4070, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Fendt M, Bürki H, Imobersteg S, van der Putten H, McAllister K, Leslie JC, Shaw D, Hölscher C. The effect of mGlu8 deficiency in animal models of psychiatric diseases. GENES BRAIN AND BEHAVIOR 2009; 9:33-44. [PMID: 19740090 DOI: 10.1111/j.1601-183x.2009.00532.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabotropic glutamate receptor subtype 8 (mGlu(8)) is presynaptically located and regulates the release of the transmitter. Dysfunctions of this mechanism are involved in the pathophysiology of different psychiatric disorders. mGlu(8) deficient mice have been previously investigated in a range of studies, but the results are contradictory and there are still many open questions. Therefore, we tested mGlu(8)-deficient animals in different behavioral tasks that are commonly used in neuropsychiatric research. Our results show a robust contextual fear deficit in mGlu(8)-deficient mice. Furthermore, novel object recognition, chlordiazepoxide-facilitated extinction of operant conditioning and the acoustic startle response were attenuated by mGlu(8) deficiency. We found no changes in sensory processing, locomotor activity, prepulse inhibition, phencyclidine-induced changes in locomotion or prepulse inhibition, operant conditioning, conditioned fear to a discrete cue or in animal models of innate fear and post-traumatic stress disorder. We conclude that mGlu(8) might be a potential target for disorders with pathophysiological changes in brain areas where mGlu(8) modulates glutamate and gamma-amino butyric acid (GABA) transmission. Our data especially point to anxiety disorders involving exaggerated contextual fear, such as generalized anxiety disorders, and to conditions with disturbed declarative memory.
Collapse
Affiliation(s)
- M Fendt
- Novartis Institutes for BioMedical Research, Neuroscience DA, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Stachowicz K, Kłodzińska A, Palucha-Poniewiera A, Schann S, Neuville P, Pilc A. The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems. Neuropharmacology 2009; 57:227-34. [PMID: 19539634 DOI: 10.1016/j.neuropharm.2009.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Our earlier studies have demonstrated that (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid ACPT-I, a group III mGlu receptor agonist, produced anxiolytic-like and antidepressant-like actions after central administration. Here we describe the anxiolytic-like effects of ACPT-I after intraperitoneal administration in the stress-induced hyperthermia (SIH), elevated plus-maze (PMT) tests in mice and in the Vogel test in rats. However, the compound did not produce antidepressant-like effects in the tail suspension test (TST) or in the forced swim test (FST) in mice. The potential anxiolytic effect of ACPT-I (20 mg/kg) in the SIH test was inhibited by the benzodiazepine receptor antagonist flumazenil (given i.p., 10 mg/kg), and by a 5-HT(1A) receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.). At the same time, ritanserin (0.5 mg/kg i.p.), the 5-HT2A/C receptor antagonist, did not change the anxiolytic-like effects of ACPT-I. The results of these studies indicate that the GABA-ergic and serotonergic systems are involved in the potential anxiolytic action of ACPT-I.
Collapse
Affiliation(s)
- K Stachowicz
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Beurrier C, Lopez S, Révy D, Selvam C, Goudet C, Lhérondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M. Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 2009; 23:3619-28. [PMID: 19525404 DOI: 10.1096/fj.09-131789] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Developing nondopaminergic palliative treatments for Parkinson's disease represents a major challenge to avoid the debilitating side effects produced by L-DOPA therapy. Increasing interest is addressed to the selective targeting of group III metabotropic glutamate (mGlu) receptors that inhibit transmitter release at presumably overactive synapses in the basal ganglia. Here we characterize the functional action of a new orthosteric group III mGlu agonist, LSP1-2111, with a preferential affinity for mGlu4 receptor. In mouse brain slices, LSP1-2111 inhibits striatopallidal GABAergic transmission by selectively activating the mGlu4 receptor but has no effect at a synapse modulated solely by the mGlu7 and mGlu8 receptors. Intrapallidal LSP1-2111 infusion reverses the akinesia produced by nigrostriatal dopamine depletion in a reaction time task, whereas an mGlu8-receptor agonist has no effect. Finally, systemic administration of LSP1-2111 counteracts haloperidol-induced catalepsy, opening promising perspectives for the development of antiparkinsonian therapeutic strategies focused on orthosteric mGlu4-receptor agonists.
Collapse
Affiliation(s)
- Corinne Beurrier
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS-Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cuscó I, Medrano A, Gener B, Vilardell M, Gallastegui F, Villa O, González E, Rodríguez-Santiago B, Vilella E, Del Campo M, Pérez-Jurado LA. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum Mol Genet 2009; 18:1795-804. [PMID: 19246517 PMCID: PMC2671988 DOI: 10.1093/hmg/ddp092] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.
Collapse
Affiliation(s)
- Ivon Cuscó
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Andrés Medrano
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Blanca Gener
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- Unidad de Genética Clínica, Hospital de Cruces, Barakaldo, Bizkaia, Spain
| | - Mireia Vilardell
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Fátima Gallastegui
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Olaya Villa
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva González
- Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - Benjamín Rodríguez-Santiago
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Elisabet Vilella
- Hospital Psiquiatric Universitari Institut Pere Mata, Reus, Spain
| | - Miguel Del Campo
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| | - Luis A. Pérez-Jurado
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| |
Collapse
|
29
|
Fendt M, Schmid S, Thakker DR, Jacobson LH, Yamamoto R, Mitsukawa K, Maier R, Natt F, Hüsken D, Kelly PH, McAllister KH, Hoyer D, van der Putten H, Cryan JF, Flor PJ. mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 2008; 13:970-9. [PMID: 17712315 DOI: 10.1038/sj.mp.4002073] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formation and extinction of aversive memories in the mammalian brain are insufficiently understood at the cellular and molecular levels. Using the novel metabotropic glutamate receptor 7 (mGluR7) agonist AMN082, we demonstrate that mGluR7 activation facilitates the extinction of aversive memories in two different amygdala-dependent tasks. Conversely, mGluR7 knockdown using short interfering RNA attenuated the extinction of learned aversion. mGluR7 activation also blocked the acquisition of Pavlovian fear learning and its electrophysiological correlate long-term potentiation in the amygdala. The finding that mGluR7 critically regulates extinction, in addition to acquisition of aversive memories, demonstrates that this receptor may be relevant for the manifestation and treatment of anxiety disorders.
Collapse
Affiliation(s)
- M Fendt
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Palazzo E, Fu Y, Ji G, Maione S, Neugebauer V. Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 2008; 55:537-45. [PMID: 18533199 PMCID: PMC2601632 DOI: 10.1016/j.neuropharm.2008.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/06/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
The amygdala plays an important role in the emotional-affective component of pain and in pain modulation. Group III metabotropic glutamate receptors (mGluRs) regulate pain-related activity in the amygdala, but the behavioral consequence and contribution of individual subtypes are not known yet. This study determined the effects of mGluR7 and mGluR8 activation in the central nucleus of the amygdala (CeA) on nocifensive and affective pain responses and on pain-related anxiety-like behavior of adult rats. The pain state was induced by intraarticular injections of kaolin/carrageenan into one knee joint to produce a localized monoarthritis. Subtype-selective agonists were administered into the CeA by microdialysis in normal rats and in rats with arthritis. An mGluR7-selective agonist (N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride, AMN082, 25microM) decreased spinal withdrawal reflex thresholds and increased audible and ultrasonic vocalizations evoked by brief (15s) compression of the knee. AMN082 also decreased the open-arm preference in the elevated plus maze (EPM) test, suggesting anxiety-like behavior. In arthritic animals, however, AMN082 failed to modulate the increased spinal reflexes and vocalizations and anxiety-like behavior. An mGluR8-selective agonist (S-3,4-dicarboxyphenylglycine, S-3,4-DCPG, 10microM) had no effect in normal animals but inhibited the increased spinal reflex responses and audible and ultrasonic vocalizations of arthritic rats. S-3,4-DCPG also increased the open-arm choices of arthritic rats, suggesting anxiolytic effects. The results suggest that under normal conditions mGluR7, but not mGluR8, facilitates pain responses and has anxiogenic properties whereas mGluR8, but not mGluR7, can inhibit nocifensive and affective behaviors and anxiety in a model of arthritic pain.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Yu Fu
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Guangchen Ji
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|