1
|
Priya P, Srivastava A, Yadav N, Mittal R, Anand S, Banerjee J, Tripathi M, Chandra PS, Doddamani R, Sharma MC, Lalwani S, Siraj F, Dixit AB. Subunit specific altered expression and activity of casein kinase 2 in the brain tissues resected from mesial temporal lobe epilepsy with hippocampal sclerosis patients & rodent temporal lobe epilepsy model. Neuroscience 2025; 572:108-121. [PMID: 40064363 DOI: 10.1016/j.neuroscience.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Mesial temporal lobe epilepsy (MTLE), is associated with dysregulated excitatory-inhibitory balance in the brain. Numerous enzymes, protein kinases, that are modulated through phosphorylation, have been linked with key processes involved in the pathogenesis of epilepsy. Therefore, in this study, we determined the subunit specific expression and activity of multi-subunit casein Kinase 2 (CK2) which influences NMDARs through phosphorylation events, in MTS patients as well as pilocarpine model of TLE. METHODS mRNA expression of CK2 (α, α', β) & NR2B was measured by real time PCR andprotein expression of CK2 (α, α', β), NR2B, and NR2B Ser1480 were evaluated using western blotting and immunohistochemistry in experimental models of TLE and MTS patients. CK2 α and α' activity was measured by kinase assay. RESULTS Significant increase in CK2α', CK2β, and NR2B mRNA expression were noted in chronic TLE rat model. Similarly, MTS patients displayed upregulated CK2α' and CK2β expressions, but NR2B mRNA remained unchanged. CK2α', CK2β, and NR2B Ser1480 protein expressions were higher in chronic TLE and MTS patients in relation to controls (p < 0.05), as was kinase activity (p < 0.05). In acute TLE rats, only NR2B protein expression was upregulated (p < 0.05). CONCLUSION Our research demonstrated for the first time the upregulation of CK2α' subunit and its increased kinase activityin resected brain samples from MTS patients as well as pilocarpine model of TLE. Altered expression and higher activity of CK2 α' highlights subunit specific contribution, suggesting the modulation of NMDA receptors by Casein Kinase 2 may contribute to hyperexcitability in MTLE.
Collapse
Affiliation(s)
- Priya Priya
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | - Nitin Yadav
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India; Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Radhika Mittal
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | | | | | | | | | - Sanjeev Lalwani
- Department of Forensic Medicine &Toxicology, AIIMS, New Delhi, India
| | - Fouzia Siraj
- National Institute of Pathology, New Delhi, India
| | | |
Collapse
|
2
|
Köhler I, Rennau LM, Rehm A, Große J, Gonda S, Räk A, Riedel C, Wahle P. Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner. Front Cell Neurosci 2025; 19:1524470. [PMID: 40177584 PMCID: PMC11962018 DOI: 10.3389/fncel.2025.1524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H2O. Transfectants expressing hM3Dq mock-stimulated with H2O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5-10, DIV 10-20, and DIV 15-20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10-20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.
Collapse
|
3
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2025; 301:108147. [PMID: 39732167 PMCID: PMC11910330 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid-β peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
4
|
Hao J, Qin X, Guan L, Chen S, Hao X, Zhang P, Bai H, Zhao W, Huang Z, Chu S, Shi H, Jia Z, Yang Z, Kong D, Zhang W. Chelerythrine inhibits NR2B NMDA receptor independent of PKC activity. Biochem Biophys Res Commun 2024; 739:150914. [PMID: 39536412 DOI: 10.1016/j.bbrc.2024.150914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
N-methyl-d-aspartate receptors (NMDARs), the ligand ion glutamate receptor channels, mediate major excitatory neurotransmission in central nervous system (CNS). They highly express in CNS and involve in multiple physiological processes. Many studies implicated that NMDAR plays a crucial role in number of neurological disorders, including ischemia, dementia, and pain, indicating its potential as a therapeutic target for treatments. Chelerythrine (CHE) is a benzo-phenanthridine alkaloid extracted from Chelidonium majus with many biological activities including anti-inflammatory, anticancer effect, and antidiabetic effect. But the mechanism of CHE is not well understood. The aim of this study was to investigate the effect of CHE on the NMDAR. The results demonstrated that CHE effectively suppressed NMDA-induced currents in primary cultured cortical neurons. To elucidate the underlying mechanism, we expressed NMDARs in HEK293T cells and found that CHE and some of its structural analogues inhibited NMDAR currents and facilitated the desensitization of GluN2B NMDARs. Notably, these effects were independent of protein kinase C activity, suggesting that the effect of CHE on GluN2B-containing NMDAR may occur through a mechanism of directly interaction with NMDAR. Moreover, the inhibitory effect of CHE on GluN2B NMDARs is pH-dependent. Molecular docking prediction in conjunction with mutagenesis analysis revealed that the M3 α-helical segment of the NMDAR in close proximity to the GluN2B Thr647 amino acid plays an important role in CHE inhibition of GluN2B. This study revealed a novel function of CHE and its structural analogues in inhibiting the NMDARs and promoting GluN2B-mediated desensitization by obstructing the receptor at the channel pore region.
Collapse
Affiliation(s)
- Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - LiZhao Guan
- ICE BIOSCIENCE INC, 101,floor, 1,Building, 16 Yard, 18 Kechuang 13th Street, Daxing District, Beijing, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xuenan Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wenya Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haishui Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
5
|
Liu X, Lu X, Jiang S, Gao B, Wang P, Zhu H, Hua Y, Xie W, Jiang X, Shao G. Role of phosphorylated Y1252, Y1336 and Y1472 on NR2B subunits in hypoxia tolerance of neuronal cell in vitro. Exp Brain Res 2024; 243:12. [PMID: 39621125 DOI: 10.1007/s00221-024-06969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 02/05/2025]
Abstract
The N-methyl-D-aspartate (NMDA) receptors are related to the various functioning of the nervous system. It has been shown that the NR2B subunit plays an important role in neurological hypoxic/ischemic diseases by regulating NMDA receptor function. NR2B tyrosine phosphorylation is also an important regulatory mechanism for NMDA receptor function. However, the mechanism of NR2B tyrosine phosphorylation in hypoxic/ischemic injury is still unclear. Therefore, in the present study, we aimed to further clarify the changes in NR2B tyrosine phosphorylation in hypoxic/ischemic damage in the brain and its relationship with neuronal survival under hypoxic/ischemic conditions. Four types of NR2B tyrosine site mutants (Tyr → Phe at 1252, 1336, and 1472, and all three mutations together, named Y1252F, Y1336F, Y1472F, and Triple) and wild-type plasmids were transfected into HT22 cells. The cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). NR2B, cell apoptosis-related molecules, and neuronal survival factor CREB-related signaling proteins (CaMKII, ERK, Akt) were measured. Cell viability was assessed using the CCK-8 assay. Cell apoptosis and cell cycle were evaluated using flow cytometry. The death ratio of HT22 cells under OGD conditions was further tested using a live cell analysis platform. The viability of HT22 cells in the Y1252F, Y1336F, Y1472F, Triple mutants, and wild-type groups was elevated. Compared to the wild-type, western blotting and real-time PCR showed that Y1252F, Y1336F, Y1472F, and Triple mutants downregulated the expression of apoptosis factors and upregulated anti-apoptosis factors in the OGD/R model. Flow cytometry and cell cycle analysis demonstrated that Y1252F, Y1336F, Y1472F, and Triple mutants reduced the apoptosis rate. The percentage of cells in the S phase decreased significantly. Live cell analysis illustrated that the Y1252F, Y1336F, Y1472F, and Triple mutants contributed to HT22 cell survival under OGD conditions. Additionally, the Y1252F, Y1336F, Y1472F, and Triple mutants activated the survival signaling pathway. Furthermore, compared to the control group (without plasmid), only the Y1336F, Y1472F, and Triple mutants groups showed significant differences in the above tests. The tyrosine phosphorylation of NR2B at Y1336 and Y1472 plays key roles in hypoxic/ischemic injury. These phosphorylation sites may be potential targets for hypoxic/ischemic neural protection.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
| | - Xiaojun Lu
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, China
| | - Shuyuan Jiang
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, 014040, China
| | - Bing Gao
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
| | - Peng Wang
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
| | - Hongwei Zhu
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
| | - Yunqi Hua
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand
| | - Wei Xie
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, 014040, China.
| | - Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA.
| | - Guo Shao
- Department of Public Health, International College, Krirk University, Bangkok, 10220, Thailand.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, 014040, China.
- Center for Translational Medicine, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, 518112, China.
| |
Collapse
|
6
|
Maciąg F, Chhikara A, Heine M. Calcium channel signalling at neuronal endoplasmic reticulum-plasma membrane junctions. Biochem Soc Trans 2024; 52:1617-1629. [PMID: 38934485 PMCID: PMC11668288 DOI: 10.1042/bst20230819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Neurons are highly specialised cells that need to relay information over long distances and integrate signals from thousands of synaptic inputs. The complexity of neuronal function is evident in the morphology of their plasma membrane (PM), by far the most intricate of all cell types. Yet, within the neuron lies an organelle whose architecture adds another level to this morphological sophistication - the endoplasmic reticulum (ER). Neuronal ER is abundant in the cell body and extends to distant axonal terminals and postsynaptic dendritic spines. It also adopts specialised structures like the spine apparatus in the postsynapse and the cisternal organelle in the axon initial segment. At membrane contact sites (MCSs) between the ER and the PM, the two membranes come in close proximity to create hubs of lipid exchange and Ca2+ signalling called ER-PM junctions. The development of electron and light microscopy techniques extended our knowledge on the physiological relevance of ER-PM MCSs. Equally important was the identification of ER and PM partners that interact in these junctions, most notably the STIM-ORAI and VAP-Kv2.1 pairs. The physiological functions of ER-PM junctions in neurons are being increasingly explored, but their molecular composition and the role in the dynamics of Ca2+ signalling are less clear. This review aims to outline the current state of research on the topic of neuronal ER-PM contacts. Specifically, we will summarise the involvement of different classes of Ca2+ channels in these junctions, discuss their role in neuronal development and neuropathology and propose directions for further research.
Collapse
Affiliation(s)
- Filip Maciąg
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Arun Chhikara
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
7
|
Wang K, Tan X, Ding KM, Feng XZ, Zhao YY, Zhu WL, Li GH, Li SX. Dynamic regulation of phosphorylation of NMDA receptor GluN2B subunit tyrosine residues mediates ketamine rapid antidepressant effects. Pharmacol Res 2024; 205:107236. [PMID: 38797358 DOI: 10.1016/j.phrs.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.
Collapse
Affiliation(s)
- Ke Wang
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Pharmacology, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Tan
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Xue-Zhu Feng
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Yu Zhao
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Guo-Hai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
9
|
Wen ZH, Wu ZS, Huang SY, Chou TL, Cheng HJ, Lo YH, Jean YH, Sung CS. Local Magnesium Sulfate Administration Ameliorates Nociception, Peripheral Inflammation, and Spinal Sensitization in a Rat Model of Incisional Pain. Neuroscience 2024; 547:98-107. [PMID: 38657727 DOI: 10.1016/j.neuroscience.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tung-Lin Chou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zouying Armed Forces General Hospital, Kaohsiung 813204, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 900026, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
10
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
11
|
León-García F, García-Laynes F, Estrada-Tapia G, Monforte-González M, Martínez-Estevez M, Echevarría-Machado I. In Silico Analysis of Glutamate Receptors in Capsicum chinense: Structure, Evolution, and Molecular Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:812. [PMID: 38592787 PMCID: PMC10975470 DOI: 10.3390/plants13060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, #130, x 32 and 34, Mérida 97205, Yucatán, Mexico; (F.L.-G.); (M.M.-G.); (M.M.-E.)
| |
Collapse
|
12
|
Nair PS, Zadeh-Haghighi H, Simon C. Radical pair model for magnetic field effects on NMDA receptor activity. Sci Rep 2024; 14:3628. [PMID: 38351304 PMCID: PMC10864372 DOI: 10.1038/s41598-024-54343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
The N-methyl-D-aspartate receptor is a prominent player in brain development and functioning. Perturbations to its functioning through external stimuli like magnetic fields can potentially affect the brain in numerous ways. Various studies have shown that magnetic fields of varying strengths affect these receptors. We propose that the radical pair mechanism, a quantum mechanical process, could explain some of these field effects. Radicals of the form [Formula: see text], where R is a protein residue that can be Serine or Tyrosine, are considered for this study. The variation in the singlet fractional yield of the radical pairs, as a function of magnetic field strength, is calculated to understand how the magnetic field affects the products of the radical pair reactions. Based on the results, the radical pair mechanism is a likely candidate for explaining the magnetic field effects observed on the receptor activity. The model predicts changes in the behaviour of the system as magnetic field strength is varied and also predicts certain isotope effects. The results further suggest that similar effects on radical pairs could be a plausible explanation for various magnetic field effects within the brain.
Collapse
Affiliation(s)
- Parvathy S Nair
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
13
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
14
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Ai H, Li M, Fang W, Wang X, Liu X, Wu L, Zhang B, Lu W. Disruption of Cdk5-GluN2B complex by a small interfering peptide attenuates social isolation-induced escalated intermale attack behavior and hippocampal oxidative stress in mice. Free Radic Biol Med 2024; 210:54-64. [PMID: 37979890 DOI: 10.1016/j.freeradbiomed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.
Collapse
Affiliation(s)
- Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghao Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xinxin Liu
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Lihui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China.
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Islam MS, Lai CC, Wang LH, Lin HH. Inhibition of NMDA Receptor Activation in the Rostral Ventrolateral Medulla by Amyloid-β Peptide in Rats. Biomolecules 2023; 13:1736. [PMID: 38136607 PMCID: PMC10741979 DOI: 10.3390/biom13121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases might be the risk factors for developing AD. The present study examines the acute effects of soluble Aβ on the function of NMDA receptors in rats RVLM. We used the magnitude of increases in the blood pressure (pressor responses) induced by microinjection of NMDA into the RVLM as an index of NMDA receptor function in the RVLM. Soluble Aβ was applied by intracerebroventricular (ICV) injection. Aβ1-40 at a lower dose (0.2 nmol) caused a slight reduction, and a higher dose (2 nmol) showed a significant decrease in NMDA-induced pressor responses 10 min after administration. ICV injection of Aβ1-42 (2 nmol) did not affect NMDA-induced pressor responses in the RVLM. Co-administration of Aβ1-40 with ifenprodil or memantine blocked the inhibitory effects of Aβ1-40. Immunohistochemistry analysis showed a significant increase in the immunoreactivity of phosphoserine 1480 of GluN2B subunits (pGluN2B-serine1480) in the neuron of the RVLM without significant changes in phosphoserine 896 of GluN1 subunits (pGluN1-serine896), GluN1 and GluN2B, 10 min following Aβ1-40 administration compared with saline. Interestingly, we found a much higher level of Aβ1-40 compared to that of Aβ1-42 in the cerebrospinal fluid (CSF) measured using enzyme-linked immunosorbent assay 10 min following ICV administration of the same dose (2 nmol) of the peptides. In conclusion, the results suggest that ICV Aβ1-40, but not Aβ1-42, produced an inhibitory effect on NMDA receptor function in the RVLM, which might result from changes in pGluN2B-serine1480 (regulated by casein kinase II). The different elimination of the peptides in the CSF might contribute to the differential effects of Aβ1-40 and Aβ1-42 on NMDA receptor function.
Collapse
Affiliation(s)
- Md Sharyful Islam
- Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Lan-Hui Wang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hsun-Hsun Lin
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
17
|
Tan Y, Cheng C, Zheng C, Zeng W, Yang X, Xu Y, Zhang Z, Ma Z, Xu Y, Cao X. Activation of mGlu 2/3 receptors in the striatum alleviates L-DOPA-induced dyskinesia and inhibits abnormal postsynaptic molecular expression. Pharmacol Biochem Behav 2023; 231:173637. [PMID: 37714223 DOI: 10.1016/j.pbb.2023.173637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 μL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.
Collapse
Affiliation(s)
- Yang Tan
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chi Cheng
- Department of Neurology, Hanchuan People's Hospital, 432300, China
| | - Cong Zheng
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
18
|
Hinton A, Kirabo A. α2δ-1 as a New Target for Immunosuppressant-Induced Hypertension. Circ Res 2023; 133:628-630. [PMID: 37708245 PMCID: PMC10513733 DOI: 10.1161/circresaha.123.323500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
19
|
Madhamanchi K, Madhamanchi P, Jayalakshmi S, Panigrahi M, Patil A, Phanithi PB. Dopamine and Glutamate Crosstalk Worsen the Seizure Outcome in TLE-HS Patients. Mol Neurobiol 2023; 60:4952-4965. [PMID: 37209264 DOI: 10.1007/s12035-023-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Temporal lobe epilepsy (TLE), accompanied by hippocampal sclerosis (HS), is the most common form of drug-resistant epilepsy (DRE). Nearly 20% of the patients showed seizure recurrence even after surgery, and the reasons are yet to be understood. Dysregulation of neurotransmitters is evident during seizures, which can induce excitotoxicity. The present study focused on understanding the molecular changes associated with Dopamine (DA) and glutamate signaling and their possible impact on the persistence of excitotoxicity and seizure recurrence in patients with drug-resistant TLE-HS who underwent surgery. According to the International League against Epilepsy (ILAE) suggested classification for seizure outcomes, the patients (n = 26) were classified as class 1 (no seizures) and class 2 (persistent seizures) using the latest post-surgery follow-up data to understand the prevalent molecular changes in seizure-free and seizure-recurrence patient groups. Our study uses thioflavin T assay, western blot analysis, immunofluorescence assays, and fluorescence resonance energy transfer (FRET) assays. We have observed a substantial increase in the DA and glutamate receptors that promote excitotoxicity. Patients who had seizure recurrence showed a significant increase in (pNR2B, p < 0.009; and pGluR1, p < 0.01), protein phosphatase1γ (PP1γ; p < 0.009), protein kinase A (PKAc; p < 0.001) and dopamine-cAMP regulated phospho protein32 (pDARPP32T34; p < 0.009) which are critical for long-term potentiation (LTP), excitotoxicity compared to seizure-free patients and controls. A significant increase in D1R downstream kinases like PKA (p < 0.001), pCAMKII (p < 0.009), and Fyn (p < 0.001) was observed in patient samples compared to controls. Anti-epileptic DA receptor D2R was found to be decreased in ILAE class 2 (p < 0.02) compared to class 1. Since upregulation of DA and glutamate signaling supports LTP and excitotoxicity, we believe it could impact seizure recurrence. Further studies about the impact of DA and glutamate signaling on the distribution of PP1γ at postsynaptic density and synaptic strength could help us understand the seizure microenvironment in patients. Dopamine, Glutamate signal crosstalk. Diagram representing the PP1γ regulation by NMDAR negative feedback inhibition signaling (green circle-left) and D1R signal (red circle-middle) domination over PP1γ though increased PKA, pDARPP32T34, and supports pGluR1, pNR2B in seizure recurrent patients. D1R-D2R hetero dimer activation (red circle-right) increases cellular Ca2+ and pCAMKIIα activation. All these events lead to calcium overload in HS patients and excitotoxicity, particularly in patients experiencing recurrent seizures.
Collapse
Affiliation(s)
- Kishore Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Pradeep Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Govt. Degree College for Men's, Srikakulam District, Andhra Pradesh, 532001, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
20
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548446. [PMID: 37503265 PMCID: PMC10369868 DOI: 10.1101/2023.07.10.548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
|
21
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
22
|
Situmorang JH, Lin HH, Islam MS, Lai CC. Ovariectomy Exacerbates Acute Ethanol-Induced Tachycardia: Role of Nitric Oxide and NMDA Receptors in the Rostral Ventrolateral Medulla. Int J Mol Sci 2023; 24:5087. [PMID: 36982161 PMCID: PMC10049173 DOI: 10.3390/ijms24065087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ethanol consumption influences cardiovascular functions. In humans, acute consumption of ethanol causes dose-dependent tachycardia. Our previous study showed that ethanol-induced tachycardia might involve decreased nitric oxide (NO) signaling in the brain's medulla. NMDA receptors, another important target of ethanol, are one of the upstream signals of nitric oxide. Reports showed the modulation of NMDA receptor function by estrogen or estrogen receptors. The present study aims to examine the hypothesis that depletion of estrogen by ovariectomy (OVX) might modulate ethanol-induced tachycardia by regulating NMDA receptor function and NO signaling in the cardiovascular regulatory nucleus of the brain. Ethanol (3.2 g/kg, 40% v/v, 10 mL/kg) or saline (10 mL/kg) was administered by oral gavage in sham or OVX female Sprague-Dawley (SD) rats. The blood pressure (BP) and heart rate (HR) were measured using the tail-cuff method. The levels of phosphoserine 896 of the GluN1 subunit (pGluN1-serine 896) and NMDA GluN1 subunits (GluN1) were determined by immunohistochemistry. The expressions of nitric oxide synthase (NOS) and estrogen receptors in the tissue were measured by Western blotting. Nitric oxide contents were measured as total nitrate-nitrite by colorimetric assay kit. In a 2-h observation, there was no significant change in BP between the saline and ethanol groups. However, compared with saline, ethanol caused an increase in HR (tachycardia) in sham control or OVX rats. Interestingly, ethanol produced more significant tachycardia in the OVX group than in the sham control group. Nitric oxide levels were lower in the area of the rostral ventrolateral medulla (RVLM) 60 min following ethanol administration in OVX compared with sham control, without significant changes in the expression of NOS and estrogen receptors (ERα and ERβ). In addition, a decrease in the immunoreactivity of pGluN1-serine 896, without significant changes in GluN1, was found in neurons of RVLM 40 min following ethanol administration in OVX compared with sham control. Our results suggest that depletion of estradiol (E2) by OVX might exacerbate the tachycardia following ethanol administration, the underlying mechanism of which might be associated with decreased NMDA receptor function and NO level in the RVLM.
Collapse
Affiliation(s)
- Jiro Hasegawa Situmorang
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong 16915, Indonesia
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Md Sharyful Islam
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chih-Chia Lai
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
23
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
24
|
Harris L, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, Liotta DC. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. ACS Chem Neurosci 2023; 14:917-935. [PMID: 36779874 PMCID: PMC9983021 DOI: 10.1021/acschemneuro.2c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.
Collapse
Affiliation(s)
- Lynnea
D. Harris
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Michael C. Regan
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
- RADD
Pharmaceuticals, Westport, Connecticut06880, United States
| | - Scott J. Myers
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Kelsey A. Nocilla
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Nicholas S. Akins
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Ray Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Hiro Furukawa
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
| | - Stephen F. Traynelis
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
25
|
Bodas DS, Maduskar A, Kaniganti T, Wakhloo D, Balasubramanian A, Subhedar N, Ghose A. Convergent Energy State-Dependent Antagonistic Signaling by Cocaine- and Amphetamine-Regulated Transcript (CART) and Neuropeptide Y (NPY) Modulates the Plasticity of Forebrain Neurons to Regulate Feeding in Zebrafish. J Neurosci 2023; 43:1089-1110. [PMID: 36599680 PMCID: PMC9962846 DOI: 10.1523/jneurosci.2426-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.
Collapse
Affiliation(s)
- Devika S Bodas
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aditi Maduskar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Tarun Kaniganti
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Debia Wakhloo
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| |
Collapse
|
26
|
NMDA Receptor and Its Emerging Role in Cancer. Int J Mol Sci 2023; 24:ijms24032540. [PMID: 36768862 PMCID: PMC9917092 DOI: 10.3390/ijms24032540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Glutamate is a key player in excitatory neurotransmission in the central nervous system (CNS). The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel which presents several unique features and is involved in various physiological and pathological neuronal processes. Thanks to great efforts in neuroscience, its structure and the molecular mechanisms controlling its localization and functional regulation in neuronal cells are well known. The signaling mediated by NMDAR in neurons is very complex as it depends on its localization, composition, Ca2+ influx, and ion flow-independent conformational changes. Moreover, NMDA receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other membrane receptors and scaffold proteins which determine the receptor function and activation of downstream signaling. Interestingly, a recent paper demonstrates that NMDAR signaling is involved in epithelial cell competition, an evolutionary conserved cell fitness process influencing cancer initiation and progress. The idea that NMDAR signaling is limited to CNS has been challenged in the past two decades. A large body of evidence suggests that NMDAR is expressed in cancer cells outside the CNS and can respond to the autocrine/paracrine release of glutamate. In this review, we survey research on NMDAR signaling and regulation in neurons that can help illuminate its role in tumor biology. Finally, we will discuss existing data on the role of the glutamine/glutamate metabolism, the anticancer action of NMDAR antagonists in experimental models, NMDAR synaptic signaling in tumors, and clinical evidence in human cancer.
Collapse
|
27
|
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, Wang H, Gao XL, Xu NJ, Zhao LX, Yu ZH, Chen HZ, Qiu Y. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer's disease. Transl Neurodegener 2023; 12:1. [PMID: 36624510 PMCID: PMC9827685 DOI: 10.1186/s40035-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.
Collapse
Affiliation(s)
- Jia-Bing Li
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Yu Hu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Mu-Wen Chen
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Cai-Hong Xiong
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Na Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yan-Hui Ge
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hao Wang
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Ling Gao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Nan-Jie Xu
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lan-Xue Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhi-Hua Yu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Dumanska H, Veselovsky N. Protein kinase C mediates hypoxia-induced long-term potentiation of NMDA neurotransmission in the visual retinocollicular pathway. Front Cell Neurosci 2023; 17:1141689. [PMID: 36909286 PMCID: PMC9998674 DOI: 10.3389/fncel.2023.1141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
The identification of processes and mechanisms underlying the early stage of hypoxic injury of the retinocollicular pathway may be beneficial for the future prevention and treatment of navigation, orientation, and visual attention impairments. Previously, we have demonstrated that short-term hypoxia led to long-term potentiation (LTP) of NMDA neurotransmission in the background of long-term depression of GABAA retinocollicular transmission. Here, we sought to obtain insight into the mechanisms of hypoxia-induced LTP of NMDA retinocollicular neurotransmission and the role of the protein kinase C (PKC) signaling pathway in it. To investigate these, we recorded pharmacologically isolated NMDA transmission in cocultivated pairs of rat retinal ganglion cells and superficial superior colliculus neurons under normoxic and hypoxic conditions, using the paired patch-clamp technique and method of fast local superfusion. We tested the involvement of the PKC by adding the potent and selective inhibitor chelerythrine chloride (ChC, 5 μM). We observed that hypoxia-induced LTP of NMDA neurotransmission is associated with the shortening of current kinetics. We also found that the PKC signaling pathway mediates hypoxia-induced LTP and associated shortening of NMDA currents. The ChC completely blocked the induction of LTP by hypoxia and associated kinetic changes. Contrary effects of ChC were observed with already induced LTP. ChC led to the reversal of LTP to the initial synaptic strength but the current kinetics remain irreversibly shortened. Our results show that ChC is a promising agent for the prevention and treatment of hypoxic injuries of NMDA retinocollicular neurotransmission and provide necessary electrophysiological basics for further research.
Collapse
Affiliation(s)
- Hanna Dumanska
- Department of Neuronal Network Physiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Nikolai Veselovsky
- Department of Neuronal Network Physiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
29
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
30
|
Luo Y, Yu Y, Zhang M, Fan N. GluN1 antibody causes behavioral deficits in prepulse inhibition and memory through CaMKIIβ signaling. J Neuroimmunol 2022; 373:577998. [PMID: 36417808 DOI: 10.1016/j.jneuroim.2022.577998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests that some patients with schizophrenia have high production of autoantibodies against the N-methyl-d-aspartate receptor (NMDAR) subunit GluN1 and that these antibodies lead to cognitive impairment. However, the molecular mechanisms of the deficits seen in these patients are largely unknown. In the present study, we found that passive infusion of GluN1 antibody into the hippocampus of mice for 7 days led to decreased expression of GluN1, phosphor-Ser897-GluN1, and EphrinB2 receptor (EphB2R); deficits in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; impairment in prepulse inhibition (PPI); and deterioration of recognition memory in novel object recognition test. We also found decreased expression of CaMKIIβ, ERK1/2, CREB, and NF-κB after 7 days of GluN1 antibody exposure, as was the phosphorylation of these signaling molecules. The decrease in GluN1 and phosphor-Ser897-GluN1 expression and the deficits in LTP, PPI, and recognition memory were ameliorated by CaMKIIβ overexpression. These results suggest that downregulation of CaMKIIβ-ERK1/2-CREB-NF-κB signaling is responsiable for GluN1 antibody-associated impairment in PPI and memory and that GluN1 antibody-induced NMDAR hypofunction is the underlying mechanism of this impairment. Our findings indicate possible strategies to ameliorate NMDAR antibody-associated cognitive impairment in neuropsychiatric disease. They also provide evidence that NMDAR hypofunction is an underlying mechanism for cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
31
|
Long-term cyclosporine A treatment promotes anxiety-like behavior: Possible relation with glutamate signaling in rat hippocampus. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
33
|
Trafficking of NMDA receptors is essential for hippocampal synaptic plasticity and memory consolidation. Cell Rep 2022; 40:111217. [PMID: 35977502 DOI: 10.1016/j.celrep.2022.111217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
NMDA receptor (NMDAR) plays a vital role in brain development and normal physiological functions. Surface trafficking of NMDAR contributes to the modulation of synaptic functions and information processing. However, it remains unclear whether NMDAR trafficking is independent of long-term potentiation (LTP) and whether it regulates behavior. Here, we report that LTP of AMPAR and NMDAR can occur concurrently and that NMDAR trafficking can regulate AMPAR trafficking and AMPAR-mediated LTP. By contrast, AMPAR trafficking does not impact NMDAR-mediated LTP. Using SAP97-interfering peptide and SAP97 knockin (KI) rat, we show that the effect is mediated by GluN2A-subunit-containing NMDARs. At the behavior level, impaired NMDAR trafficking results in deficits in consolidation, but not acquisition, of fear memory. Collectively, our results suggest the essential role of NMDAR trafficking in LTP and memory consolidation.
Collapse
|
34
|
Yoshida M, Hasegawa S, Taniguchi M, Mouri A, Suzuki C, Yoshimi A, Mamiya T, Ozaki N, Noda Y. Memantine ameliorates the impairment of social behaviors induced by a single social defeat stress as juveniles. Neuropharmacology 2022; 217:109208. [PMID: 35926580 DOI: 10.1016/j.neuropharm.2022.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Clinically, juveniles are more sensitive to stress than adults, and exposure to stress as juveniles prolongs psychiatric symptoms and causes treatment resistance. However, the efficacy of antidepressants for juveniles with psychiatric disorders is unknown. In the present study, we investigated whether the expression or development of impaired social behavior was attenuated by memantine, a NMDA receptor antagonist. In addition, we clarified the molecular mechanisms related to intracellular signal transduction through NMDA receptors and the ameliorating effect of memantine in mice with impaired social behavior. Acute administration of memantine before the social interaction test, but not before exposure to social defeat stress, attenuated social behavioral impairment. A single social defeat stress increased the phosphorylation of NMDA receptor subunit GluN2A and extracellular-signal-related kinase 1/2 (ERK1/2). Memantine inhibited the increase of phosphorylated GluN2A and ERK1/2 resulting from social interaction behavior. In both GluN2A deficient and pharmacological blockaded mice, social behavioral impairment was not observed in the social interaction test through regulation of ERK1/2 phosphorylation. These findings suggest that memantine ameliorates social behavioral impairment in mice exposed to a single social defeat stress as juveniles by regulating the NMDA receptor and subsequent ERK1/2 signaling activation. Memantine may constitute a novel therapeutic drug for stress-related psychiatric disorders in juveniles with adverse juvenile experiences.
Collapse
Affiliation(s)
- Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Chiharu Suzuki
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan.
| |
Collapse
|
35
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
36
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Ortiz-Sanz C, Balantzategi U, Quintela-López T, Ruiz A, Luchena C, Zuazo-Ibarra J, Capetillo-Zarate E, Matute C, Zugaza JL, Alberdi E. Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death Dis 2022; 13:253. [PMID: 35306512 PMCID: PMC8934345 DOI: 10.1038/s41419-022-04687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
Amyloid beta (Aβ)-mediated synapse dysfunction is an early event in Alzheimer’s disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aβ peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aβ42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aβ-injected mouse hippocampi. In cultured neurons, Aβ oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aβ oligomers required integrin β1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aβ oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin β1 and PKC-dependent pathway. These data reveal a novel role of Aβ oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.
Collapse
Affiliation(s)
- Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Uxue Balantzategi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Quintela-López
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, Physiology, & Pharmacology, University College London, London, UK
| | - Asier Ruiz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Celia Luchena
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jone Zuazo-Ibarra
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Estibaliz Capetillo-Zarate
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, UPV/EHU, Leioa, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain.
| |
Collapse
|
38
|
Li ML, Peng Y, An Y, Li GY, Lan Y. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia. Brain Behav 2022; 12:e2466. [PMID: 35025141 PMCID: PMC8865150 DOI: 10.1002/brb3.2466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear. MATERIALS AND METHODS Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting. RESULTS In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model. CONCLUSIONS Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying An
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-Yan Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
39
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
40
|
Lee GS, Zhang J, Wu Y, Zhou Y. 14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS One 2021; 16:e0261791. [PMID: 34962957 PMCID: PMC8714094 DOI: 10.1371/journal.pone.0261791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
One of the core pathogenic mechanisms for schizophrenia is believed to be dysfunction in glutamatergic synaptic transmissions, particularly hypofunction of N-methyl d-aspartate receptors (NMDARs). Previously we showed that 14-3-3 functional knockout mice exhibit schizophrenia-associated behaviors accompanied by reduced synaptic NMDARs in forebrain excitatory neurons. To investigate how 14-3-3 proteins regulate synaptic localization of NMDARs, here we examined changes in levels of synaptic NMDARs upon 14-3-3 inhibition in primary neurons. Expression of 14-3-3 protein inhibitor (difopein) in primary glutamatergic cortical and hippocampal neurons resulted in lower number of synaptic puncta containing NMDARs, including the GluN1, GluN2A, or GluN2B subunits. In heterologous cells, 14-3-3 proteins enhanced surface expression of these NMDAR subunits. Furthermore, we identified that 14-3-3ζ and ε isoforms interact with NMDARs via binding to GluN2A and GluN2B subunits. Taken together, our results demonstrate that 14-3-3 proteins play a critical role in NMDAR synaptic trafficking by promoting surface delivery of NMDAR subunits GluN1, GluN2A, and GluN2B. As NMDAR hypofunctionality is known to act as a convergence point for progression of symptoms of schizophrenia, further studies on these signaling pathways may help understand how dysfunction of 14-3-3 proteins can cause NMDAR hypofunctionality and lead to schizophrenia-associated behaviors.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
41
|
Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 2021; 347:113916. [PMID: 34752784 DOI: 10.1016/j.expneurol.2021.113916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of intractable epilepsy where hyperactive glutamate receptors may contribute to the complex epileptogenic network hubs distributed among different regions. This study was designed to investigate the region-specific molecular alterations of the glutamate receptors and associated excitatory synaptic transmission in pilocarpine rat model of TLE. We recorded spontaneous excitatory postsynaptic currents (EPSCs) from pyramidal neurons in resected rat brain slices of the hippocampus, anterior temporal lobe (ATL) and neocortex. We also performed mRNA and protein expression of the glutamate receptor subunits (NR1, NR2A, NR2B, and GLUR1-4) by qPCR and immunohistochemistry. We observed significant increase in the frequency and amplitude of spontaneous EPSCs in the hippocampal and ATL samples of TLE rats than in control rats. Additionally, the magnitude of the frequency and amplitude was increased in ATL samples compared to that of the hippocampal samples of TLE rats. The mRNA level of NR1 was upregulated in both the hippocampal as well as ATL samples and that of NR2A, NR2B were upregulated only in the hippocampal samples of TLE rats than in control rats. The mRNA level of GLUR4 was upregulated in both the hippocampal as well as ATL samples of TLE rats than in control rats. Immunohistochemical analysis demonstrated that the number of NR1, NR2A, NR2B, and GLUR4 immuno-positive cells were significantly higher in the hippocampal samples whereas number of NR1 and GLUR4 immuno-positive cells were significantly higher in the ATL samples of the TLE rats than in control rats. This study demonstrated the region-specific alterations of glutamate receptor subunits in pilocarpine model of TLE, suggesting possible cellular mechanisms contributing to generation of independent epileptogenic networks in different temporal lobe structures.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
42
|
Alhilali M, Hearn JI, Rong J, Jain L, Bolam SM, Monk AP, Munro JT, Dalbeth N, Poulsen RC. IL-1β induces changes in expression of core circadian clock components PER2 and BMAL1 in primary human chondrocytes through the NMDA receptor/CREB and NF-κB signalling pathways. Cell Signal 2021; 87:110143. [PMID: 34481895 DOI: 10.1016/j.cellsig.2021.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
The circadian clock is a specialised cell signalling circuit present in almost all cells. It controls the timing of key cell activities such as proliferation and differentiation. In osteoarthritis, expression of two components of the circadian clock, BMAL1 and PER2 is altered in chondrocytes and this change has been causally linked with the increase in proliferation and altered chondrocyte differentiation in disease. IL-1β, an inflammatory cytokine abundant in OA joints, has previously been shown to induce changes in BMAL1 and PER2 expression in chondrocytes. The purpose of this study is to identify the mechanism involved. We found IL-1β treatment of primary human chondrocytes led to activation of NMDA receptors as evidenced by an increase in phosphorylation of GluN1 and an increase in intracellular calcium which was blocked by the NMDAR antagonist MK801. Levels of phosphorylated CREB were also elevated in IL-1β treated cells and this effect was blocked by co-treatment of cells with IL-1β and the NMDAR antagonist MK-801. Knockdown of CREB or inhibition of CREB activity prevented the IL-1β induced increase in PER2 expression in chondrocytes but had no effect on BMAL1. Phosphorylated p65 levels were elevated in IL-1β treated chondrocytes indicating increased NF-κB activation. Inhibition of NF-κB activity prevented the IL-1β induced reduction in BMAL1 expression and partially mitigated the IL-1β induced increase in PER2 expression in chondrocytes. These data indicate that the NMDAR/CREB and NF-κB signalling pathways regulate the core circadian clock components PER2 and BMAL1 in chondrocytes. Given that changes in expression of these clock components have been observed in a wide range of diseases, these findings may be broadly relevant for understanding the mechanism leading to circadian clock changes in pathology.
Collapse
Affiliation(s)
- M Alhilali
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - J I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - J Rong
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - L Jain
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S M Bolam
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| | - A P Monk
- Auckland District Health Board, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J T Munro
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| | - N Dalbeth
- Auckland District Health Board, Auckland, New Zealand; Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - R C Poulsen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Yamamoto A, Otani K, Okada M, Yamawaki H. Chemokine-like Receptor 1 in Brain of Spontaneously Hypertensive Rats Mediates Systemic Hypertension. Int J Mol Sci 2021; 22:11812. [PMID: 34769243 PMCID: PMC8584015 DOI: 10.3390/ijms222111812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Adipocytokine chemerin is a biologically active molecule secreted from adipose tissue. Chemerin elicits a variety of functions via chemokine-like receptor 1 (CMKLR1). The cardiovascular center in brain that regulates blood pressure (BP) is involved in pathophysiology of systemic hypertension. Thus, we explored the roles of brain chemerin/CMKLR1 on regulation of BP in spontaneously hypertensive rats (SHR). For this aim, we examined effects of intracerebroventricular (i.c.v.) injection of CMKLR1 small interfering (si)RNA on both systemic BP as measured by tail cuff system and protein expression in paraventricular nucleus (PVN) of SHR as determined by Western blotting. We also examined both central and peripheral protein expression of chemerin by Western blotting. Systolic BP of SHR but not normotensive Wistar Kyoto rats (WKY) was decreased by CMKLR1 siRNA. The decrease of BP by CMKLR1 siRNA persisted for 3 days. Protein expression of CMKLR1 in PVN of SHR tended to be increased compared with WKY, which was suppressed by CMKLR1 siRNA. Protein expression of chemerin in brain, peripheral plasma, and adipose tissue was not different between WKY and SHR. In summary, we for the first time revealed that the increased protein expression of CMKLR1 in PVN is at least partly responsible for systemic hypertension in SHR.
Collapse
Affiliation(s)
| | | | | | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan; (A.Y.); (K.O.); (M.O.)
| |
Collapse
|
44
|
Role of NMDAR plasticity in a computational model of synaptic memory. Sci Rep 2021; 11:21182. [PMID: 34707139 PMCID: PMC8551337 DOI: 10.1038/s41598-021-00516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
A largely unexplored question in neuronal plasticity is whether synapses are capable of encoding and learning the timing of synaptic inputs. We address this question in a computational model of synaptic input time difference learning (SITDL), where N-methyl-d-aspartate receptor (NMDAR) isoform expression in silent synapses is affected by time differences between glutamate and voltage signals. We suggest that differences between NMDARs' glutamate and voltage gate conductances induce modifications of the synapse's NMDAR isoform population, consequently changing the timing of synaptic response. NMDAR expression at individual synapses can encode the precise time difference between signals. Thus, SITDL enables the learning and reconstruction of signals across multiple synapses of a single neuron. In addition to plausibly predicting the roles of NMDARs in synaptic plasticity, SITDL can be usefully applied in artificial neural network models.
Collapse
|
45
|
Zhu S, Yang BS, Li SJ, Tong G, Tan JY, Wu GF, Li L, Chen GL, Chen Q, Lin LJ. Protein post-translational modifications after spinal cord injury. Neural Regen Res 2021; 16:1935-1943. [PMID: 33642363 PMCID: PMC8343325 DOI: 10.4103/1673-5374.308068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 11/04/2022] Open
Abstract
Deficits in intrinsic neuronal capacities in the spinal cord, a lack of growth support, and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences. As such, one of the primary targets for the treatment of spinal cord injury is to develop strategies to antagonize extrinsic or intrinsic axonal growth-inhibitory factors or enhance the factors that support axonal growth. Among these factors, a series of individual protein level disorders have been identified during the generation of axons following spinal cord injury. Moreover, an increasing number of studies have indicated that post-translational modifications of these proteins have important implications for axonal growth. Some researchers have discovered a variety of post-translational modifications after spinal cord injury, such as tyrosination, acetylation, and phosphorylation. In this review, we reviewed the post-translational modifications for axonal growth, functional recovery, and neuropathic pain after spinal cord injury, a better understanding of which may elucidate the dynamic change of spinal cord injury-related molecules and facilitate the development of a new therapeutic strategy for spinal cord injury.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bing-Sheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Si-Jing Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Ye Tan
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Feng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Li Chen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Li-Jun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Anesthesia can alter the levels of corticosterone and the phosphorylation of signaling molecules. BMC Res Notes 2021; 14:363. [PMID: 34538274 PMCID: PMC8451088 DOI: 10.1186/s13104-021-05763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022] Open
Abstract
Objective Neuroscience research using laboratory animals has increased over the years for a number of reasons. Some of these studies require the use of anesthetics for surgical procedures. However, the use of anesthetics promotes several physiological changes that may interfere with experimental results. Although the anesthetics and methods of delivery used to vary, one of the most common is ketamine associated with another compound such as xylazine. We aimed to evaluate the effect of ketamine and xylazine (KX) on corticosterone levels and on the degree of phosphorylation of p44/42 (ERK1/2), Src kinases and calcium/calmodulin-dependent kinase II (CAMKII). We also compared the effects of KX on sleep deprivation, which is known to affect the hormonal profile including corticosterone. Results We found that the use of KX can increase corticosterone levels and alter the degree of phosphorylation of signaling proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05763-w.
Collapse
|
47
|
Choudhury D, Autry AE, Tolias KF, Krishnan V. Ketamine: Neuroprotective or Neurotoxic? Front Neurosci 2021; 15:672526. [PMID: 34566558 PMCID: PMC8461018 DOI: 10.3389/fnins.2021.672526] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has been employed clinically as an intravenous anesthetic since the 1970s. More recently, ketamine has received attention for its rapid antidepressant effects and is actively being explored as a treatment for a wide range of neuropsychiatric syndromes. In model systems, ketamine appears to display a combination of neurotoxic and neuroprotective properties that are context dependent. At anesthetic doses applied during neurodevelopmental windows, ketamine contributes to inflammation, autophagy, apoptosis, and enhances levels of reactive oxygen species. At the same time, subanesthetic dose ketamine is a powerful activator of multiple parallel neurotrophic signaling cascades with neuroprotective actions that are not always NMDAR-dependent. Here, we summarize results from an array of preclinical studies that highlight a complex landscape of intracellular signaling pathways modulated by ketamine and juxtapose the somewhat contrasting neuroprotective and neurotoxic features of this drug.
Collapse
Affiliation(s)
- Divya Choudhury
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
48
|
Shi X, Zhang Q, Li J, Liu X, Zhang Y, Huang M, Fang W, Xu J, Yuan T, Xiao L, Tang YQ, Wang XD, Luo J, Yang W. Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell Rep 2021; 36:109612. [PMID: 34433031 DOI: 10.1016/j.celrep.2021.109612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
Drugs targeting N-methyl-D-aspartate receptors (NMDARs) have been approved to treat major depressive disorder (MDD); however, the presence of undesirable psychotomimetic and cognitive side effects may limit their utility. In this study, we show that the phosphorylation levels of the GluN2B subunit at tyrosine (Y) 1070 increase in mice after both acute and chronic restraint stress (CRS) exposure. Preventing GluN2B-Y1070 phosphorylation via Y1070F mutation knockin produces effects similar to those of antidepressants but does not affect cognitive or anxiety-related behaviors in subject mice. Mechanistically, the Y1070F mutation selectively reduces non-synaptic NMDAR currents and increases the number of excitatory synapses in the layer 5 pyramidal neurons of medial prefrontal cortex (mPFC) but not in the hippocampus. Altogether, our study identifies phosphorylation levels of GluN2B-Y1070 in the mPFC as a dynamic, master switch guarding depressive behaviors, suggesting that disrupting the Y1070 phosphorylation of GluN2B subunit has the potential for developing new antidepressants.
Collapse
Affiliation(s)
- Xiaofang Shi
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jie Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Xingyu Liu
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Minhua Huang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, South China Normal University, Key Laboratory of Brain Cognition and Education Sciences, Ministry of Education, 510631 Guangzhou, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Dong Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jianhong Luo
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China.
| | - Wei Yang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
49
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
50
|
Differential regulation of excitatory synaptic transmission in the hippocampus and anterior temporal lobe by cyclin dependent kinase 5 (Cdk5) in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Neurosci Lett 2021; 761:136096. [PMID: 34217817 DOI: 10.1016/j.neulet.2021.136096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Mesial temporal lobe epilepsy with hippocamapal sclerosis (MTLE-HS) is the most common form of drug resistant epilepsy (DRE). MTLE-HS is a distributed network disorder comprising of not only the hippocampus, but other anatomically related extrahippocampal regions. Excitatory synaptic transmission is differentially regulated in the hippocampal and extra-hippocampal regions of patients with MTLE-HS, but its mechanism not understood. Cyclin-dependent kinase 5 (Cdk5) is known to regulate synaptic transmission and plasticity through up-regulation of NMDA receptors by phosphorylating NR2Asubunits. The present study is designed to investigate whether Cdk5 differentially regulates the excitatory synaptic transmission in the hippocampus and anterior temporal lobe (ATL) samples obtained from patients of MTLE-HS. We have measured the Cdk5 kinase activity and the protein levels of Cdk5, p-Cdk5, p35/p25, NR2A, pNR2A in the hippocampal and ATL samples obtained from patients with MTLE-HS. We have also determined the effect of roscovitine, a Cdk5 antagonist, on spontaneous excitatory postsynaptic currents (EPSCs) recorded from the hippocampal and ATL using patch-clamp technique. We observed significant increase in the expression of Cdk5, p-Cdk5, p35/p25, NR2A, pNR2A in the ATL samples as compared to the hippocampal samples. Cdk5 activity was significantly higher in ATL samples as compared to the hippocampal samples. Magnitude of reduction in the frequency of EPSCs by roscovitine in the ATL samples was higher than that in the hippocampal samples. Our studies suggest that Cdk5 differentially regulates excitatory synaptic activity in the hippocampal and ATL region of patients with MTLE-HS.
Collapse
|