1
|
Scacco S, Acquaviva S, França Vieira e Silva F, Zhang JH, Lo Muzio L, Corso G, Caponio VCA, Reveglia P, Lecce L, Bizzoca ME, Sherchan P, Cantore S, Ballini A. Bioactivity and Neuroprotective Effects of Extra Virgin Olive Oil in a Mouse Model of Cerebral Ischemia: An In Vitro and In Vivo Study. Int J Mol Sci 2025; 26:1771. [PMID: 40004234 PMCID: PMC11855186 DOI: 10.3390/ijms26041771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral ischemia is a pathological condition characterized by complete blood and oxygen supply deprivation to neuronal tissue. The ischemic brain compensates for the rapid decline in ATP levels by increasing the anaerobic glycolysis rate, which leads to lactate accumulation and subsequent acidosis. Astrocytes play a critical role in regulating cerebral energy metabolism. Mitochondria are significant targets in hypoxia-ischemia injury, and disruptions in mitochondrial homeostasis and cellular energetics worsen outcomes, especially in the elderly. Elevated levels of n-3 polyunsaturated fatty acids (PUFAs) protect the adult and neonatal brain from ischemic damage by suppressing inflammation, countering oxidative stress, supporting neurovascular unit reconstruction, and promoting oligodendrogenesis. This study examines extra virgin olive oil (EVOO) treatment on TNC WT and TNC M23 cells, focusing on oxygen consumption and reactive oxygen species (ROS) production. This study investigates the effects of different durations of middle cerebral artery occlusion (MCAo) and EVOO administration on cerebral infarct volume, neurological scores, mitochondrial function, and cell viability. Cerebral infarct volume increased with longer ischemia times, while EVOO treatment (0.5 mg/kg/day) significantly reduced infarction across all MCAo durations. The oxygen consumption assays demonstrate EVOO's dose-dependent stimulation of mitochondrial respiration in astrocytes, particularly at lower concentrations. Furthermore, EVOO-treated cells reduce ROS production during hypoxia, improve cell viability under ischemic stress, and enhance ATP production in ischemic conditions, underscoring EVOO's neuroprotective potential.
Collapse
Affiliation(s)
- Salvatore Scacco
- Clinical Biochemistry Unit, Department of Translational Biomedicine and Neuroscience-DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.S.); (S.A.)
| | - Silvia Acquaviva
- Clinical Biochemistry Unit, Department of Translational Biomedicine and Neuroscience-DiBraiN, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.S.); (S.A.)
| | - Fábio França Vieira e Silva
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio, 7, 80138 Naples, Italy;
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Lucia Lecce
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| | - Prativa Sherchan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio, 7, 80138 Naples, Italy;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (G.C.); (V.C.A.C.); (P.R.); (L.L.); (M.E.B.); (A.B.)
| |
Collapse
|
2
|
Farkas E, Rose CR. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia. J Cereb Blood Flow Metab 2025; 45:201-218. [PMID: 39535276 PMCID: PMC12000947 DOI: 10.1177/0271678x241289756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.
Collapse
Affiliation(s)
- Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
4
|
Phone Myint SMM, Sun LY. L-serine: Neurological Implications and Therapeutic Potential. Biomedicines 2023; 11:2117. [PMID: 37626614 PMCID: PMC10452085 DOI: 10.3390/biomedicines11082117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
L-serine is a non-essential amino acid that plays a vital role in protein synthesis, cell proliferation, development, and sphingolipid formation in the central nervous system. It exerts its effects through the activation of glycine receptors and upregulation of PPAR-γ, resulting in neurotransmitter synthesis, neuroprotection, and anti-inflammatory effects. L-serine shows potential as a protective agent in various neurological diseases and neurodegenerative disorders. Deficiency of L-serine and its downstream products has been linked to severe neurological deficits. Despite its crucial role, there is limited understanding of its mechanistic production and impact on glial and neuronal cells. Most of the focus has been on D-serine, the downstream product of L-serine, which has been implicated in a wide range of neurological diseases. However, L-serine is approved by FDA for supplemental use, while D-serine is not. Hence, it is imperative that we investigate the wider effects of L-serine, particularly in relation to the pathogenesis of several neurological deficits that, in turn, lead to diseases. This review aims to explore current knowledge surrounding L-serine and its potential as a treatment for various neurological diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
5
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Hemispheric analysis of mitochondrial Complex I and II activity in the mouse model of ischemia-reperfusion-induced injury. Mitochondrion 2023; 69:147-158. [PMID: 36764500 DOI: 10.1016/j.mito.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Brain ischemia/reperfusion injury results in a variable mixture of cellular damage, but little is known about possible patterns of mitochondrial dysfunction from the scope of hemispheric processes. The current study used high-resolution fluorespirometry to compare ipsi- and contralateral hemispheres' linked respiration and ROS emission after 60-minutes of filament induced middle cerebral artery occlusion (fMCAo) and 2, 24, 72, and 168 h after reperfusion in mice. Our findings highlight that experimental ischemic stroke resulted in higher mitochondrial respiration in the contralateral compared to the ipsilateral hemisphere and highest ROS emission in ipsilateral hemisphere. The largest difference between the ipsilateral and contralateral hemispheres was observed 2 h after reperfusion in Complex I and II ETS state. Oxygen flux returns to near baseline 72 h after reperfusion without any changes thereafter in Complex I and II respiration. Studying the effects of brain mitochondrial functionality after ischemic stroke in each cerebral hemisphere separately provides a better understanding about the molecular and compensatory processes of the contralateral hemisphere, a region of the brain often neglected in stroke research.
Collapse
|
7
|
Integrated Network Pharmacology and Proteomic Analyses of Targets and Mechanisms of Jianpi Tianjing Decoction in Treating Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9021546. [PMID: 36714532 PMCID: PMC9876684 DOI: 10.1155/2023/9021546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Background Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment. Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods Systematic network pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment. Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results By screening active chemical compositions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112 differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome c oxidase subunit 7C, metabotropic glutamate receptor 2, Slc30a1 zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion homeostasis, and lipoprotein metabolism. Conclusions JTD may suppress VD development via multiple components, targets, and pathways. It may thus serve as a complementary treatment option for patients with VD.
Collapse
|
8
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Tauskela JS, Brunette E, Aylsworth A, Zhao X. Neuroprotection against supra-lethal 'stroke in a dish' insults by an anti-excitotoxic receptor antagonist cocktail. Neurochem Int 2022; 158:105381. [PMID: 35764225 DOI: 10.1016/j.neuint.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM 2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6.
| | - Eric Brunette
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Amy Aylsworth
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Xigeng Zhao
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| |
Collapse
|
10
|
Mitochondrial Quality and Quantity Control: Mitophagy Is a Potential Therapeutic Target for Ischemic Stroke. Mol Neurobiol 2022; 59:3110-3123. [PMID: 35266113 DOI: 10.1007/s12035-022-02795-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with high mortality and disability, which seriously affects the health and lives of people around the world. Effective treatment for ischemic stroke has been limited by its complex pathological mechanisms. Increasing evidence has indicated that mitochondrial dysfunction plays an essential role in the occurrence, development, and pathological processes of ischemic stroke. Therefore, strict control of the quality and quantity of mitochondria via mitochondrial fission and fusion as well as mitophagy is beneficial to the survival and normal function maintenance of neurons. Under certain circumstances, excessive mitophagy also could induce cell death. This review discusses the dynamic changes and double-edged roles of mitochondria and related signaling pathways of mitophagy in the pathophysiology of ischemic stroke. Furthermore, we focus on the possibility of modulating mitophagy as a potential therapy for the prevention and prognosis of ischemic stroke. Notably, we reviewed recent advances in the studies of natural compounds, which could modulate mitophagy and exhibit neuroprotective effects, and discussed their potential application in the treatment of ischemic stroke.
Collapse
|
11
|
Systemic low-grade inflammation and depressive symptomology at chronic phase of ischemic stroke: The chain mediating role of fibrinogen and neutrophil counts. Brain Behav Immun 2022; 100:332-341. [PMID: 34728390 DOI: 10.1016/j.bbi.2021.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is the most common psychological consequence of stroke. Increased inflammatory markers resulting from ischemic stroke may played an important role in the pathogenesis of depressive symptomology. The present study was conducted to further elucidate the relationship between stroke severity, systemic low-grade inflammation and chronic phase post-stroke depressive symptomology (CP-PSDS). METHODS A total of 897 stroke patients were consecutively recruited in this multicenter prospective cohort study and followed up for 1 year. The analytical sample consisted of 436 patients with ischemic stroke (23.4% female, median age = 57 years) from this cohort. Serum concentrations of inflammatory markers were measured in all 436 patients with ischemic stroke, from fasting morning venous blood samples on admission. Stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) on admission and post-stroke depressive symptomology (PSDS) was evaluated by 17-item Hamilton Rating Scale for Depression (HRSD). RESULTS In the fully adjusted models, we observed that 1) NIHSS (Model 2: β = 0.200, 95%CI, 0.057 ∼ 0.332), fibrinogen (Model 2: β = 0.828, 95%CI, 0.269 ∼ 1.435), white blood cell counts (WBC, model 2: β = 0.354, 95%CI, 0.122 ∼ 0.577) and neutrophil counts (Model 2: β = 0.401, 95%CI, 0.126 ∼ 0.655) can independently predict the CP-PSDS after ischemic stroke onset; 2) fibrinogen (Indirect effect = 0.027, 95%CI, 0.007 ∼ 0.063, 13.4% mediated), WBC (Indirect effect = 0.024, 95%CI, 0.005 ∼ 0.058, 11.8% mediated) and neutrophil counts (Indirect effect = 0.030, 95%CI, 0.006 ∼ 0.069, 14.8% mediated) could partially mediate the association between stroke severity and CP-PSDS, and 3) stroke severity might cause CP-PSDS partly through the chain-mediating role of both fibrinogen and neutrophil counts (chain mediated effect = 0.003, 95%CI, 0.000 ∼ 0.011, p = 0.025, 1.6% mediated). CONCLUSIONS Findings revealed that fibrinogen, WBC and neutrophil counts may be independent predictors of CP-PSDS and partial mediators of the relationship between stroke severity and CP-PSDS among patients with ischemic stroke. In addition, the chain mediating effect of fibrinogen and neutrophil counts might play an important role in the occurrence of CP-PSDS. However, no inflammatory markers were associated with CP-PSDS in females.
Collapse
|
12
|
Mehta K, Bhagwat DP, Devraj, Sehgal P, Mittal G, Suchal K. Vitex negundo protects against cerebral ischemia-reperfusion injury in mouse via attenuating behavioral deficits and oxidative damage. Psychopharmacology (Berl) 2022; 239:573-587. [PMID: 35072759 DOI: 10.1007/s00213-021-06050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022]
Abstract
Global cerebral ischemia/reperfusion (I-R) injury often results in an irreparable brain damage like behavioral impairment and neuronal death. This neurological complication involves diverse intricate pathological mechanisms like oxidative stress, inflammation, and apoptosis. Recently, the therapeutic value of plant-based polyphenols has gained researcher's attention. The present study focused on the putative neuroprotective role of negundoside on behavioral and oxidative stress status in an experimental model of global cerebral ischemia and reperfusion-induced brain injury. Negundoside was isolated from the leaves of Vitex negundo Linn. by chromatography for investigating its possible neurobehavioral and neuropharmacological implications. Healthy Balb/C mice of either sex were subjected to 10 min of global cerebral ischemia (GCI) followed by 24-h reperfusion. Mice were pre-treated intraperitoneally with negundoside at varying doses (1, 3, 5, 10, and 15 mg/kg) 60 min before the induction of GCI. Mice were later subjected to a battery of behavioral tests for evaluating memory-related and motor abilities. Elevated plus maze (EPM) was used to determine the anxiety levels and short-term memory whereas motor abilities were evaluated by inclined beam-walking test, rotarod, and lateral push test. TBARS and reduced glutathione (GSH) content in brains were analyzed spectrophotometrically as oxidative stress markers. Behavioral study revealed enhanced anxiety-related responses and motor deficits in I-R injured mice. Additionally, GSH and TBARS levels were found to be altered following I-R-induced neuronal injury. Contrastingly, negundoside administration was able to alleviate the behavioral and biochemical alterations to the normal levels. Together, our findings provide preliminary evidence of neuroprotective role of negundoside against global cerebral ischemia and reperfusion-induced behavioral dysfunction and oxidative damage in mice brain.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Neurology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | - Devraj
- Panipat Institute of Engineering and Technology, Samalkha, Haryana, 132102, India
| | - Palika Sehgal
- Panipat Institute of Engineering and Technology, Samalkha, Haryana, 132102, India
| | - Garima Mittal
- Panipat Institute of Engineering and Technology, Samalkha, Haryana, 132102, India
| | - Kapil Suchal
- Panipat Institute of Engineering and Technology, Samalkha, Haryana, 132102, India.
| |
Collapse
|
13
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
14
|
Peng W, Tan C, Mo L, Jiang J, Zhou W, Du J, Zhou X, Liu X, Chen L. Glucose transporter 3 in neuronal glucose metabolism: Health and diseases. Metabolism 2021; 123:154869. [PMID: 34425073 DOI: 10.1016/j.metabol.2021.154869] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurons obtain glucose from extracellular environment for energy production mainly depending on glucose transporter 3 (GLUT3). GLUT3 uptakes glucose with high affinity and great transport capacity, and is important for neuronal energy metabolism. This review summarized the role of neuronal GLUT3 in brain metabolism, function and development under both physiological conditions and in diseases, aiming to provide insights into neuronal glucose metabolism and its effect on brain. GLUT3 stabilizes neuronal glucose uptake and utilization, influences brain development and function, and ameliorates aging-related manifestations. Neuronal GLUT3 is regulated by synaptic activity, hormones, nutrition, insulin and insulin-like growth factor 1 in physiological conditions, and is also upregulated by hypoxia-ischemia. GLUT3-related neuronal glucose and energy metabolism is possibly involved in the pathogenesis, pathophysiological mechanism, progression or prognosis of brain diseases, including Alzheimer's disease, Huntington's disease, attention-deficit/hyperactivity disorder and epilepsy. GLUT3 may be a promising therapeutic target of these diseases. This review also briefly discussed the role of other glucose transporters in neuronal glucose metabolism, which work together with GLUT3 to sustain and stabilize glucose and energy supply for neurons. Deficiency in these glucose transporters may also participate in brain diseases, especially GLUT1 and GLUT4.
Collapse
Affiliation(s)
- Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncong Du
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
16
|
Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021; 26:163-183. [PMID: 33751318 DOI: 10.1007/s10495-021-01661-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
17
|
Cicolari S, Catapano AL, Magni P. Inflammaging and neurodegenerative diseases: Role of NLRP3 inflammasome activation in brain atherosclerotic vascular disease. Mech Ageing Dev 2021; 195:111467. [PMID: 33711349 DOI: 10.1016/j.mad.2021.111467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The activation of the NLRP3 inflammasome-IL-1β pathway has been clearly shown to be involved in the pathophysiology of cardiovascular diseases, but its role in cerebral atherosclerotic vascular disease has not been fully clarified. Here we provide an overview on the current knowledge about the relevance of the activation of this mechanism in the onset of acute brain atherosclerotic vascular disease and the subsequent tissue damage. Some variants of NLRP3-related genes seem to reduce the susceptibility to acute ischaemic stroke in selected cohorts, although no clear evidence exists either supporting or excluding any role of this pathway in its pathophysiology. Interestingly, robust experimental and clinical data support a major role of the activation of the NLRP3 inflammasome-IL-1β pathway in the post-event inflammatory cascade which leads to neurodegeneration. This evidence highlights a potential dual role of these molecules in brain pre- and post-ischaemic events, supporting the need for further studies, including clinical trials evaluating the modulation of this pathway for stroke prevention and post-stroke treatment.
Collapse
Affiliation(s)
- Stefania Cicolari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy; IRCCS Multimedica Hospital, 20099, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy; IRCCS Multimedica Hospital, 20099, Milan, Italy.
| |
Collapse
|
18
|
Klimova N, Fearnow A, Kristian T. Role of NAD +-Modulated Mitochondrial Free Radical Generation in Mechanisms of Acute Brain Injury. Brain Sci 2020; 10:brainsci10070449. [PMID: 32674501 PMCID: PMC7408119 DOI: 10.3390/brainsci10070449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
It is commonly accepted that mitochondria represent a major source of free radicals following acute brain injury or during the progression of neurodegenerative diseases. The levels of reactive oxygen species (ROS) in cells are determined by two opposing mechanisms—the one that produces free radicals and the cellular antioxidant system that eliminates ROS. Thus, the balance between the rate of ROS production and the efficiency of the cellular detoxification process determines the levels of harmful reactive oxygen species. Consequently, increase in free radical levels can be a result of higher rates of ROS production or due to the inhibition of the enzymes that participate in the antioxidant mechanisms. The enzymes’ activity can be modulated by post-translational modifications that are commonly altered under pathologic conditions. In this review we will discuss the mechanisms of mitochondrial free radical production following ischemic insult, mechanisms that protect mitochondria against free radical damage, and the impact of post-ischemic nicotinamide adenine mononucleotide (NAD+) catabolism on mitochondrial protein acetylation that affects ROS generation and mitochondrial dynamics. We propose a mechanism of mitochondrial free radical generation due to a compromised mitochondrial antioxidant system caused by intra-mitochondrial NAD+ depletion. Finally, the interplay between different mechanisms of mitochondrial ROS generation and potential therapeutic approaches are reviewed.
Collapse
Affiliation(s)
- Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam Fearnow
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
19
|
Chalmers NE, Yonchek J, Steklac KE, Ramsey M, Bayer KU, Herson PS, Quillinan N. Calcium/Calmodulin-Dependent Kinase (CaMKII) Inhibition Protects Against Purkinje Cell Damage Following CA/CPR in Mice. Mol Neurobiol 2020; 57:150-158. [PMID: 31520314 PMCID: PMC6980452 DOI: 10.1007/s12035-019-01765-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/14/2023]
Abstract
Ischemic brain damage is triggered by glutamate excitotoxicity resulting in neuronal cell death. Previous research has demonstrated that N-methly-D-aspartate (NMDA) receptor activation triggers downstream calcium-dependent signaling pathways, specifically Ca2+/calmodulin-dependent protein kinase II (CaMKII). Inhibiting CaMKII is protective against hippocampal ischemic injury, but there is little known about its role in the cerebellum. To examine the neuroprotective potential of CaMKII inhibition in Purkinje cells, we subjected C57BL/6 or CaMKIIα KO male mice (8-12 weeks old) to cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). We performed a dose-response study for tat-CN19o and cerebellar injury was analyzed at 7 days after CA/CPR. Acute signaling was assessed at 6 h after CA/CPR using Western blot analysis. We observed increased phosphorylation of the T286 residue of CaMKII, suggesting increased autonomous activation. Analysis of Purkinje cell density revealed a decrease in cell density at 7 days after CA/CPR that was prevented with tat-CN19o at doses of 0.1 and 1 mg/kg. However, neuroprotection in the cerebellum required doses that were 10-fold higher than what was needed in the hippocampus. CaMKIIα KO mice subjected to sham surgery or CA/CPR had similar Purkinje cell densities, suggesting CaMKIIα is required for CA/CPR-induced injury in the cerebellum. We also observed a CA/CPR-induced activation of death-associated protein kinase (DAPK1) that tat-CN19o did not block. In summary, our findings indicate that inhibition of autonomous CaMKII activity is a promising therapeutic approach that is effective across multiple brain regions.
Collapse
Affiliation(s)
- Nicholas E Chalmers
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Joan Yonchek
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn E Steklac
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Ramsey
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Paco S Herson
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Neuronal Injury Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
20
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
21
|
Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:1411-1423. [PMID: 31760927 DOI: 10.1134/s0006297919110154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/08/2024]
Abstract
Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.
Collapse
Affiliation(s)
- A Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University William Black Building, NY 10032, New York, USA.
| |
Collapse
|
22
|
Chang P, Tian Y, Williams AM, Bhatti UF, Liu B, Li Y, Alam HB. Inhibition of Histone Deacetylase 6 Protects Hippocampal Cells Against Mitochondria-mediated Apoptosis in a Model of Severe Oxygen-glucose Deprivation. Curr Mol Med 2019; 19:673-682. [DOI: 10.2174/1566524019666190724102755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase (HDAC) 6 inhibitors have demonstrated
significant protective effects in traumatic injuries. However, their roles in neuroprotection
and underlying mechanisms are poorly understood. This study sought to investigate the
neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose
deprivation (OGD) in HT22 hippocampal cells.
Methods:
HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity
were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release
assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using
JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl-
2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β
were analyzed by Western blot analysis.
Results:
Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy.
Tub-A significantly increased cell viability and attenuated LDH release after exposure to
OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells
following OGD and preserved the mitochondrial membrane potential. Tub-A also
attenuated the release of cytochrome c from the mitochondria into the cytoplasm and
suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by
the increased phosphorylation of Akt and GSK3β signaling pathways.
Conclusion:
HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in
HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated
apoptosis.
Collapse
Affiliation(s)
- Panpan Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron M. Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Umar F. Bhatti
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Hasan B. Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Ten V, Galkin A. Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A hypothesis. Mol Cell Neurosci 2019; 100:103408. [PMID: 31494262 PMCID: PMC11500760 DOI: 10.1016/j.mcn.2019.103408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to integrate available data on the effect of brain ischemia/reperfusion (I/R) on mitochondrial complex I. Complex I is a key component of the mitochondrial respiratory chain and it is the only enzyme responsible for regenerating NAD+ for the maintenance of energy metabolism. The vulnerability of brain complex I to I/R injury has been observed in multiple animal models, but the mechanisms of enzyme damage have not been studied. This review summarizes old and new data on the effect of cerebral I/R on mitochondrial complex I, focusing on a recently discovered mechanism of the enzyme impairment. We found that the loss of the natural cofactor flavin mononucleotide (FMN) by complex I takes place after brain I/R. Reduced FMN dissociates from the enzyme if complex I is maintained under conditions of reverse electron transfer when mitochondria oxidize succinate accumulated during ischemia. The potential role of this process in the development of mitochondrial I/R damage in the brain is discussed.
Collapse
Affiliation(s)
- Vadim Ten
- Division of Neonatology, Department of Pediatrics, Columbia University, William Black Building, 650 W 168th St, New York, NY 10032, United States of America
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, William Black Building, 650 W 168th St, New York, NY 10032, United States of America.
| |
Collapse
|
24
|
Mitroshina EV, Mishchenko TA, Shishkina TV, Vedunova MV. Role of Neurotrophic Factors BDNF and GDNF in Nervous System Adaptation to the Influence of Ischemic Factors. Bull Exp Biol Med 2019; 167:574-579. [PMID: 31502136 DOI: 10.1007/s10517-019-04574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 11/25/2022]
Abstract
We developed a complex in vitro model of ischemic damage. Analysis of hippocampal cell viability in primary cultures after modeling of various stress factors revealed the features of action of the main pathological factors of ischemia. Neurotrophic factors BDNF and GDNF produced pronounced neuroprotective effect during modeling both the complex ischemic damage and its individual pathophysiological components. Neurotrophic factor GDNF produced the most pronounced protective effect.
Collapse
Affiliation(s)
- E V Mitroshina
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia.
| | - T A Mishchenko
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia
| | - T V Shishkina
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia
| | - M V Vedunova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain. J Cereb Blood Flow Metab 2019; 39:1790-1802. [PMID: 29629602 PMCID: PMC6727140 DOI: 10.1177/0271678x18770331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.
Collapse
Affiliation(s)
- Anna Stepanova
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Guerrero-Castillo
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanni Manfredi
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Susan Vannucci
- 4 Department of Pediatrics/Newborn Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Susanne Arnold
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Galkin
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
de Souza Gonçalves B, de Moura Valadares JM, Alves SLG, Silva SC, Rangel LP, Cortes VF, Villar JAFP, Barbosa LA, de Lima Santos H. Evaluation of neuroprotective activity of digoxin and semisynthetic derivatives against partial chemical ischemia. J Cell Biochem 2019; 120:17108-17122. [PMID: 31310381 DOI: 10.1002/jcb.28971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Recently, cardiotonic steroids (CTS) have been shown to lead to the activation of Na,K-ATPase at low concentrations in brain, promoting neuroprotection against ischemia. We report here the results of the use of digoxin and its semisynthetic derivatives BD-14, BD-15, and BD-16 against partial chemical ischemic induction followed by reperfusion in murine neuroblastoma cells neuro-2a (N2a). For chemical ischemic induction, sodium azide (5 mM) was used for 5 hours, and then reperfusion was induced for 24 hours. Na,K-ATPase activity and protein levels were analyzed in membrane preparation of N2a cells pretreated with the compounds (150 nM), in the controls and in induced chemical ischemia. In the Na,K-ATPase activity and protein levels assays, the steroids digoxin and BD-15 demonstrated a capacity to modulate the activity of the enzyme directly, increasing its levels of expression and activity. Oxidative parameters, such as superoxide dismutase (SOD) activity, lipid peroxidation (thiobarbituric acid reactive substance), glutathione peroxidase (GPx), glutathione (GSH) levels, hydrogen peroxide content, and the amount of free radicals (reactive oxygen species) during induced chemical ischemia were also evaluated. Regarding the redox state, lipid peroxidation, hydrogen peroxide content, and GPx activity, we have observed an increase in the chemical ischemic group, and a reduction in the groups treated with CTS. SOD activity increased in all treated groups when compared to control and GSH levels decreased when treated with sodium azide and did not change with CTS treatments. Regarding the lipid profile, we saw a decrease in the content of phospholipids and cholesterol in the chemical ischemic group, and an increase in the groups treated with CTS. In conclusion, the compounds used in this study demonstrate promising results, since they appear to promote neuroprotection in cells exposed to chemical ischemia.
Collapse
Affiliation(s)
- Bruno de Souza Gonçalves
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Silmara L G Alves
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Simone C Silva
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Luciana P Rangel
- Laboratório de Bioquímica Tumoral, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - José A F P Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
27
|
Perrillat-Mercerot A, Bourmeyster N, Guillevin C, Miranville A, Guillevin R. Mathematical Modeling of Substrates Fluxes and Tumor Growth in the Brain. Acta Biotheor 2019; 67:149-175. [PMID: 30868396 DOI: 10.1007/s10441-019-09343-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/09/2019] [Indexed: 01/25/2023]
Abstract
The aim of this article is to show how a tumor can modify energy substrates fluxes in the brain to support its own growth. To address this question we use a modeling approach to explain brain nutrient kinetics. In particular we set up a system of 17 equations for oxygen, lactate, glucose concentrations and cells number in the brain. We prove the existence and uniqueness of nonnegative solutions and give bounds on the solutions. We also provide numerical simulations.
Collapse
|
28
|
Rutkai I, Merdzo I, Wunnava SV, Curtin GT, Katakam PVG, Busija DW. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 2019; 39:1056-1068. [PMID: 29215305 PMCID: PMC6547195 DOI: 10.1177/0271678x17745028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The underlying factors promoting increased mitochondrial proteins, mtDNA, and dilation to mitochondrial-specific agents in male rats following tMCAO are not fully elucidated. Our goal was to determine the morphological and functional effects of ischemia/reperfusion (I/R) on mitochondria using electron microscopy, Western blot, mitochondrial oxygen consumption rate (OCR), and Ca2+ sparks activity measurements in middle cerebral arteries (MCAs) from male Sprague Dawley rats (Naïve, tMCAO, Sham). We found a greatly increased OCR in ipsilateral MCAs (IPSI) compared with contralateral (CONTRA), Sham, and Naïve MCAs. Consistent with our earlier findings, the expression of Mitofusin-2 and OPA-1 was significantly decreased in IPSI arteries compared with Sham and Naïve. Mitochondrial morphology was disrupted in vascular smooth muscle, but morphology with normal and perhaps greater numbers of mitochondria were observed in IPSI compared with CONTRA MCAs. Consistently, there were significantly fewer baseline Ca2+ events in IPSI MCAs compared with CONTRA, Sham, and Naïve. Mitochondrial depolarization significantly increased Ca2+ sparks activity in the IPSI, Sham, Naïve, but not in the CONTRA group. Our data indicate that altered mitochondrial structure and function occur in MCAs exposed to I/R and that these changes impact not only OCR but Ca2+ sparks activity in both IPSI and CONTRA MCAs.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Ivan Merdzo
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
- Department of Pharmacology, University
of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Sanjay V Wunnava
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Genevieve T Curtin
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - David W Busija
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| |
Collapse
|
29
|
Kots ED, Khrenova MG, Nemukhin AV, Varfolomeev SD. Aspartoacylase: a central nervous system enzyme. Structure, catalytic activity and regulation mechanisms. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Shimauchi-Ohtaki H, Kurachi M, Naruse M, Shibasaki K, Sugio S, Matsumoto K, Ema M, Yoshimoto Y, Ishizaki Y. The dynamics of revascularization after white matter infarction monitored in Flt1-tdsRed and Flk1-GFP mice. Neurosci Lett 2018; 692:70-76. [PMID: 30389418 DOI: 10.1016/j.neulet.2018.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Subcortical white matter infarction causes ischemic demyelination and loss of brain functions, as the result of disturbances of the blood flow. Although angiogenesis is one of the recovery processes after cerebral infarction, the dynamics of revascularization after white matter infarction still remains unclear. We induced white matter infarction in the internal capsule of Flk1-GFP::Flt1-tdsRed double transgenic mice by injection of endothelin-1 (ET-1), a vasoconstrictor peptide, together with N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, and followed the changes in Flk1 and Flt1 expression in the vascular system in the infarct area. Reduction of Flt1-tdsRed-positive blood vessels 1 day after the injection and increase of Flk1-GFP-strongly-positive blood vessels 3 days after the injection were apparent. PDGFRβ-strongly-positive (PDGFRβ+) cells appeared in the infarct area 3 days after the injection and increased their number thereafter. Three days after the injection, most of these cells were in close contact with Flk1-GFP-positive endothelial cells, indicating these cells are bona fide pericytes. Seven days after the injection, the number of PDGFRβ+ cells increased dramatically, and the vast majority of these cells were not in close contact with Flk1-GFP-positive endothelial cells. Taken together, our results suggest revascularization begins early after the ischemic insult, and the emerging pericytes first ensheath blood vessels and then produce fibroblast-like cells not directly associated with blood vessels.
Collapse
Affiliation(s)
- Hiroya Shimauchi-Ohtaki
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shouta Sugio
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
31
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
32
|
Joshi PC, Benerjee S. Effects of glucocorticoids in depression: Role of astrocytes. AIMS Neurosci 2018; 5:200-210. [PMID: 32341961 PMCID: PMC7179343 DOI: 10.3934/neuroscience.2018.3.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Astrocytes or astroglia are heterogeneous cells, similar to neurons, that have different properties in different brain regions. The implications of steroid hormones on glial cells and stress-related pathologies have been studied previously. Glucocorticoids (GCs) that are released in response to stress have been shown to be deleterious to neurons in various brain regions. Further, in the light of the effect of GCs on astrocytes, several reports have shown the crucial role of glia. Still, much remains to be done to understand the stress-astrocytes-glucocorticoid interactions associated with the pathological consequences of various CNS disorders. This review is an attempt to summarize the effects of GCs and stress on astrocytes and its implications in depression.
Collapse
Affiliation(s)
- Pranav Chintamani Joshi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sugato Benerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
33
|
Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord 2018; 11:1756286418789340. [PMID: 30093920 PMCID: PMC6080077 DOI: 10.1177/1756286418789340] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Stroke is the fifth leading cause of death and the most frequent cause of disability worldwide. Currently, stroke diagnosis is based on neuroimaging; therefore, the lack of a rapid tool to diagnose stroke is still a major concern. In addition, therapeutic approaches to combat ischemic stroke are still scarce, since the only approved therapies are directed toward restoring blood flow to the affected brain area. However, due to the reduced time window during which these therapies are effective, few patients benefit from them; therefore, alternative treatments are urgently needed to reduce stroke brain damage in order to improve patients' outcome. The inflammatory response triggered after the ischemic event plays an important role in the progression of stroke; consequently, the study of inflammatory molecules in the acute phase of stroke has attracted increasing interest in recent decades. Here, we provide an overview of the inflammatory processes occurring during ischemic stroke, as well as the potential for these inflammatory molecules to become stroke biomarkers and the possibility that these candidates will become interesting neuroprotective therapeutic targets to be blocked or stimulated in order to modulate inflammation after stroke.
Collapse
Affiliation(s)
- Laura Ramiro
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Pg. Vall d’Hebron 119–129, Hospital Universitari Vall
d’Hebron, 08035 Barcelona, Spain
| |
Collapse
|
34
|
Kahl A, Stepanova A, Konrad C, Anderson C, Manfredi G, Zhou P, Iadecola C, Galkin A. Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury. Stroke 2018; 49:1223-1231. [PMID: 29643256 PMCID: PMC5916474 DOI: 10.1161/strokeaha.117.019687] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. Methods— We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. Results— Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. Conclusions— Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.
Collapse
Affiliation(s)
- Anja Kahl
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Anna Stepanova
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| | - Csaba Konrad
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Corey Anderson
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Giovanni Manfredi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Ping Zhou
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Alexander Galkin
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| |
Collapse
|
35
|
Deng M, Xiao H, Peng H, Yuan H, Xu Y, Zhang G, Tang J, Hu Z. Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions. Eur J Neurosci 2017; 47:150-157. [PMID: 29178548 DOI: 10.1111/ejn.13784] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapies have been reported in protecting cerebral infarction-induced neuronal dysfunction and death. However, most studies used rat/mouse neuron as model cell when treated with stem cell or exosomes. Whether these findings can be translated from rodent to humans has been in doubt. Here, we used human embryonic stem cell-derived neurons to detect the protective potential of exosomes against ischemia. Neurons were treated with in vitro oxygen-glucose deprivation (OGD) for 1 h. For treatment group, different exosomes were derived from neuron, embryonic stem cell, neural progenitor cell and astrocyte differentiated from H9 human embryonic stem cell and added to culture medium 30 min after OGD (100 μg/mL). Western blotting was performed 12 h after OGD, while cell counting and electrophysiological recording were performed 48 h after OGD. We found that these exosomes attenuated OGD-induced neuronal death, Mammalian target of rapamycin (mTOR), pro-inflammatory and apoptotic signaling pathway changes, as well as basal spontaneous synaptic transmission inhibition in varying degrees. The results implicate the protective effect of exosomes on OGD-induced neuronal death and dysfunction in human embryonic stem cell-derived neurons, potentially through their modulation on mTOR, pro-inflammatory and apoptotic signaling pathways.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yuan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
36
|
Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi J, Klaunig JE, Zhou S. Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology 2017; 394:45-53. [PMID: 29222055 DOI: 10.1016/j.tox.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Excessive environmental or occupational exposure to manganese (Mn) is associated with increased risk of neuron degenerative disorders. Oxidative stress and mitochondrial dysfunction are the main mechanisms of Mn mediated neurotoxicity. Selective removal of damaged mitochondria by autophagy has been proposed as a protective mechanism against neuronal toxicant-induced neurotoxicity. Whether autophagic flux plays a role in Mn-induced cytotoxicity remains to be fully elucidated. The present study was designed to investigate the effect of Mn exposure on autophagy, and how modulation of autophagic flux alters the sensitivities of cells to Mn-elicited cytotoxicity. Rat adrenal pheochromocytoma PC12 cells were treated with Mn for 24h to establish a cellular mode of Mn toxicity. Treatment of cells with Mn resulted in increased expression of autophagic marker LC3-II protein, as well as accumulation of p62, indicating an interference of autophagy flux caused by Mn. Pre-incubation of cells with antioxidant N-acetyl-l-cysteine (NAC) or resveratrol improved cell survival, accompanied by decreased LC3-II expression and increased expression level of p62, suggesting a down regulation of autophagy flux. To further determine the role of autophagy in Mn-induced cytotoxicity, the effect of chloroquine and rapamycin on cell viability was examined. Inhibition of autophagy flux by chloroquine exacerbated Mn-induced cytotoxicity, while induction of autophagy by rapamycin significantly reduced cell death caused by Mn. Furthermore, it was found that rapamycin, NAC and resveratrol improved cellular oxygen consumption accompanied by a decrease in cellular ROS generation and increase in GSH level, while chloroquine suppressed cellular respiration and deteriorated cellular oxidative stress. Collectively, these results demonstrate that autophagy plays a protective role in Mn-induced cell toxicity. Antioxidants NAC and resveratrol confer protective role in Mn toxicity mainly through maintaining mitochondrial dynamics and function, other than a modulation of autophagy flux.
Collapse
Affiliation(s)
- Qian Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xiaolong Fu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xueting Wang
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Qin Wu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Yuanfu Lu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Jingshan Shi
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China; Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
37
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
38
|
Gascón S, Masserdotti G, Russo GL, Götz M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 2017; 21:18-34. [DOI: 10.1016/j.stem.2017.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection. Mol Cell Neurosci 2017; 82:176-194. [DOI: 10.1016/j.mcn.2017.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
|
40
|
Liu S, Dai Q, Hua R, Liu T, Han S, Li S, Li J. Determination of Brain-Regional Blood Perfusion and Endogenous cPKCγ Impact on Ischemic Vulnerability of Mice with Global Ischemia. Neurochem Res 2017; 42:2814-2825. [DOI: 10.1007/s11064-017-2294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/19/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023]
|
41
|
Winkler U, Seim P, Enzbrenner Y, Köhler S, Sicker M, Hirrlinger J. Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 2017; 95:2172-2181. [PMID: 28151554 DOI: 10.1002/jnr.24020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
Abstract
Brain function is absolutely dependent on an appropriate supply of energy. A shortfall in supply-as occurs, for instance, following stroke-can lead rapidly to irreversible damage to this vital organ. While the consequences of pathophysiological energy depletion have been well documented, much less is known about the physiological energy dynamics of brain cells, although changes in the intracellular concentration of adenosine triphosphate (ATP), the major energy carrier of cells, have been postulated to contribute to cellular signaling. To address this issue more closely, we have investigated intracellular ATP in cultured primary cortical astrocytes by time-lapse microscopy using a genetically encoded fluorescent sensor for ATP. The cytosolic ATP sensor signal decreased after application of the neurotransmitter glutamate in a manner dependent on both glutamate concentration and glutamate transporter activity, but independent of glutamate receptors. The application of dopamine did not affect ATP levels within astrocytes. These results confirm that intracellular ATP levels in astrocytes do indeed respond to changes in physiological activity and pave the way for further studies addressing factors that affect regulation of ATP. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Pauline Seim
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Yvonne Enzbrenner
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
42
|
Gerkau NJ, Rakers C, Petzold GC, Rose CR. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J Neurosci Res 2017; 95:2275-2285. [PMID: 28150887 DOI: 10.1002/jnr.23995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
43
|
Ruan L, Wang Y, Chen SC, Zhao T, Huang Q, Hu ZL, Xia NZ, Liu JJ, Chen WJ, Zhang Y, Cheng JL, Gao HC, Yang YJ, Sun HZ. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion. Neural Regen Res 2017; 12:931-937. [PMID: 28761426 PMCID: PMC5514868 DOI: 10.4103/1673-5374.208575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere). The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate), a perturbation of choline metabolism (suggested by the increase in choline), neuronal cell damage (shown by the decrease in N-acetyl aspartate) and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate) in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a difference in the metabolite changes induced by ischemic injury in the contralateral and ipsilateral cerebral hemispheres. Our findings demonstrate the presence of characteristic changes in metabolites in the contralateral hemisphere and suggest that they are most likely caused by metabolic changes in the ischemic hemisphere.
Collapse
Affiliation(s)
- Lei Ruan
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shu-Chao Chen
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tian Zhao
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qun Huang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zi-Long Hu
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Neng-Zhi Xia
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jin-Jin Liu
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei-Jian Chen
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Zhang
- Department of Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing-Liang Cheng
- Department of Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun-Jun Yang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hou-Zhang Sun
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
44
|
Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. J Clin Neurol 2017; 13:1-9. [PMID: 28079313 PMCID: PMC5242162 DOI: 10.3988/jcn.2017.13.1.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is caused by arterial occlusion due to a thrombus or an embolus. Such occlusion induces multiple and concomitant pathophysiological processes that involve bioenergetic failure, acidosis, loss of cell homeostasis, excitotoxicity, and disruption of the blood-brain barrier. All of these mechanisms contribute to neuronal death, mainly via apoptosis or necrosis. The immune system is involved in this process in the early phases after brain injury, which contributes to potential enlargement of the infarct size and involves the penumbra area. Whereas inflammation and the immune system both exert deleterious effects, they also contribute to brain protection by stimulating a preconditioning status and to the concomitant repair of the injured parenchyma. This review describes the main phases of the inflammatory process occurring after arterial cerebral occlusion, with an emphasis on the role of single mediators.
Collapse
Affiliation(s)
- Simone Vidale
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy.
| | - Arturo Consoli
- Department of Interventional Neurovascular Unit, Careggi University Hospital, Florence, Italy
| | - Marco Arnaboldi
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy
| | - Domenico Consoli
- Department of Neurology, G. Jazzolino Hospital, Vibo Valentia, Italy
| |
Collapse
|
45
|
Mondragão MA, Schmidt H, Kleinhans C, Langer J, Kafitz KW, Rose CR. Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. J Physiol 2016; 594:5507-27. [PMID: 27080107 PMCID: PMC5043027 DOI: 10.1113/jp272431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. ABSTRACT Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements.
Collapse
Affiliation(s)
- Miguel A Mondragão
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Christian Kleinhans
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Langer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
46
|
Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6032306. [PMID: 27777645 PMCID: PMC5061974 DOI: 10.1155/2016/6032306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs) are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.
Collapse
|
47
|
Chen S, Liu Q, Shu X, Soetikno B, Tong S, Zhang HF. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:3377-3389. [PMID: 27699105 PMCID: PMC5030017 DOI: 10.1364/boe.7.003377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/23/2016] [Accepted: 08/03/2016] [Indexed: 05/18/2023]
Abstract
Visible-light optical coherence tomography (Vis-OCT) is an emerging technology that can image hemodynamic response in microvasculature. Vis-OCT can retrieve blood oxygen saturation (sO2) mapping using intrinsic optical absorption contrast while providing high-resolution anatomical vascular structures at the same time. To improve the accuracy of Vis-OCT oximetry on vessels embedded in highly scattering medium, i.e., brain cortex, we developed and formulated a novel dual-depth sampling and normalization strategy that allowed us to minimize the detrimental effect of ubiquitous tissue scattering. We applied our newly developed approach to monitor the hemodynamic response in mouse cortex after focal photothrombosis. We observed vessel dilatation, which was negatively correlated with the original vessel diameter, in the penumbra region. The sO2 of vessels in the penumbra region also dropped below normal range after focal ischemia.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Both authors contributed equally to this work
| | - Qi Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Both authors contributed equally to this work
| | - Xiao Shu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Brian Soetikno
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
48
|
Human endothelial progenitor cells rescue cortical neurons from oxygen-glucose deprivation induced death. Neurosci Lett 2016; 631:50-55. [PMID: 27521752 DOI: 10.1016/j.neulet.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells. Therefore, the comparison between human endothelial progenitor cells (hEPC) and human mesenchymal progenitor cells (hMSC) in terms of efficacy in rescuing neurons from cell death after transitory ischemia is the aim of the current study, in the effort to address further directions. MATERIALS AND METHODS In vitro model of oxygen-glucose deprivation (OGD) on a primary culture of rodent cortical neurons was set up with different durations of exposure: 1, 2 and 3hrs with assessment of neuron survival. The 2hrs OGD was chosen for the subsequent experiments. After 2hrs OGD neurons were either placed in indirect co-culture with hMSC or hEPC or cultured in hMSC or hEPC conditioned medium and cell viability was evaluated by MTT assay. RESULTS At day 2 after 2hrs OGD exposure, mean neuronal survival was 47.9±24.2%. In contrast, after treatment with hEPC and hMSC indirect co-culture was 74.1±27.3%; and 69.4±18.8%, respectively. In contrast, treatment with conditioned medium did not provide any advantage in terms of survival to OGD neurons CONCLUSION The study shows the efficacy of hEPC in indirect co-culture to rescue neurons from cell death after OGD, comparable to that of hMSC. hEPC deserve further studies given their potential interest for ischemia.
Collapse
|
49
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
50
|
Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:483-91. [DOI: 10.1016/j.bbadis.2015.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
|