1
|
Lee D, Pan JH, Kim D, Heo W, Shin EC, Kim YJ, Shim YY, Reaney MJT, Ko SG, Hong SB, Cho HT, Kim TG, Lee K, Kim JK. Mycoproteins and their health-promoting properties: Fusarium species and beyond. Compr Rev Food Sci Food Saf 2024; 23:e13365. [PMID: 38767863 DOI: 10.1111/1541-4337.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.
Collapse
Affiliation(s)
- Daseul Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Hodun K, Czuba M, Płoszczyca K, Sadowski J, Langfort J, Chabowski A, Baranowski M. The effect of normobaric hypoxia on acute exercise-induced changes in blood sphingoid base-1-phosphates metabolism in cyclists. Biol Sport 2024; 41:37-45. [PMID: 38524828 PMCID: PMC10955731 DOI: 10.5114/biolsport.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
Extracellular sphingosine-1-phosphate (S1P) emerged as an important regulator of muscle function. We previously found that plasma S1P concentration is elevated in response to acute exercise and training. Interestingly, hypoxia, which is commonly utilized in training programs, induces a similar effect. Therefore, the aim of the current study was to determine the effect of normobaric hypoxia on exercise-induced changes in blood sphingolipid metabolism. Fifteen male competitive cyclists performed a graded cycling exercise until exhaustion (GE) and a simulated 30 km individual time trial (TT) in either normoxic or hypoxic (FiO2 = 16.5%) conditions. Blood samples were taken before the exercise, following its cessation, and after 30 min of recovery. We found that TT increased dihydrosphingosine-1-phosphate (dhS1P) concentration in plasma (both HDL- and albumin-bound) and blood cells, as well as the rate of dhS1P release from erythrocytes, regardless of oxygen availability. Plasma concentration of S1P was, however, reduced during the recovery phase, and this trend was augmented by hypoxia. On the other hand, GE in normoxia induced a selective increase in HDL-bound S1P. This effect disappeared when the exercise was performed in hypoxia, and it was associated with reduced S1P level in platelets and erythrocytes. We conclude that submaximal exercise elevates total plasma dhS1P concentration via increased availability of dihydrosphingosine resulting in enhanced dhS1P synthesis and release by blood cells. Maximal exercise, on the other hand, induces a selective increase in HDL-bound S1P, which is a consequence of mechanisms not related to blood cells. We also conclude that hypoxia reduces post-exercise plasma S1P concentration.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Miłosz Czuba
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport – National Research Institute, Warsaw, Poland
| | - Jerzy Sadowski
- Faculty of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Józef Langfort
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
3
|
Yu F, Feng X, Li X, Liu Z, Liao D, Luo Y, Wei M, Huang Q, Zhang L, Xia J. Association of Plasma Metabolic Biomarker Sphingosine-1-Phosphate With Cerebral Collateral Circulation in Acute Ischemic Stroke. Front Physiol 2021; 12:720672. [PMID: 34489737 PMCID: PMC8416917 DOI: 10.3389/fphys.2021.720672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The contribution of metabolic profile to the cerebral collateral circulation in acute ischemic stroke (AIS) has not been fully outlined. In this study, we conducted a metabolomic study to assess the relationship between the metabolic biomarkers and the collateral status of AIS. Methods: A two-stage study was conducted from September 2019 to June 2021 in our hospital. There were 96 subjects including 66 patients with AIS and 30 healthy controls in the discovery stage and 80 subjects including 53 patients with AIS and 27 healthy controls in the validation stage. Collateral circulation was assessed by the Tan score based on computed tomographic angiography (CTA). Liquid chromatography-tandem mass spectrometry was used to identify differential metabolic markers. Then, an ELISA was employed to detect the plasma levels of sphingosine-1-phosphate (S1P). Results:There were 114 differential metabolites between patients with AIS and control groups and 37 differential metabolites between good collateral circulation (GCC) and poor collateral circulation (PCC) groups. The pathway enrichment analysis revealed that arginine biosynthesis was the only statistically significant pathway between AIS and control groups and sphingolipid metabolism was the only statistically significant pathway between GCC and PCC groups. The differential metabolites sphinganine-1-phosphate (SA1P) and S1P belong to the sphingolipid metabolism. In the discovery stage, when the GCC group was compared with the PCC group, the receiver operating characteristic (ROC) analysis showed that plasma SA1P relative levels demonstrated an area under the curve (AUC) of 0.719 (95% CI: 0.582–0.834), and S1P levels demonstrated an AUC of 0.701 (95% CI: 0.567–0.819). In addition, both plasma SA1P and S1P relative levels showed significant negative correlations with the 90-day modified Rankin Scale (mRS) score. In the validation sample, higher plasma S1P levels were independent predictors of GCC (p = 0.014), and plasma S1P levels demonstrated an AUC of 0.738 (95% CI: 0.599–0.849) to differentiate patients with GCC from patients with PCC. In addition, plasma S1P levels also showed significant negative correlations with the 90-day mRS score. Conclusion: We first illustrated the association between plasma metabolic profiles and cerebral collateral circulation in patients with AIS. Plasma S1P levels might be a potential diagnostic biomarker for predicting collateral circulation status in patients with AIS.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Liu H, Jackson ML, Goudswaard LJ, Moore SF, Hutchinson JL, Hers I. Sphingosine-1-phosphate modulates PAR1-mediated human platelet activation in a concentration-dependent biphasic manner. Sci Rep 2021; 11:15308. [PMID: 34321503 PMCID: PMC8319165 DOI: 10.1038/s41598-021-94052-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signalling sphingolipid that is increased in diseases such as obesity and diabetes. S1P can modulate platelet function, however the direction of effect and S1P receptors (S1PRs) involved are controversial. Here we describe the role of S1P in regulating human platelet function and identify the receptor subtypes responsible for S1P priming. Human platelets were treated with protease-activated receptor 1 (PAR-1)-activating peptide in the presence or absence of S1P, S1PR agonists or antagonists, and sphingosine kinases inhibitors. S1P alone did not induce platelet aggregation but at low concentrations S1P enhanced PAR1-mediated platelet responses, whereas PAR1 responses were inhibited by high concentrations of S1P. This biphasic effect was mimicked by pan-S1PR agonists. Specific agonists revealed that S1PR1 receptor activation has a positive priming effect, S1PR2 and S1PR3 have no effect on platelet function, whereas S1PR4 and S1PR5 receptor activation have an inhibitory effect on PAR-1 mediated platelet function. Although platelets express both sphingosine kinase 1/2, enzymes which phosphorylate sphingosine to produce S1P, only dual and SphK2 inhibition reduced platelet function. These results support a role for SphK2-mediated S1P generation in concentration-dependent positive and negative priming of platelet function, through S1PR1 and S1PR4/5 receptors, respectively.
Collapse
Affiliation(s)
- Haonan Liu
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Molly L Jackson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
- Population Health Sciences, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK
| | - Samantha F Moore
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
5
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn B, Kaye D, Liew D, Wang BH. Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1. Cell Signal 2020; 72:109629. [PMID: 32278008 DOI: 10.1016/j.cellsig.2020.109629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/03/2023]
Abstract
Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia.
| |
Collapse
|
6
|
Systematic review of clinician awareness of mycotoxin impact in neural tube defects and best practices for pediatric neurosurgeons: implications for public health and policy. Childs Nerv Syst 2019; 35:637-644. [PMID: 30552445 DOI: 10.1007/s00381-018-4023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE In lower-income populations, high rates of neural tube defects (NTDs) are a concern. Nutritional folate deficiencies and mycotoxins in contaminated food supplies increase risk of NTDs. As physicians in public health and involved in the care of children with NTDs, pediatric neurosurgeons have an interest in the treatment and prevention of NTDs. We aimed to evaluate the literature to assess the awareness and the existence of best practices/educational materials on this issue to better guide management. METHODS A systematic review using the National Library of Medicine PubMed database was conducted to find articles related to mycotoxins in foods causing neural tube defects. Additional citation searches of key publications and personal collections were used. Two reviewers evaluated the resulting studies for subject area analysis. Best practice recommendations were drawn from articles selected for full-text review. RESULTS Seventy-three articles were identified. Most articles were found in "nutritional sciences" (18), "teratology" (14), and "toxicology" (13). No articles were found in neurosurgery. Thirty-two additional articles were identified through other sources to screen best practice recommendations. Of the 105 articles, 34 journal articles were included in best practice recommendation guidelines. Key recommendations included education of proper food storage, hygienic agricultural practices, decontamination techniques, diet diversification, folate supplementation, risk assessment, and food safety policy and public health initiatives. CONCLUSION There is an absence of neurosurgical literature-related mycotoxins and NTDs. We suggest a set of best practices/educational materials on this topic and advocate pediatric neurosurgery engagement in public health initiatives targeted towards populations most affected by mycotoxins.
Collapse
|
7
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Lumsangkul C, Chiang HI, Lo NW, Fan YK, Ju JC. Developmental Toxicity of Mycotoxin Fumonisin B₁ in Animal Embryogenesis: An Overview. Toxins (Basel) 2019; 11:E114. [PMID: 30781891 PMCID: PMC6410136 DOI: 10.3390/toxins11020114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 11/24/2022] Open
Abstract
A teratogenic agent or teratogen can disturb the development of an embryo or a fetus. Fumonisin B₁ (FB₁), produced by Fusarium verticillioides and F. proliferatum, is among the most commonly seen mycotoxins and contaminants from stale maize and other farm products. It may cause physical or functional defects in embryos or fetuses, if the pregnant animal is exposed to mycotoxin FB₁. Due to its high similarity in chemical structure with lipid sphinganine (Sa) and sphingosine (So), the primary component of sphingolipids, FB₁ plays a role in competitively inhibiting Sa and So, which are key enzymes in de novo ceramide synthase in the sphingolipid biosynthetic pathway. Therefore, it causes growth retardation and developmental abnormalities to the embryos of hamsters, rats, mice, and chickens. Moreover, maternal FB₁ toxicity can be passed onto the embryo or fetus, leading to mortality. FB₁ also disrupts folate metabolism via the high-affinity folate transporter that can then result in folate insufficiency. The deficiencies are closely linked to incidences of neural tube defects (NTDs) in mice or humans. The purpose of this review is to understand the toxicity and mechanisms of mycotoxin FB₁ on the development of embryos or fetuses.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
9
|
Callihan P, Alqinyah M, Hooks SB. Sphingosine-1-Phosphate (S1P) Signaling in Neural Progenitors. Methods Mol Biol 2018; 1697:141-151. [PMID: 28361481 DOI: 10.1007/7651_2017_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Sphingosine-1-phosphate (S1P) and its receptors are important in nervous system development. Reliable in vitro human model systems are needed to further define specific roles for S1P signaling in neural development. We have described S1P-regulated signaling, survival, and differentiation in a human embryonic stem cell-derived neuroepithelial progenitor cell line (hNP1) that expresses functional S1P receptors. These cells can be further differentiated to a neuronal cell type and therefore represent a good model system to study the role of S1P signaling in human neural development. The following sections describe in detail the culture and differentiation of hNP1 cells and two assays to measure S1P signaling in these cells.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Mohammed Alqinyah
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA. .,, 250 West Green Street, 338 Pharmacy South, Athens, GA, 60602, USA.
| |
Collapse
|
10
|
Blanchard O, Stepanovska B, Starck M, Erhardt M, Römer I, Meyer Zu Heringdorf D, Pfeilschifter J, Zangemeister-Wittke U, Huwiler A. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2) Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells. Int J Mol Sci 2018; 19:ijms19051498. [PMID: 29772789 PMCID: PMC5983760 DOI: 10.3390/ijms19051498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
Sphingosine kinase (SK) catalyses the formation of sphingosine 1-phosphate (S1P), which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ) induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF) and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1) by the pro-inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.
Collapse
Affiliation(s)
- Olivier Blanchard
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Bisera Stepanovska
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Manuel Starck
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Martin Erhardt
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Isolde Römer
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Uwe Zangemeister-Wittke
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| |
Collapse
|
11
|
Li F, Xu R, Low BE, Lin CL, Garcia-Barros M, Schrandt J, Mileva I, Snider A, Luo CK, Jiang XC, Li MS, Hannun YA, Obeid LM, Wiles MV, Mao C. Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates. FASEB J 2018; 32:3058-3069. [PMID: 29401619 DOI: 10.1096/fj.201700445rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P) plays important roles in cardiovascular development and immunity. S1P is abundant in plasma because erythrocytes-the major source of S1P-lack any S1P-degrading activity; however, much remains unclear about the source of the plasma S1P precursor, sphingosine (SPH), derived mainly from the hydrolysis of ceramides by the action of ceramidases that are encoded by 5 distinct genes, acid ceramidase 1 ( ASAH1)/ Asah1, ASAH2/ Asah2, alkaline ceramidase 1 ( ACER1)/ Acer1, ACER2/ Acer2, and ACER3/ Acer3, in humans/mice. Previous studies have reported that knocking out Asah1 or Asah2 failed to reduce plasma SPH and S1P levels in mice. In this study, we show that knocking out Acer1 or Acer3 also failed to reduce the blood levels of SPH or S1P in mice. In contrast, knocking out Acer2 from either whole-body or the hematopoietic lineage markedly decreased the blood levels of SPH and S1P in mice. Of interest, knocking out Acer2 from whole-body or the hematopoietic lineage also markedly decreased the levels of dihydrosphingosine (dhSPH) and dihydrosphingosine-1-phosphate (dhS1P) in blood. Taken together, these results suggest that ACER2 plays a key role in the maintenance of high plasma levels of sphingoid base-1-phosphates-S1P and dhS1P-by controlling the generation of sphingoid bases-SPH and dhSPH-in hematopoietic cells.-Li, F., Xu, R., Low, B. E., Lin, C.-L., Garcia-Barros, M., Schrandt, J., Mileva, I., Snider, A., Luo, C. K., Jiang, X.-C., Li, M.-S., Hannun, Y. A., Obeid, L. M., Wiles, M. V., Mao, C. Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates.
Collapse
Affiliation(s)
- Fang Li
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijuan Xu
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Benjamin E Low
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Chih-Li Lin
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Monica Garcia-Barros
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Jennifer Schrandt
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Izolda Mileva
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Ashley Snider
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Northport Veterans Administration Medical Center, Northport, New York, USA
| | - Catherine K Luo
- Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Ming-Song Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yusuf A Hannun
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Northport Veterans Administration Medical Center, Northport, New York, USA
| | - Michael V Wiles
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Cungui Mao
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
12
|
Gardner NM, Riley RT, Showker JL, Voss KA, Sachs AJ, Maddox JR, Gelineau-van Waes JB. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol Appl Pharmacol 2016; 298:56-65. [PMID: 26905748 DOI: 10.1016/j.taap.2016.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs.
Collapse
Affiliation(s)
- Nicole M Gardner
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States.
| | - Ronald T Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Jency L Showker
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Kenneth A Voss
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Andrew J Sachs
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | - Joyce R Maddox
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | | |
Collapse
|
13
|
Riley RT, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Showker JL, Mitchell T, Voss KA, Maddox JR, Gelineau-van Waes JB. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol Nutr Food Res 2015; 59:2209-24. [PMID: 26264677 DOI: 10.1002/mnfr.201500499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/12/2022]
Abstract
SCOPE Fumonisin (FB) occurs in maize and is an inhibitor of ceramide synthase (CerS). We determined the urinary FB1 (UFB1 ) and sphingoid base 1-phosphate levels in blood from women consuming maize in high and low FB exposure communities in Guatemala. METHODS AND RESULTS FB1 intake was estimated using the UFB1 . Sphinganine 1-phosphate (Sa 1-P), sphingosine 1-phosphate (So 1-P), and the Sa 1-P/So 1-P ratio were determined in blood spots collected on absorbent paper at the same time as urine collection. In the first study, blood spots and urine were collected every 3 months (March 2011 to February 2012) from women living in low (Chimaltenango and Escuintla) and high (Jutiapa) FB exposure communities (1240 total recruits). The UFB1 , Sa 1-P/So 1-P ratio, and Sa 1-P/mL in blood spots were significantly higher in the high FB1 intake community compared to the low FB1 intake communities. The results were confirmed in a follow-up study (February 2013) involving 299 women living in low (Sacatepéquez) and high (Santa Rosa and Chiquimula) FB exposure communities. CONCLUSIONS High levels of FB1 intake are correlated with changes in Sa 1-P and the Sa 1-P/So 1-P ratio in human blood in a manner consistent with FB1 inhibition of CerS.
Collapse
Affiliation(s)
- Ronald T Riley
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Olga Torres
- Laboratorio Diagnostico Molecular S.A, Guatemala City, Guatemala.,Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala
| | - Jorge Matute
- Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala
| | - Simon G Gregory
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Jency L Showker
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Trevor Mitchell
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, USDA - ARS, R.B. Russell Research Center, Athens, GA, USA
| | - Joyce R Maddox
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
14
|
Riley RT, Showker JL, Lee CM, Zipperer CE, Mitchell TR, Voss KA, Zitomer NC, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Maddox JR, Gardner N, Gelineau-Van Waes JB. A blood spot method for detecting fumonisin-induced changes in putative sphingolipid biomarkers in LM/Bc mice and humans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:934-49. [PMID: 25833119 DOI: 10.1080/19440049.2015.1027746] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fumonisins (FB) are mycotoxins found in maize. They are hypothesised risk factors for neural tube defects (NTDs) in humans living where maize is a dietary staple. In LM/Bc mice, FB1-treatment of pregnant dams induces NTDs and results in increased levels of sphingoid base 1-phosphates in blood and tissues. The increased level of sphingoid base 1-phosphates in blood is a putative biomarker for FB1 inhibition of ceramide synthase in humans. Collection of blood spots on paper from finger sticks is a relatively non-invasive way to obtain blood for biomarker analysis. The objective of this study was to develop and validate in an animal model, and ultimately in humans, a method to estimate the volume of blood collected as blood spots on absorbent paper so as to allow quantification of the molar concentration of sphingoid base 1-phosphates in blood. To accomplish this objective, blood was collected from unexposed male LM/Bc and FB1-exposed pregnant LM/Bc mice and humans and applied to two types of absorbent paper. The sphingoid base 1-phosphates, absorbance at 270 nm (A270), and total protein content (Bradford) were determined in the acetonitrile:water 5% formic acid extracts from the dried blood spots. The results show that in both mouse and human the A270, total protein, and blood volume were closely correlated and the volume of blood spotted was accurately estimated using only the A270 of the extracts. In mouse blood spots, as in tissues and embryos, the FB1-induced changes in sphingolipids were correlated with urinary FB1. The half-life of FB1 in the urine was short (<24 h) and the elevation in sphingoid base 1-phosphates in blood was also short, although more persistent than the urinary FB1.
Collapse
Affiliation(s)
- Ronald T Riley
- a Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, USDA - ARS , Athens , GA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tuggle K, Ali MW, Salazar H, Hooks SB. Regulator of G protein signaling transcript expression in human neural progenitor differentiation: R7 subfamily regulation by DNA methylation. Neurosignals 2014; 22:43-51. [PMID: 24903911 DOI: 10.1159/000362128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their ligands are critical regulators of neural progenitor differentiation, and GPCR signaling pathways are regulated by regulator of G protein signaling (RGS) proteins. RGS protein expression is dynamically regulated, and we have recently described the epigenetic regulation of RGS transcript expression. Given the potential of RGS proteins to regulate GPCR signaling and the established role of epigenetic regulation in progenitor differentiation, we explored the impact of epigenetic regulation of RGS transcripts during in vitro differentiation of human neural progenitors. Here, we demonstrate robust upregulation of the RGS transcripts RGS4, RGS5, RGS6, RGS7, and RGS11 during neuronal differentiation, while DNA methyltransferase (DNMT) and histone deacetylase enzyme expression is suppressed during differentiation. Transcripts encoding R7 subfamily RGS proteins and the R7-binding partners R7BP and R9AP showed the greatest upregulation. Further, we showed that direct pharmacological inhibition of DNMT activity enhances expression of RGS2, RGS4, RGS5, RGS6, RGS7, RGS8, RGS9L, RGS10, and RGS14 as well as R7BP and R9AP transcripts in progenitors, consistent with regulation by DNMTs. Our results reveal marked upregulation of RGS expression during neuronal differentiation and suggest that decreased expression of DNMT enzymes during differentiation contributes to upregulation.
Collapse
Affiliation(s)
- Katie Tuggle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Ga., USA
| | | | | | | |
Collapse
|
16
|
Abstract
The development of fingolimod, an unselective functional antagonist of the interactions between sphingosine 1 phosphate (S1P) and sphingosine 1 phosphate receptors (S1PRs), as the first oral therapy for multiple sclerosis (MS) has been a milestone. The parallel intensive research on the role of S1P, sphingosine kinases, and the five known S1PRs, their tissue distribution and expression in physiological and pathological conditions have led to a wide range of interesting findings. The initial focus of this research in the context of developing fingolimod as a treatment of MS has been on its immunological effects. The wide distribution and important roles of sphingosine, its metabolites, and their receptors in the central nervous system (CNS) in general, in myelin, and in all cell types of this organ have spurred interest to examine S1P and its five receptors in the brain as well. The present review will concentrate on the latter area and give a brief overview of what is known about S1P/S1PR interactions in the CNS in physiological and pathological conditions.
Collapse
|
17
|
Torres O, Matute J, Gelineau-van Waes J, Maddox JR, Gregory SG, Ashley-Koch AE, Showker JL, Zitomer NC, Voss KA, Riley RT. Urinary fumonisin B1and estimated fumonisin intake in women from high- and low-exposure communities in Guatemala. Mol Nutr Food Res 2013; 58:973-83. [DOI: 10.1002/mnfr.201300481] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/27/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Olga Torres
- Centro de Investigaciones en Nutrición y Salud; Guatemala City Guatemala
| | - Jorge Matute
- Centro de Investigaciones en Nutrición y Salud; Guatemala City Guatemala
| | | | - Joyce R. Maddox
- Department of Pharmacology, School of Medicine; Creighton University; Omaha NE USA
| | - Simon G. Gregory
- Department of Medicine, Duke University Medical Center; Durham NC USA
| | | | - Jency L. Showker
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Nicholas C. Zitomer
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Kenneth A. Voss
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| | - Ronald T. Riley
- USDA - ARS; Toxicology and Mycotoxin Research Unit; R.B. Russell Research Center; Athens GA USA
| |
Collapse
|
18
|
van der Westhuizen L, Shephard G, Gelderblom W, Torres O, Riley R. Fumonisin biomarkers in maize eaters and implications for human disease. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maize is the predominant food source contaminated by fumonisins and this has particular health risks for communities consuming maize as a staple diet. The main biochemical effect of fumonisins is the inhibition of ceramide biosynthesis causing an increase in sphingoid bases and sphingoid base 1-phosphates and a depletion of the complex sphingolipids, thereby disrupting lipid metabolism and sphingolipid-mediated processes and signalling systems. Attempts to use the elevation of sphinganine as a human biomarker of fumonisin exposure have to date been unsuccessful. Consequently, recent research has focussed on developing a urinary exposure biomarker based on the measurement of the nonmetabolised toxin. In animals, fumonisins are poorly absorbed in the gut and are mostly excreted unmetabolised in faeces, with only a small percentage (0.25-2.0%) in urine. This appears to also be true in humans were fumonisin B1 (FB1) is detectable in urine soon after exposure, but in very small amounts relative to total intake. However, with modern sensitive and selective analytical methods such as liquid chromatography-tandem mass spectrometry, these low levels can be readily determined. The first study to show a positive correlation between consumption of maize and urinary FB1 was conducted in a Mexican population consuming tortillas as a staple food. Further validation of this relationship was achieved in a South African subsistence farming community with a positive correlation between urinary FB1 and fumonisin exposure, as assessed by food analysis and food intake data. The most recent developments are aimed at measuring multiple mycotoxin biomarkers in urine, including FB1. Current exposure studies in Guatemala are combining the urinary biomarker with measurement of sphinganine-1-phosphate in blood spots as a measure of biochemical effect. Thus, the urinary FB1 biomarker could contribute considerably in assessing the adverse health impact of fumonisin exposure.
Collapse
Affiliation(s)
| | - G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, 7505 Tygerberg, South Africa
| | - W.C.A. Gelderblom
- PROMEC Unit, Medical Research Council, P.O. Box 19070, 7505 Tygerberg, South Africa
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - O. Torres
- Centro de Investigaciones en Nutrición y Salud, Laboratorio Diagnóstico Molecular, S.A., 2a. calle 25-19 zona 15 VHI, 01015 Guatemala City, Guatemala
| | - R.T. Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, 950 College Station Rd, Athens, GA 30605, USA
| |
Collapse
|
19
|
Wang J, O'Bara MA, Pol SU, Sim FJ. CD133/CD140a-based isolation of distinct human multipotent neural progenitor cells and oligodendrocyte progenitor cells. Stem Cells Dev 2013; 22:2121-31. [PMID: 23488628 DOI: 10.1089/scd.2013.0003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFαR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133-positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133(+)CD140a(-) cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133(+)CD140a(-) NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133(+)CD140a(+) cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133(+)CD140a(-) cells. As human CD133(+) cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
20
|
Cellular assay for the characterization of sphingosine-1-phosphate lyase inhibitors. Anal Biochem 2012; 434:247-53. [PMID: 23246729 DOI: 10.1016/j.ab.2012.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate (S1P) lyase represents a target for therapeutic intervention in immune regulation. Inhibitors of the lyase can be identified by established biochemical assays, but a cellular test system for such inhibitors has not been described so far. We found that silencing or inhibition of S1P lyase with short interfering RNA (siRNA) or active site-directed inhibitors in cultured mammalian cells does not cause a relevant increase of S1P in the cells as measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, the addition of sphingosine to cultures of cell lines or primary cells provides a source of intracellular S1P that is susceptible to degradation by the lyase and, hence, increases on inhibition or silencing of the enzyme. The assay was optimized with respect to sphingosine concentration, incubation time, and cell density and was established for routine use with HEK293 cells. The assay was found to be suitable for the testing of novel active site-directed S1P lyase inhibitors, providing important information on their relative potency in intact cells.
Collapse
|
21
|
Gelineau-van Waes J, Rainey MA, Maddox JR, Voss KA, Sachs AJ, Gardner NM, Wilberding JD, Riley RT. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. ACTA ACUST UNITED AC 2012; 94:790-803. [DOI: 10.1002/bdra.23074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/12/2012] [Accepted: 07/23/2012] [Indexed: 12/30/2022]
|