1
|
Piao YR, Li MR, Sun MZ, Liu Y, Chen CY, Chu CP, Todo Y, Tang Z, Wang CY, Jin WZ, Qiu DL. Estradiol Enhances Cerebellar Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission and Improves Motor Learning Through ER-β in Vivo in Mice. CEREBELLUM (LONDON, ENGLAND) 2025; 24:51. [PMID: 39979512 DOI: 10.1007/s12311-025-01805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
In the cerebellar cortex, 17β-estradiol (E2) binds to estrogen receptors (ERs) and plays a role in regulating cerebellar synaptic plasticity and motor learning behaviors. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of E2 on synaptic transmission between cerebellar molecular layer interneurons (MLIs) and Purkinje cells (PCs) in urethane-anesthetized mice. Using in vivo cell-attached and whole-cell recordings combined with immunohistochemistry, we examined MLI-PC synaptic responses elicited by facial air-puff stimulation. Cell-attached recordings from PCs demonstrated that air-puff stimulation of the ipsilateral whisker pad elicited MLI-PC synaptic currents (P1), which were significantly enhanced by local micro-application of E2 to the cerebellar molecular layer. The E2-induced potentiation of P1 amplitude exhibited dose dependency, with a 50% effective concentration (EC50) of 30 nM. The effects of E2 on amplitude of P1 and pause of simple spike firing were completely prevented by blockade of ERs or ERβ, but not by blockade of ERα or a G-protein coupled receptor (GPER). Application of a selective ERβ agonist mimicked and overwhelmed the E2-induced enhancement of the MLI-PC synaptic transmission. Whole-cell recording with biocytin staining showing that E2 does not change the spontaneous and the evoked spike firing properties of basket-type MLIs. Rotarod test indicated that microinjection of E2 onto the cerebellar surface significantly promotes initial motor learning ability, which is abolished by blockade of ERβ. ERβ immunoreactivity was expressed in the ML and PC layer, especially around the PC somata in the mouse cerebellar cortex. These results indicate that E2 binds to ERβ, resulting in an enhance in the cerebellar MLI-PC synaptic transmission and an improvement of initial motor learning ability in vivo in mice.
Collapse
Affiliation(s)
- Yong-Rui Piao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Mei-Rui Li
- Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ming-Ze Sun
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Yang Liu
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Chao-Yue Chen
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Yuki Todo
- Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Zheng Tang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Chun-Yan Wang
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Wen-Zhe Jin
- Department of Pain, Affiliated Hospital of Yanbian University, 1325, JuZi Street, Yanji City, Jilin Province, 133000, China.
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China.
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China.
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China.
| |
Collapse
|
2
|
Thomas AK, Wulff AN. What the Acute Stress Response Suggests about Memory. Top Cogn Sci 2024; 16:691-706. [PMID: 37203276 DOI: 10.1111/tops.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Research suggests that stress has immediate and long-term effects on attention and memory. Rather than disrupting memory formation and consolidation, acute stress has been shown to shift attention processes resulting in a tradeoff between prioritized and nonprioritized information. Both arousal and stress result in cognitive and neurobiological shifts that often support memory formation. When an acute stressor occurs, it can distort immediate attentional focus, increasing processing for high-priority features while reducing processing for extraneous features. The downstream cognitive consequences for this shift in attention are better memory for some features and poorer memory for others when compared to conditions of low stress. However, individual differences (e.g., sex, age, basal stress response, and stress reactivity) all impact the relationship between the acute stress response and memory. Although acute stress generally benefits memory formation, we suggest that forgetting and later recovery of stressful memories can better be understood by examining factors that influence the subjective experience of stress and stress reactivity.
Collapse
Affiliation(s)
| | - Alia N Wulff
- New College of Interdisciplinary Arts and Sciences, Arizona State University
| |
Collapse
|
3
|
Batallán Burrowes AA, Moisan É, Garrone A, Buynack LM, Chapman CA. 17β-Estradiol reduces inhibitory synaptic currents in entorhinal cortex neurons through G protein-coupled estrogen receptor-1 activation of extracellular signal-regulated kinase. Hippocampus 2024; 34:454-463. [PMID: 39150316 DOI: 10.1002/hipo.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17β-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.
Collapse
Affiliation(s)
- Ariel A Batallán Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Élyse Moisan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Aurelie Garrone
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Lauren M Buynack
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Dvorzhak A, Brecht M, Schmitz D. Social play behavior is driven by glycine-dependent mechanisms. Curr Biol 2024; 34:3654-3664.e6. [PMID: 39053464 DOI: 10.1016/j.cub.2024.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Social play is pervasive in juvenile mammals, yet it is poorly understood in terms of its underlying brain mechanisms. Specifically, we do not know why young animals are most playful and why most adults cease to social play. Here, we analyze the synaptic mechanisms underlying social play. We found that blocking the rat periaqueductal gray (PAG) interfered with social play. Furthermore, an age-related decrease of neural firing in the PAG is associated with a decrease in synaptic release of glycine. Most importantly, modulation of glycine concentration-apparently acting on the glycinergic binding site of the N-methyl-D-aspartate (NMDA) receptor-not only strongly modulates social play but can also reverse the age-related decline in social play. In conclusion, we demonstrate that social play critically depends on the neurotransmitter glycine within the PAG.
Collapse
Affiliation(s)
- Anton Dvorzhak
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, 10117 Berlin, Germany
| | - Michael Brecht
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neuroscience, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
5
|
Bellingacci L, Canonichesi J, Sciaccaluga M, Megaro A, Mazzocchetti P, Di Mauro M, Costa C, Di Filippo M, Pettorossi VE, Tozzi A. Locally Synthetized 17-β-Estradiol Reverses Amyloid-β-42-Induced Hippocampal Long-Term Potentiation Deficits. Int J Mol Sci 2024; 25:1377. [PMID: 38338656 PMCID: PMC10855267 DOI: 10.3390/ijms25031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aβ42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aβ42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aβ42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aβ42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy; (L.B.); (J.C.); (M.S.)
| |
Collapse
|
6
|
Lawande NV, Conklin EA, Christian‐Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. Epilepsia Open 2023; 8:1512-1522. [PMID: 37715318 PMCID: PMC10690657 DOI: 10.1002/epi4.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing the main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. METHODS Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected ip, every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. RESULTS No differences in seizure susceptibility or mortality were observed between control males and control females. Gonadectomized mice exhibited increased susceptibility and reduced latency to both GS and SE in comparison to corresponding controls of the same sex, but the effects were stronger in males. In addition, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. SIGNIFICANCE The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | | | - Catherine A. Christian‐Hinman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
7
|
Lawande NV, Conklin EA, Christian-Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541824. [PMID: 37292790 PMCID: PMC10245840 DOI: 10.1101/2023.05.22.541824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing a main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference, and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. Methods Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected i.p. every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. Results No differences in seizure susceptibility or mortality were observed between control males and control females. ORX males exhibited increased susceptibility and reduced latency to both GS and SE, but OVX females exhibited increased susceptibility and reduced latency to SE only. However, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. Significance The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Elisabeth A. Conklin
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Catherine A. Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| |
Collapse
|
8
|
Beamish SB, Frick KM. A Putative Role for Ubiquitin-Proteasome Signaling in Estrogenic Memory Regulation. Front Behav Neurosci 2022; 15:807215. [PMID: 35145382 PMCID: PMC8821141 DOI: 10.3389/fnbeh.2021.807215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of hippocampal synaptic plasticity and hippocampus-dependent memory in both males and females. However, the mechanisms through which E2 regulates memory formation in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-dependent memory by activating numerous cell-signaling cascades to promote the synthesis of proteins that support structural changes at hippocampal synapses. However, this work has largely overlooked the equally important contributions of protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling the synapse. Despite being critically implicated in synaptic plasticity and successful formation of long-term memories, it remains unclear whether protein degradation mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal plasticity and memory formation. The present article provides an overview of the receptor and signaling mechanisms so far identified as critical for regulating hippocampal E2 and UPS function in males and females, with a particular emphasis on the ways in which these mechanisms overlap to support structural integrity and protein composition of hippocampal synapses. We argue that the high degree of correspondence between E2 and UPS activity warrants additional study to examine the contributions of ubiquitin-mediated protein degradation in regulating the effects of sex steroid hormones on cognition.
Collapse
|
9
|
Jacobson MH, Ghassabian A, Gore AC, Trasande L. Exposure to environmental chemicals and perinatal psychopathology. Biochem Pharmacol 2022; 195:114835. [PMID: 34774531 PMCID: PMC8712457 DOI: 10.1016/j.bcp.2021.114835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Women are nearly twice as likely to develop mood disorders compared with men, and incidence is greatest during reproductive transitions, including pregnancy and postpartum. Because these periods are characterized by dramatic hormonal and physiologic changes, there is heightened susceptibility to external factors, such as exposure to environmental toxicants, which may play a role in maternal psychopathology. The purpose of this scoping review was to provide an overview of studies conducted in humans and animal models on the effects of nonoccupational exposure to environmental chemicals on maternal psychopathology during the perinatal period. The largest number of studies examined exposure to environmental tobacco smoke and antenatal depression and showed consistently positive findings, although more prospective studies using biomarkers for exposure assessment are needed. The few studies examining persistent organic pollutants such as polybrominated diphenyl ethers and perinatal depression were consistent in showing associations with increased depressive symptoms. Results were mixed for exposure to heavy metals and non-persistent chemicals, but a strong literature in animal models supported an association between bisphenols and phthalates and reduced maternal behavior and care of pups after parturition. Biological mechanisms may include endocrine disruption, neurotransmitter system impairment, alterations in gene expression, and immune activation and inflammation. Additional longitudinal studies that include biospecimen collection are essential to furthering the understanding of how environmental toxicants during pregnancy may affect perinatal psychopathology and the underlying mechanisms of action. Future work should also leverage the parallels between animal and human maternal behavior, thereby highlighting the opportunity for multidisciplinary work in this avenue.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| |
Collapse
|
10
|
Batallán Burrowes AA, Sundarakrishnan A, Bouhour C, Chapman CA. G protein-coupled estrogen receptor-1 enhances excitatory synaptic responses in the entorhinal cortex. Hippocampus 2021; 31:1191-1201. [PMID: 34399010 DOI: 10.1002/hipo.23383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022]
Abstract
Activation of estrogen receptors is thought to modulate cognitive function in the hippocampus, prefrontal cortex, and striatum by affecting both excitatory and inhibitory synaptic transmission. The entorhinal cortex is a major source of cortical sensory and associational input to the hippocampus, but it is unclear whether either estrogens or progestogens may modulate cognitive function through effects on synaptic transmission in the entorhinal cortex. This study assessed the effects of the brief application of either 17-β estradiol (E2) or progesterone on excitatory glutamatergic synaptic transmission in the female rat entorhinal cortex in vitro. Rats were ovariectomized on postnatal day (PD) 63 and also received subdermal E2 implants to maintain constant low levels of circulating E2 on par with estrus. Electrophysiological recordings from brain slices were obtained between PD70 and PD86, and field excitatory postsynaptic potentials (fEPSPs) reflecting the activation of the superficial layers of the entorhinal cortex were evoked by the stimulation of layer I afferents. The application of E2 (10 nM) for 20 min resulted in a small increase in the amplitude of fEPSPs that reversed during the 30-min washout period. The application of the ERα agonist propylpyrazoletriol (PPT) (100 nM) or the β agonist DPN (1 μM) did not significantly affect synaptic responses. However, the application of the G protein-coupled estrogen receptor-1 (GPER1) agonist G1 (100 nM) induced a reversible increase in fEPSP amplitude similar to that induced by E2. Furthermore, the potentiation of responses induced by G1 was blocked by the GPER1 antagonist G15 (1 μM). Application of progesterone (100 nM) or its metabolite allopregnanolone (1 μM) did not significantly affect synaptic responses. The potentiation of synaptic transmission in the entorhinal cortex induced by the activation of GPER1 receptors may contribute to the modulation of cognitive function in female rats.
Collapse
Affiliation(s)
- Ariel A Batallán Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Adithi Sundarakrishnan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Camille Bouhour
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
11
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
12
|
Zhang M, Weiland H, Schöfbänker M, Zhang W. Estrogen Receptors Alpha and Beta Mediate Synaptic Transmission in the PFC and Hippocampus of Mice. Int J Mol Sci 2021; 22:ijms22031485. [PMID: 33540803 PMCID: PMC7867372 DOI: 10.3390/ijms22031485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.
Collapse
Affiliation(s)
- Mingyue Zhang
- Correspondence: ; Tel.: +49-2518-351-824; Fax: +49-2518-357-123
| | | | | | | |
Collapse
|
13
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
14
|
Tozzi A, Bellingacci L, Pettorossi VE. Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front Neurosci 2020; 14:572511. [PMID: 33192257 PMCID: PMC7653679 DOI: 10.3389/fnins.2020.572511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
15
|
Khakpay R, Azaddar M, Khakpai F. Involvement of glutamate receptors of the paragigantocellularis lateralis nucleus in the pain modulatory effect of 17β-estradiol in male rats. Acta Neurol Belg 2020; 120:653-660. [PMID: 30132138 DOI: 10.1007/s13760-018-0998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
The pain modulatory role of the paragigantocellularis lateralis nucleus (LPGi) and the 17β-estradiol has thoroughly been probed. This study investigates the contribution of ionotropic glutamate receptors in pain modulatory effect of intra-LPGi injection of 17β-estradiol. For this purpose, the LPGi nucleus cannulation was performed and drugs were injected into this nucleus, 15 min prior to the formalin test. The duration of formalin-induced flexing and licking behaviors was recorded for 60 min immediately after formalin injection. The results showed that the flexing behavior is significantly decreased by intra-LPGi injection of 0.8 µmol 17β-estradiol duringboth phases of formalin test (P < 0.001). However, 17β-estradiol attenuated the licking duration only in the second phase (P < 0.001). Interestingly, NMDA and AMPA/kainate receptor antagonists (AP5 and CNQX, respectively) significantly counteracted the analgesic effect of intra-LPGi injection of 17β-estradiol in both phases of the formalin test (P < 0.001). Consequently, the revealing results showed that the analgesic effect of intra-LPGi injection of 17β-estradiol on acute inflammatory pain might be mediated via the activation of ionotropic glutamate receptors.
Collapse
|
16
|
Mhaouty-Kodja S, Belzunces LP, Canivenc MC, Schroeder H, Chevrier C, Pasquier E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018; 475:54-73. [PMID: 29605460 DOI: 10.1016/j.mce.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne, Franche-Comté, Dijon, 21000, France
| | - Henri Schroeder
- Calbinotox, EA7488, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
17
|
Sex Differences in the Rapid Cell Signaling Mechanisms Underlying the Memory-Enhancing Effects of 17β-Estradiol. eNeuro 2018; 5:eN-NWR-0267-18. [PMID: 30406188 PMCID: PMC6220582 DOI: 10.1523/eneuro.0267-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/20/2022] Open
Abstract
Little is known about how 17β-estradiol (E2) mediates memory formation in males. In ovariectomized (OVX) mice, bilateral dorsal hippocampal (DH) infusion of E2 enhances memory consolidation in object recognition (OR) and object placement (OP) tasks in a manner dependent on activation of extracellular signal-regulated kinase (ERK) and Akt signaling. Here, bilateral DH E2 infusion enhanced memory consolidation in both tasks among OVX female, gonadally-intact male, and castrated male mice, suggesting comparable facilitation of memory consolidation in both sexes, independent of testicular hormones in males. Contrary to previous reports in OVX mice, E2 did not increase DH ERK or Akt phosphorylation in males, nor did the ERK inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis (o-aminophenylmercapto) butadiene] prevent E2 from enhancing memory consolidation among intact and castrated males. These data suggest that ERK activation is not necessary for E2 to enhance memory consolidation in males, and compared with previous reports in females, reveal novel sex differences in the cell-signaling pathways through which E2 facilitates memory consolidation. To explore the mechanisms underlying E2-induced memory enhancements in males, phosphorylation of the transcription factor cAMP response element binding protein (CREB) in the DH was assessed. E2 increased phospho-CREB levels in both sexes, yet U0126 did not block these increases in castrated or intact males, indicating that E2 regulates CREB phosphorylation in males via an ERK-independent mechanism. Collectively, these findings suggest that the beneficial effects of hippocampal E2 on memory consolidation in males and females are mediated by different molecular mechanisms, which has important implications for the development of treatments to reduce memory dysfunction in men and women.
Collapse
|
18
|
Newell AJ, Lalitsasivimol D, Willing J, Gonzales K, Waters EM, Milner TA, McEwen BS, Wagner CK. Progesterone receptor expression in cajal-retzius cells of the developing rat dentate gyrus: Potential role in hippocampus-dependent memory. J Comp Neurol 2018; 526:2285-2300. [PMID: 30069875 PMCID: PMC6193812 DOI: 10.1002/cne.24485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.
Collapse
Affiliation(s)
- Andrew J. Newell
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Diana Lalitsasivimol
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Jari Willing
- Department of Psychology, Behavioral Neuroscience Program, 603 E Daniel St., University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Keith Gonzales
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61, St New York, NY 1006521
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Christine K. Wagner
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| |
Collapse
|
19
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
20
|
Hojo Y, Kawato S. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids. Front Endocrinol (Lausanne) 2018; 9:183. [PMID: 29740398 PMCID: PMC5925962 DOI: 10.3389/fendo.2018.00183] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
- *Correspondence: Yasushi Hojo,
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
21
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
22
|
Estradiol mitigates ischemia reperfusion-induced acute renal failure through NMDA receptor antagonism in rats. Mol Cell Biochem 2017; 434:33-40. [PMID: 28432550 DOI: 10.1007/s11010-017-3034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
In the present study, we investigated possible involvement of N-methyl-D-aspartate receptors (NMDAR) in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute renal failure (ARF) in rats. Bilateral renal ischemia of 40 min followed by reperfusion for 24 h induced ARF in male wistar rats. Quantification of serum creatinine, creatinine clearance (CrCl), blood urea nitrogen (BUN), uric acid, potassium, fractional excretion of sodium (FeNa), and urinary microproteins was done to assess I/R-induced renal damage in rats. Oxidative stress in kidneys was measured in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin & eosin and periodic acid Schiff stains were used to reveal structural changes in renal tissues. Estradiol benzoate (0.5 and 1.0 mg/kg, intraperitoneally, i.p.) was administered 1 h prior to I/R in rats. In separate groups, rats were treated with NMDAR agonists, glutamic acid (200 mg/kg, i.p.), and spermidine (20 mg/kg, i.p.) before administration of estradiol. Marked increase in serum creatinine, BUN, uric acid, serum potassium, FeNa, microproteinuria, and reduction in CrCl demonstrated I/R-induced ARF in rats. Treatment with estradiol mitigated I/R-induced changes in serum/urine parameters. Moreover, estrogen attenuated oxidative stress and structural changes in renal tissues. Prior administration of glutamic acid and spermidine abolished estradiol mediated renoprotection in rats. These results indicate the involvement of NMDAR in estradiol mediated renoprotective effect. In conclusion, we suggest that NMDAR antagonism serves as one of the mechanisms in estradiol-mediated protection against I/R-induced ARF in rats.
Collapse
|
23
|
Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, Cox O, Judy J, Meilman S, Braier A, Beckmann MW, Kornhuber J, Fasching PA, Goes F, Payne JL, Binder EB, Kaminsky Z. Replication of Epigenetic Postpartum Depression Biomarkers and Variation with Hormone Levels. Neuropsychopharmacology 2016; 41:1648-58. [PMID: 26503311 PMCID: PMC4832028 DOI: 10.1038/npp.2015.333] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/02/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
DNA methylation variation at HP1BP3 and TTC9B is modified by estrogen exposure in the rodent hippocampus and was previously shown to be prospectively predictive of postpartum depression (PPD) when modeled in antenatal blood. The objective of this study was to replicate the predictive efficacy of the previously established model in women with and without a previous psychiatric diagnosis and to understand the effects of changing hormone levels on PPD biomarker loci. Using a statistical model trained on DNA methylation data from N=51 high-risk women, we prospectively predicted PPD status in an independent N=51 women using first trimester antenatal gene expression levels of HP1BP3 and TTC9B, with an area under the receiver operator characteristic curve (AUC) of 0.81 (95% CI: 0.69-0.92, p<5 × 10(-4)). Modeling DNA methylation of these genes in N=240 women without a previous psychiatric diagnosis resulted in a cross-sectional prediction of PPD status with an AUC of 0.81 (95% CI: 0.68-0.93, p=0.01). TTC9B and HP1BP3 DNA methylation at early antenatal time points showed moderate evidence for association to the change in estradiol and allopregnanolone over the course of pregnancy, suggesting that epigenetic variation at these loci may be important for mediating hormonal sensitivity. In addition both loci showed PPD-specific trajectories with age, possibly mediated by age-associated hormonal changes. The data add to the growing body of evidence suggesting that PPD is mediated by differential gene expression and epigenetic sensitivity to pregnancy hormones and that modeling proxies of this sensitivity enable accurate prediction of PPD.
Collapse
Affiliation(s)
- Lauren Osborne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makena Clive
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Kimmel
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fiona Gispen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry Guintivano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tori Brown
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olivia Cox
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Judy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Meilman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aviva Braier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer L Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,The Mood Disorder Center, Johns Hopkins University, 720 Rutland Avenue, Ross Research Building 1070, Baltimore, MD 21205, USA, Tel: +1 443 287 0093, Fax: +1 410 502 0065,E-mail:
| |
Collapse
|
24
|
Zhang Z, Hong J, Zhang S, Zhang T, Sha S, Yang R, Qian Y, Chen L. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice. Psychoneuroendocrinology 2016; 66:138-49. [PMID: 26803529 DOI: 10.1016/j.psyneuen.2016.01.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors.
Collapse
Affiliation(s)
- Zhuan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China; Department of Anesthesiology, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 86025, China
| | - Juan Hong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China; Department of Physiology, Nanjing Medical University, Nanjing 86025, China
| | - Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China
| | - Tingting Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China; Department of Physiology, Nanjing Medical University, Nanjing 86025, China
| | - Sha Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China; Department of Physiology, Nanjing Medical University, Nanjing 86025, China
| | - Rong Yang
- Department of Obstetrics and Gynecology, Hangzhou First People's Hospital, Hangzhou 860571, China
| | - Yanning Qian
- Department of Anesthesiology, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 86025, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 86025, China; Department of Physiology, Nanjing Medical University, Nanjing 86025, China.
| |
Collapse
|
25
|
Picot M, Billard JM, Dombret C, Albac C, Karameh N, Daumas S, Hardin-Pouzet H, Mhaouty-Kodja S. Neural Androgen Receptor Deletion Impairs the Temporal Processing of Objects and Hippocampal CA1-Dependent Mechanisms. PLoS One 2016; 11:e0148328. [PMID: 26849367 PMCID: PMC4743963 DOI: 10.1371/journal.pone.0148328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/15/2016] [Indexed: 12/04/2022] Open
Abstract
We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.
Collapse
Affiliation(s)
- Marie Picot
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Jean-Marie Billard
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| | - Carlos Dombret
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Christelle Albac
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Nida Karameh
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Stéphanie Daumas
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Hélène Hardin-Pouzet
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
- * E-mail:
| |
Collapse
|
26
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
27
|
Vega-Rivera NM, Fernández-Guasti A, Ramírez-Rodríguez G, Estrada-Camarena E. Effect of sub-optimal doses of fluoxetine plus estradiol on antidepressant-like behavior and hippocampal neurogenesis in ovariectomized rats. Psychoneuroendocrinology 2015; 57:113-24. [PMID: 25917885 DOI: 10.1016/j.psyneuen.2015.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
Estrogens and antidepressants synergize to reduce depressive symptoms and stimulate neurogenesis and neuroplastic events. The aim of this study was to explore whether the antidepressant-like effect induced by the combination of low doses of estradiol (E2) and fluoxetine (FLX) involves changes in cell proliferation, early survival, morphology and dendrite complexity of hippocampal new-immature neurons. The antidepressant-like effects of E2 and/or FLX were evaluated by the forced swimming test (FST), cell proliferation was determined with the endogenous marker Ki67, survival of newborn cells was established with bromo-deoxiuridine (BrdU) and immature neurons were ascertained by doublecortin (DCX) labeling while their dendrite complexity was evaluated with Sholl analysis. Ovariectomized Wistar rats were randomly assigned to one of the following groups: Vehicle (saline/14 days+Oil/-8h before FST); E2 (saline/14 days + E2 2.5 or 10 μg/rat; -8 h before FST); FLX (1.25 or 10 mg/kg for 14 days + oil -8h before FST), and FLX plus E2 (FLX 1.25 mg/kg for 14 days + E2 2.5 μg/rat -8 h before FST). The combination of sub-threshold doses of FLX plus E2 produced antidepressant-like actions similar to those induced by FLX or E2 given independently at optimal doses. Only FLX at an optimal dose and the combination of FLX plus E2 increased cell proliferation, the number of DCX-labeled immature neurons and the complexity of their dendritic tree, suggesting that these events may be responsible for their antidepressant-like effect.
Collapse
Affiliation(s)
- Nelly M Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, México, D.F., Mexico; Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), México, D.F., Mexico
| | - Alonso Fernández-Guasti
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), México, D.F., Mexico
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry, México, D.F., Mexico
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, México, D.F., Mexico.
| |
Collapse
|
28
|
Kumar A, Bean LA, Rani A, Jackson T, Foster TC. Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus 2015; 25:1556-66. [PMID: 25980457 DOI: 10.1002/hipo.22475] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
Estradiol rapidly modulates hippocampal synaptic plasticity and synaptic transmission; however, the contribution of the various estrogen receptors to rapid changes in synaptic function is unclear. This study examined the effect of estrogen receptor selective agonists on hippocampal synaptic transmission in slices obtained from 3-5-month-old wild type (WT), estrogen receptor alpha (ERαKO), and beta (ERβKO) knockout female ovariectomized mice. Hippocampal slices were prepared 10-16 days following ovariectomy and extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts before and following application of 17β-estradiol-3-benzoate (EB, 100 pM), the G-protein estrogen receptor 1 (GPER1) agonist G1 (100 nM), the ERα selective agonist propyl pyrazole triol (PPT, 100 nM), or the ERβ selective agonist diarylpropionitrile (DPN, 1 µM). Across all groups, EB and G1 increased the synaptic response to a similar extent. Furthermore, prior G1 application occluded the EB-mediated enhancement of the synaptic response and the GPER1 antagonist, G15 (100 nM), inhibited the enhancement of the synaptic response induced by EB application. We confirmed that the ERα and ERβ selective agonists (PPT and DPN) had effects on synaptic responses specific to animals that expressed the relevant receptor; however, PPT and DPN produced only a small increase in synaptic transmission relative to EB or the GPER1 agonist. We demonstrate that the increase in synaptic transmission is blocked by inhibition of extracellular signal-regulated kinase (ERK) activity. Furthermore, EB was able to increase ERK activity regardless of genotype. These results suggest that ERK activation and enhancement of synaptic transmission by EB involves multiple estrogen receptor subtypes.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Linda A Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Travis Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Ebrahimzadeh Bideskan AR, Lale Ataei M, Mansouri S, Hosseini M. The effects of tamoxifen and soy on dark neuron production in hippocampal formation after pentylenetetrazole-induced repeated seizures in rats. PATHOPHYSIOLOGY 2015; 22:125-35. [DOI: 10.1016/j.pathophys.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/10/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
|
30
|
Zhou L, Fester L, Haghshenas S, de Vrese X, von Hacht R, Gloger S, Brandt N, Bader M, Vollmer G, Rune GM. Oestradiol-induced synapse formation in the female hippocampus: roles of oestrogen receptor subtypes. J Neuroendocrinol 2014; 26:439-47. [PMID: 24779550 DOI: 10.1111/jne.12162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 01/09/2023]
Abstract
During the oestrus cycle, varying spine synapse density correlates positively with varying local synthesis of oestradiol in the hippocampus. In this context, the roles of the oestrogen receptor (ER) subtypes ERα and β are not fully understood. In the present study, we used neonatal hippocampal slice cultures from female rats because these cultures synthesise oestradiol and express both receptor subtypes, and inhibition of oestradiol synthesis in these cultures results in spine synapse loss. Using electron microscopy, we tested the effects on spine synapse density in response to agonists of both ERα and ERβ. Application of agonists to the cultures had no effect. After inhibition of oestradiol synthesis, however, agonists of ERα induced spine synapse formation, whereas ERβ agonists led to a reduction in spine synapse density in the CA1 region of these cultures. Consistently, up-regulation of ERβ in the hippocampus of adult female aromatase-deficient mice is paralleled by hippocampus-specific spine synapse loss in this mutant. Finally, we found an increase in spine synapses in the adult female ERβ knockout mouse, but no effect in the adult female ERα knockout mouse. Our data suggest antagonistic roles of ERβ and ERα in spine synapse formation in the female hippocampus, which may contribute to oestrus cyclicity of spine synapse density in the hippocampus.
Collapse
Affiliation(s)
- L Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|