1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 PMCID: PMC11688552 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ren Z, Sun H, Xiu S, Yang N, Liu Y, Chan P. Investigation of rhodamine derivative on behavioral impairment in a double neurotoxin lesion of substantia nigra and locus coeruleus dysfunctional mice. Eur J Pharmacol 2023; 956:175944. [PMID: 37536627 DOI: 10.1016/j.ejphar.2023.175944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Although multiple mechanisms have been studied, there is still a lack of effective treatment on non-motor symptoms in Parkinson's disease (PD) patients. Therapeutic effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone (RD-1), one of rhodamine derivatives, on motor recovery have been previously demonstrated, but its effects on non-motor symptoms remain unclear. Herein, we explored the beneficial effects of RD-1 on PD-related non-motor symptoms and changes in synaptic plasticity in the mesencephalon. To investigate its therapeutic effects in the non-motor symptoms of Parkinsonian model, we employed male C57BL/6N mice and double injection with noradrenergic specific neurotoxin N-2-Chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride, followed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Next, we performed behavioral tests, histological analyses and immunoblotting. Our findings showed that RD-1 significantly alleviated locomotor abnormality, motor disturbance, anxiety/depression-like behavior and memory deficit. It rescued the levels of tyrosine hydroxylase in substantia nigra, and striatum. Moreover, RD-1 upregulated expression levels of α-synuclein, synapsin II, postsynaptic density 95 and vesicle-associated membrane protein 2. The restoration of synaptic function may underlie the neuroprotective effects of RD-1 in double lesioned mice, confirming its protective effect for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Zhili Ren
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
| | - Hong Sun
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Shuangling Xiu
- Department of Endocrinology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Piu Chan
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Chaurasyia A, Chawla P, Monga V, Singh G. Rhodanine derivatives: An insight into the synthetic and medicinal perspectives as antimicrobial and antiviral agents. Chem Biol Drug Des 2023; 101:500-549. [PMID: 36447391 DOI: 10.1111/cbdd.14163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Rhodanine or 2-Thioxothiazolidin-4-one is a privileged heterocyclic compound offering a wide opportunity for structural modification, lead development, and modification. It is one of the highly decorated scaffolds in the drug discovery process. Rhodanine derivatives possess a plethora of biological activities due to their ability to interact with a diverse range of protein targets, which provide tremendous opportunities to discover new drugs with different modes of action. The most common strategy for developing novel rhodanine derivatives is the introduction of structurally diverse substituents at the C-5 or N-3, or both positions. Since the inception of Epralestat into the market in 1992, the exploration of rhodanine-3-acetic acids has led to the development of novel leads against different biological targets such as MRSA, HHV-6, Mycobacterial tuberculosis, dengue, etc. In the current pandemic era, some rhodanine compounds have been explored against SARS-CoV-2. In recent years, rhodanine and its derivatives have witnessed significant progress in developing new drug leads as potential antimicrobial and antiviral agents. Different synthetic methodologies and recent developments in the medicinal chemistry of rhodanine derivatives, including biological activities, their mechanistic aspects, structure-activity relationships, and in silico findings, have been compiled in the present review. This article will benefit the scientific community and offer perspectives on how these scaffolds as privileged structures might be exploited in the future for rational design and discovery of rhodanine-based bio-active molecules.
Collapse
Affiliation(s)
- Abhishek Chaurasyia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Research Scholar, IK Gujral Punjab Technical University, Kapurthala, Punjab, India
| |
Collapse
|
4
|
Chou MY, Ho JH, Huang MJ, Chen YJ, Yang MD, Lin LH, Chi CH, Yeh CH, Tsao TY, Tzeng JK, Hsu RJC, Huang PH, Lu WC, Li PH, Wang MF. Potential antidepressant effects of a dietary supplement from the chlorella and lion's mane mushroom complex in aged SAMP8 mice. Front Nutr 2022; 9:977287. [PMID: 36118772 PMCID: PMC9479623 DOI: 10.3389/fnut.2022.977287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1990s, the prevalence of mental illnesses, such as depression, has been increasing annually and has become a major burden on society. Due to the many side effects of antidepressant drugs, the development of a complementary therapy from natural materials is an urgent need. Therefore, this study used a complex extract of chlorella and lion's mane mushroom and evaluated its antidepressant effects. Six-month-old male senescence-accelerated mice prone-8 (SAMP8) were divided into positive control; negative control; and low, medium, and high-dose groups. All groups were treated with corticosterone (CORT) at 40 mg/Kg/day for 21- days to induce depression in the animals, and the effects of different test substances on animal behavior was observed. The positive control group was intraperitoneally injected with a tricyclic antidepressant (Fluoxetine, as tricyclic antidepressant), the control group was given ddH2O, and the test substance groups were administered test samples once daily for 21 days. The open field test (OFT) and forced swimming test (FST) were applied for behavior analyses of depression animal models. The OFT results showed that the mice in the positive control and the medium-, and high-dose groups demonstrated a significantly prolonged duration in the central area and a significantly increased travel distance. In the FST, the positive control and the medium, and high-dose groups displayed significantly reduced immobility times relative to the control group. The blood analysis results showed significant decreases in triglyceride and blood urea nitrogen levels relative to the positive control and the medium- and high-dose groups. Notably, in the positive control and the medium- and high-dose groups, brain-derived neurotrophic factor (BDNF) increase by more than in the control group. In summary, medium and high dose of extract of chlorella and lion's mane mushroom could improve depression behavior in animals and have the potential to be antidepressant health care products.
Collapse
Affiliation(s)
- Ming-Yu Chou
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
| | - Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung, Taiwan
| | - Mao-Jung Huang
- School of General Education, Hsiuping University of Science and Technology, Taichung, Taiwan
| | - Ying-Ju Chen
- Ph.D. Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, Taiwan
| | - Mei-Due Yang
- Department of Surgery, Department of Clinical Nutrition, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Hung Lin
- Division of Allergy, Immunology & Rheumatology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ching-Hsin Chi
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
| | - Chin-Hsi Yeh
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | - Tsui-Ying Tsao
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | - Jian-Kai Tzeng
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | | | - Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an City, China
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- Ming-Fu Wang
| |
Collapse
|
5
|
Chronic corticosterone exposure impairs emotional regulation and cognitive function through disturbing neural oscillations in mice. Behav Brain Res 2022; 434:114030. [DOI: 10.1016/j.bbr.2022.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
6
|
Nayl AA, Arafa WAA, Ahmed IM, Abd-Elhamid AI, El-Fakharany EM, Abdelgawad MA, Gomha SM, Ibrahim HM, Aly AA, Bräse S, Mourad AK. Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules 2022; 27:2940. [PMID: 35566291 PMCID: PMC9105511 DOI: 10.3390/molecules27092940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, a distinctive dihydroxy ionic liquid ([Py-2OH]OAc) was straightforwardly assembled from the sonication of pyridine with 2-chloropropane-1,3-diol by employing sodium acetate as an ion exchanger. The efficiency of the ([Py-2OH]OAc as a promoter for the sono-synthesis of a novel library of condensed products through DABCO-catalyzed Knoevenagel condensation process of adequate active cyclic methylenes and ninhydrin was next investigated using ultimate greener conditions. All of the reactions studied went cleanly and smoothly, and the resulting Knoevenagel condensation compounds were recovered in high yields without detecting the aldol intermediates in the end products. Compared to traditional strategies, the suggested approach has numerous advantages including mild reaction conditions with no by-products, eco-friendly solvent, outstanding performance in many green metrics, and usability in gram-scale synthesis. The reusability of the ionic liquid was also studied, with an overall retrieved yield of around 97% for seven consecutive runs without any substantial reduction in the performance. The novel obtained compounds were further assessed for their in vitro antitumor potential toward three human tumor cell lines: Colo-205 (colon cancer), MCF-7 (breast cancer), and A549 (lung cancer) by employing the MTT assay, and the findings were evaluated with the reference Doxorubicin. The results demonstrated that the majority of the developed products had potent activities at very low doses. Compounds comprising rhodanine (5) or chromane (12) moieties exhibited the most promising cytotoxic effects toward three cell lines, particularly rhodanine carboxylic acid derivative (5c), showing superior cytotoxic effects against the investigated cell lines compared to the reference drug. Furthermore, automated docking simulation studies were also performed to support the results obtained.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Hamada M. Ibrahim
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Asmaa K. Mourad
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| |
Collapse
|
7
|
Rhodanine scaffold: A review of antidiabetic potential and structure-activity relationships (SAR). MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Yin LJ, Bin Ahmad Kamar AKD, Fung GT, Liang CT, Avupati VR. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed Pharmacother 2021; 145:112406. [PMID: 34785416 DOI: 10.1016/j.biopha.2021.112406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Rhodanine has been recognized as a privileged scaffold in medicinal chemistry due to its well-known ability to demonstrate a broad range of biological activities. The possibility of structural diversification has contributed to the significance of rhodanine structure in effective drug discovery and design. Many studies have confirmed the potential of rhodanine-derived compounds in the treatment of different types of cancer through the apoptosis induction mechanism. Furthermore, most of the rhodanine derivatives exhibited remarkable anticancer activity in the micromolar range while causing negligible cytotoxicity to normal cells. This review critically describes the anticancer activity profile of reported rhodanine compounds and the structure-activity relationships (SAR) to highlight the value of rhodanine as the core structure for future cancer drug development as well as to assist the researchers in rational drug design.
Collapse
Affiliation(s)
- Lim Ju Yin
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | | | - Gan Tjin Fung
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Chin Tze Liang
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Vasudeva Rao Avupati
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation (IRDI), International Medical University (IMU), Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
9
|
Ouyang X, Wang Z, Luo M, Wang M, Liu X, Chen J, Feng J, Jia J, Wang X. Ketamine ameliorates depressive-like behaviors in mice through increasing glucose uptake regulated by the ERK/GLUT3 signaling pathway. Sci Rep 2021; 11:18181. [PMID: 34518608 PMCID: PMC8437933 DOI: 10.1038/s41598-021-97758-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
To investigate the effects of ketamine on glucose uptake and glucose transporter (GLUT) expression in depressive-like mice. After HA1800 cells were treated with ketamine, 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) was added to the cells to test the effects of ketamine on glucose uptake, production of lactate, and expression levels of GLUT, ERK1/2, AKT, and AMPK. Adult female C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS), 27 CUMS mice were randomly divided into the depression, ketamine (i.p.10 mg/kg), and FR180204 (ERK1/2 inhibitor, i.p.100 mg/kg) + ketamine group. Three mice randomly selected from each group were injected with 18F-FDG at 6 h after treatment. The brain tissue was collected at 6 h after treatment for p-ERK1/2 and GLUTs. Treatment with ketamine significantly increased glucose uptake, extracellular lactic-acid content, expression levels of GLUT3 and p-ERK in astrocytes and glucose uptake in the prefrontal cortex (P < 0.05), and the immobility time was significantly shortened in depressive-like mice (P < 0.01). An ERK1/2 inhibitor significantly inhibited ketamine-induced increases in the glucose uptake in depressive-like mice (P < 0.05), as well as prolonged the immobility time (P < 0.01). The expression levels of p-ERK1/2 and GLUT3 in depressive-like mice were significantly lower than those in normal control mice (P < 0.01). Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex.
Collapse
Affiliation(s)
- Xin Ouyang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, People's Republic of China
| | - Zhengjia Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Mei Luo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Maozhou Wang
- Heart Center, Beijing Anzhen Hospital, Captial Medical University, Beijing, 100020, People's Republic of China
| | - Xing Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Jiaxin Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - JianGuo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Luzhou, 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
10
|
Cao M, Huang W, Chen Y, Li G, Liu N, Wu Y, Wang G, Li Q, Kong D, Xue T, Yang N, Liu Y. Chronic restraint stress promotes the mobilization and recruitment of myeloid-derived suppressor cells through β-adrenergic-activated CXCL5-CXCR2-Erk signaling cascades. Int J Cancer 2021; 149:460-472. [PMID: 33751565 DOI: 10.1002/ijc.33552] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in tumor immune escape. Recent studies have shown that MDSCs contribute to tumor progression under psychological stress, but the underlying mechanism of MDSCs mobilization and recruitment remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth, as well as the mobilization of MDSCs to spleen and tumor sites from bone marrow. Meanwhile, chronic restraint stress enhanced the expression of C-X-C motif chemokine receptor 2 (CXCR2) and pErk1/2 in bone marrow MDSCs, together with elevated chemokine (C-X-C motif) ligand 5 (CXCL5) expression in tumor tissues. In vitro, the treatments of MDSCs with epinephrine (EPI) and norepinephrine (NE) but not corticosterone (CORT)-treated H22 conditioned medium obviously inhibited T-cell proliferation, as well as enhanced CXCR2 expression and extracellular signal-regulated kinase (Erk) phosphorylation. In vivo, β-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress and inactivated CXCL5-CXCR2-Erk signaling pathway. Our findings support the crucial role of β-adrenergic signaling cascade in the mobilization and recruitment of MDSCs under chronic restraint stress.
Collapse
Affiliation(s)
- Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Gaoxiang Li
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Nasi Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Youming Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Guiping Wang
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Qian Li
- Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Dexin Kong
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tongtong Xue
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China.,Medical College, Tibet University, Lhasa, Tibet Autonomous Region, China
| |
Collapse
|
11
|
Ridout KK, Coe JL, Parade SH, Marsit CJ, Kao HT, Porton B, Carpenter LL, Price LH, Tyrka AR. Molecular markers of neuroendocrine function and mitochondrial biogenesis associated with early life stress. Psychoneuroendocrinology 2020; 116:104632. [PMID: 32199200 PMCID: PMC7887859 DOI: 10.1016/j.psyneuen.2020.104632] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Glucocorticoid receptor gene (NR3C1) promoter methylation influences cellular expression of the glucocorticoid receptor and is a proposed mechanism by which early life stress impacts neuroendocrine function. Mitochondria are sensitive and responsive to neuroendocrine stress signaling through the glucocorticoid receptor, and recent evidence with this sample and others shows that mitochondrial DNA copy number (mtDNAcn) is increased in adults with a history of early stress. No prior work has examined the role of NR3C1 methylation in the association between early life stress and mtDNAcn alterations. METHODS Adult participants (n = 290) completed diagnostic interviews and questionnaires characterizing early stress and lifetime psychiatric symptoms. Medical conditions, active substance abuse, and prescription medications other than oral contraceptives were exclusionary. Subjects with a history of lifetime bipolar, obsessive-compulsive, or psychotic disorders were excluded; individuals with other forms of major psychopathology were included. Whole blood mtDNAcn was measured using qPCR; NR3C1 methylation was measured via pyrosequencing. Multiple regression and bootstrapping procedures tested NR3C1 methylation as a mediator of effects of early stress on mtDNAcn. RESULTS The positive association between early adversity and mtDNAcn (p = .02) was mediated by negative associations of early adversity with NR3C1 methylation (p = .02) and NR3C1 methylation with mtDNAcn (p < .001). The indirect effect involving early adversity, NR3C1 methylation, and mtDNAcn was significant (95 % CI [.002, .030]). CONCLUSIONS NR3C1 methylation significantly mediates the association between early stress and mtDNAcn, suggesting that glucocorticoid receptor signaling may be a mechanistic pathway underlying mtDNAcn alterations of interest for future longitudinal work.
Collapse
Affiliation(s)
- Kathryn K Ridout
- Departments of Psychiatry and Family Medicine, Kaiser Permanente, San Jose, CA, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Jesse L Coe
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Stephanie H Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Lawrence H Price
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
12
|
Abstract
In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Elizabeth M Olsen
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
13
|
Xu N, Fan W, Zhou X, Liu Y, Ma P, Qi S, Gu B. Probiotics decrease depressive behaviors induced by constipation via activating the AKT signaling pathway. Metab Brain Dis 2018; 33:1625-1633. [PMID: 29948655 DOI: 10.1007/s11011-018-0269-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Chronic constipation is often accompanied by emotional disorders such as depression and anxiety. The aim of this study was to determine whether administration of a multispecies probiotic can decrease depressive behaviors through the gut-brain axis and identify any underlying mechanisms. A mouse model of constipation induced by loperamide (5 mg·kg-1,i.p.) was used. For that purpose, 36 ICR male mice were divided into three groups: control, constipation and probiotic groups. The probiotic group received treatment with a probiotic once per day for 14 days via a gavage. All other groups were given an equal volume of normal saline. The fecal parameters and intestinal transit ratio were recorded. The forced swimming test and tail suspension test were used to detect changes in depressive behaviors. Total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) levels were measured by assay kits. We also detected neuronal survival, as well as phosphorylated Ser/Thr protein kinase (p-AKT), Bcl-2, Bcl-2 associated X protein (Bax) and cleaved caspase-3 levels in the hippocampus. The results showed that administration of a probiotic could ameliorate depressive behaviors and relieve neuronal cell injury in the hippocampal CA3 regions. Moreover, probiotic treatment decreased MDA levels and increased SOD activity. Furthermore, probiotic administration increased p-AKT and Bcl-2 levels in the hippocampus of the constipated mice, while decreasing the concentrations of Bax and cleaved caspase-3, so as to inhibit the neural apoptosis. In the present study, we confirm that probiotics can alleviate depression induced by constipation through protecting neuronal health via activation of the AKT signaling pathway.
Collapse
Affiliation(s)
- Nana Xu
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wenting Fan
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yaping Liu
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Suhua Qi
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| |
Collapse
|
14
|
Cheng Y, Li Z, He S, Tian Y, He F, Li W. Elevated heat shock proteins in bipolar disorder patients with hypothalamic pituitary adrenal axis dysfunction. Medicine (Baltimore) 2018; 97:e11089. [PMID: 29979378 PMCID: PMC6076087 DOI: 10.1097/md.0000000000011089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSP) might be useful as biomarkers for bipolar disorder (BD) which would be clinically valuable since no reliable biomarker for BD has so far been identified. The purpose of this study was to assess the heat shock proteins CPN10, CPN60, and CPN70 as potential biomarkers of BD. METHODS The study included 100 BD patients recruited from a hospital during 2012 and 2013. The study also included 94 healthy controls. Among the BD patients, 33 had abnormal hypothalamic-pituitary-adrenal (HPA) axis activity. Blood samples were obtained from the patients and controls. The chemiluminescence method, mass spectrometry, and flow cytometry were used for analysis. RESULTS The BD patients compared with the controls had a significantly lower level of CPN10 and significantly higher levels of CPN60 and CPN70. The BD patients with abnormal HPA axis activity had a significantly lower level of CPN60 compared with the normal HPA axis activity group of BD patients. The CPN60 level significantly inversely correlated with adrenocorticotropic hormone (ACTH) level in patients with bipolar depression and in patients with bipolar hypomania, and CPN70 significantly correlated with ACTH level in patients with bipolar depression and hypomania. CONCLUSIONS Our findings suggest that the heat shock proteins CPN10, CPN60, and CPN70 might have potential as biomarkers for BD and CPN60 blood level might distinguish patients with abnormal HPA axis activity from those with normal HPA axis activity.
Collapse
Affiliation(s)
- Yuhang Cheng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College
| | - San He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| | - Yujie Tian
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| | - Fan He
- Department of Psychiatry Beijing Anding Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenbiao Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| |
Collapse
|
15
|
Effects of L-theanine on anxiety-like behavior, cerebrospinal fluid amino acid profile, and hippocampal activity in Wistar Kyoto rats. Psychopharmacology (Berl) 2018; 235:37-45. [PMID: 28971241 DOI: 10.1007/s00213-017-4743-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/16/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES The amino acid L-theanine (N-ethyl-L-glutamine) has historically been considered a relaxing agent. In the present study, we examined the effects of repeated L-theanine administration on behavior, levels of amino acids in the cerebrospinal fluid (CSF), and hippocampal activity in Wistar Kyoto (WKY) rats, an animal model of anxiety and depressive disorders. METHODS Behavioral tests were performed after 7-10 days of L-theanine (0.4 mg kg-1 day-1) or saline administration, followed by CSF sampling for high-performance liquid chromatography (HPLC) analysis. An independent set of animals was subjected to [18F]fluorodeoxyglucose positron emission tomography (PET) scanning after the same dose of L-theanine or saline administration for 7 days. RESULTS In the elevated plus maze test, the time spent in the open arms was significantly longer in the L-theanine group than in the saline group (P = 0.035). In addition, significantly lower CSF glutamate (P = 0.039) and higher methionine (P = 0.024) concentrations were observed in the L-theanine group than in the saline group. A significant increase in the standard uptake value ratio was observed in the hippocampus/cerebellum of the L-theanine group (P < 0.001). CONCLUSIONS These results suggest that L-theanine enhances hippocampal activity and exerts anxiolytic effects, which may be mediated by changes in glutamate and methionine levels in the brain. Further study is required to more fully elucidate the mechanisms underlying the effects of L-theanine.
Collapse
|
16
|
Improvement of mitochondrial function mediated the neuroprotective effect of 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone in rats with cerebral ischemia-reperfusion injuries. Oncotarget 2017; 8:61193-61202. [PMID: 28977856 PMCID: PMC5617416 DOI: 10.18632/oncotarget.18048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
Deficits in mitochondrial function is a critical inducement in the major pathways that drive neuronal cell death in ischemic process particularly. Drugs target to improve the mitochondrial function may be a feasible therapeutic choice in treatment with ischemic diseases. In the present study, we investigated whether 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone (RD-1), a compound derived from rhodanine, could protect against ischemic neuronal damage via improving mitochondrial function. We tested the neuroprotective effect of RD-1 both in rats modeled by middle cerebral artery occlusion reperfusion in vivo and in primary cortical neurons subjected to hypoxia/reperfusion injury in vitro. Results showed that treatment with RD-1 for 14 days remarkably reduced infarct size, decreased neurological deficit score and accelerated the recovery of somatosensory function in vivo. Meanwhile, RD-1 also increased the cellular viability after 48 h treatment in vitro. In addition, RD-1 protected the primary cortical neurons against mitochondrial damage as evidenced by stabilizing the mitochondrial membrane potential and reducing the overproduction of reactive oxygen species. Furthermore, hypoxia/reperfusion injury induced damaged mitochondrial axonal transport and consequently neurotransmitter release disorder, which were ameliorated by RD-1 treatment. Besides, RD-1 inhibited the downregulation of proteins related with mitochondrial transport and neurotransmitter release induced by ischemic injury both in vivo and in vitro. The obtained data demonstrated the neuroprotective effect of RD-1 and the involved mechanisms were partially attributed to the improvement in mitochondrial function and the synaptic activity. Our study indicated that RD-1 may be a potential therapeutic drug for the ischemic stroke therapy.
Collapse
|
17
|
Inhibition of iNOS alleviates cognitive deficits and depression in diabetic mice through downregulating the NO/sGC/cGMP/PKG signal pathway. Behav Brain Res 2017; 322:70-82. [PMID: 28077315 DOI: 10.1016/j.bbr.2016.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 12/21/2022]
|