1
|
Contella L, Farrell CL, Boccuto L, Litwin AH, Snyder ML. Impact of Substance Use Disorder on Tryptophan Metabolism Through the Kynurenine Pathway: A Narrative Review. Metabolites 2024; 14:611. [PMID: 39590847 PMCID: PMC11597030 DOI: 10.3390/metabo14110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Substance use disorder is a crisis impacting many people in the United States. This review aimed to identify the effect addictive substances have on the kynurenine pathway. Tryptophan is an essential amino acid metabolized by the serotonin and kynurenine pathways. The metabolites of these pathways play a role in the biological reward system. Addictive substances have been shown to cause imbalances in the ratios of these metabolites. With current treatment and therapeutic options being suboptimal, identifying biochemical mechanisms that are impacted during the use of addictive substances can provide alternative options for treatment or drug discovery. Methods: A systematic literature search was conducted to identify studies evaluating the relationship between substance use disorder and tryptophan metabolism through the kynurenine pathway. A total of 32 articles meeting eligibility criteria were used to review the relationship between the kynurenine pathway, tryptophan breakdown, and addictive substances. Results: The use of addictive substances dysregulates tryptophan metabolism and kynurenine metabolite concentrations. This imbalance directly affects the dopamine reward system and is thought to promote continued substance use. Conclusions: Further studies are needed to fully evaluate the metabolites of the kynurenine pathway, along with other options for treatment to repair the metabolite imbalance. Several possible therapeutics have been identified; drugs that restore homeostasis, such as Ro 61-8048 and natural products like Tinospora cordifolia or Decaisnea insignis, are promising options for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Lindsey Contella
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, 605 Grove Rd., Greenville, SC 29605, USA
- Luxor Scientific, LLC, 1327 Miller Rd., Greenville, SC 29607, USA
| | - Christopher L. Farrell
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, 605 Grove Rd., Greenville, SC 29605, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, 605 Grove Rd., Greenville, SC 29605, USA
| | - Alain H. Litwin
- School of Health Research, Clemson University, Clemson, SC 29631, USA
- Department of Medicine, Prisma Health, 701 Grove Rd., Greenville, SC 29605, USA
- Department of Medicine, School of Medicine, University of South Carolina, 876 W Faris Rd., Greenville, SC 29605, USA
| | - Marion L. Snyder
- Luxor Scientific, LLC, 1327 Miller Rd., Greenville, SC 29607, USA
| |
Collapse
|
2
|
Gimenez-Gomez P, Le T, Zinter M, M'Angale P, Duran-Laforet V, Freels TG, Pavchinskiy R, Molas S, Schafer DP, Tapper AR, Thomson T, Martin GE. An orbitocortical-thalamic circuit suppresses binge alcohol-drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601895. [PMID: 39005328 PMCID: PMC11245026 DOI: 10.1101/2024.07.03.601895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Alcohol consumption remains a significant global health challenge, causing millions of direct and indirect deaths annually. Intriguingly, recent work has highlighted the prefrontal cortex, a major brain area that regulates inhibitory control of behaviors, whose activity becomes dysregulated upon alcohol abuse. However, whether an endogenous mechanism exists within this brain area that limits alcohol consumption is unknown. Here we identify a discrete GABAergic neuronal ensemble in the medial orbitofrontal cortex (mOFC) that is selectively recruited during binge alcohol-drinking and intoxication. Upon alcohol intoxication, this neuronal ensemble suppresses binge drinking behavior. Optogenetically silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. We find that this neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. We further show, using brain-wide analysis, that this neuronal ensemble projects widely, and that its projections specifically to the mediodorsal thalamus are responsible for regulating binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by halting alcohol intake. These results provide valuable insights into the complex nature of alcohol abuse and offers potential avenues for the development of mOFC neuronal ensemble-targeted interventions.
Collapse
Affiliation(s)
- P Gimenez-Gomez
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Le
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - M Zinter
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - P M'Angale
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - V Duran-Laforet
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T G Freels
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - R Pavchinskiy
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - S Molas
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - D P Schafer
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Thomson
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - G E Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
4
|
Olivencia MA, Gil de Biedma-Elduayen L, Giménez-Gómez P, Barreira B, Fernández A, Angulo J, Colado MI, O'Shea E, Perez-Vizcaino F. Oxidized soluble guanylyl cyclase causes erectile dysfunction in alcoholic mice. Br J Pharmacol 2023; 180:2361-2376. [PMID: 37021655 DOI: 10.1111/bph.16087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Alcohol abuse has been associated with erectile dysfunction (ED), but the implicated molecular mechanisms are unresolved. This study analyses the role of alterations in soluble guanylyl cyclase (sGC) in ED. EXPERIMENTAL APPROACH ED was analysed in adult male C57BL/6J mice subjected to the Chronic Intermittent Ethanol (CIE) paradigm. Erectile function was assessed in anaesthetised mice in vivo by evaluating intracavernosal pressure (ICP) and in vitro in isolated mice corpora cavernosa (CC) mounted in a myograph. Protein expression and reactive oxygen species were analysed by western blot and dihydroethidium staining, respectively. KEY RESULTS In CIE mice, we observed a significant decrease in the relaxant response of the CC to stimulation of NO release from nitrergic nerves by electrical field stimulation, to NO release from endothelial cells by acetylcholine, to the PDE5 inhibitor sildenafil, and to the sGC stimulator riociguat. Conversely, the response to the sGC activator cinaciguat, whose action is independent of the oxidation state of sGC, was significantly enhanced in these CC. The responses to adenylyl cyclase stimulation with forskolin were unchanged. We found an increase in reactive oxygen species in the CC from CIE mice as well as an increase in CYP2E1 and NOX2 protein expression. In vivo pre-treatment with tempol prevented alcohol-induced erectile dysfunction. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that alcoholic mice show ED in vitro and in vivo due to an alteration in the redox state of sGC and suggest that sGC activators may be effective in ED associated with alcoholism.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Argentina Fernández
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
5
|
Wang Z, Huang S, Li L, Wen Y, Shang D. Kynurenine metabolite changes in individuals with alcohol use disorder: A systematic review and meta-analysis. Drug Alcohol Depend 2023; 249:110821. [PMID: 37327508 DOI: 10.1016/j.drugalcdep.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Growing evidence suggests an abnormal metabolism of kynurenine in individuals with alcohol use disorder (AUD). This systematic review and meta-analysis was aimed at assessing the possible differences in kynurenine metabolites between individuals with AUD and controls. METHODS We searched PubMed, Embase, and Web of Science databases and included any clinical studies comparing the peripheral blood levels of at least one metabolite, between individuals with AUD and controls without AUD. Random-effects meta-analyses were conducted to generate pooled standardized mean differences (SMD). Subgroup analyses and meta-regression analyses were conducted. RESULTS A total of seven eligible studies with 572 participants were included. The peripheral blood levels of kynurenine (SMD = 0.58; p = 0.004) along with the ratio of kynurenine and tryptophan (SMD = 0.73; p = 0.002) were higher in individuals with AUD, while kynurenic acid levels (SMD = -0.81; p = 0.003) were reduced in individuals with AUD compared to controls. The peripheral blood levels of tryptophan along with the ratio of kynurenic acid and kynurenine were unaltered. Subgroup analyses confirmed these results. CONCLUSION Our results suggested a shift in the tryptophan metabolism to the kynurenine pathway and a down-regulation of the potentially neuroprotective kynurenic acid in individuals with AUD.
Collapse
Affiliation(s)
- Zhanzhang Wang
- Department of Pharmacy, the Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou510370, China
| | - Shanqing Huang
- Department of Pharmacy, the Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou510370, China
| | - Lu Li
- Department of Pharmacy, the Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou510370, China
| | - Yuguan Wen
- Department of Pharmacy, the Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou510370, China.
| | - Dewei Shang
- Department of Pharmacy, the Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou510370, China.
| |
Collapse
|
6
|
Sun M, Wu C, Liu L, Gu L, Wang Z, Xu F, Zhu D. Interplay between the renin angiotensin system and oxidative stress contributes to alcohol addiction by stimulating dopamine accumulation in the mesolimbic pathway. Biochem Pharmacol 2023; 212:115578. [PMID: 37137415 DOI: 10.1016/j.bcp.2023.115578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The brain renin-angiotensin system (RAS) has recently been implicated in the development of substance abuse and addiction. However, the integrative roles of the two counter-regulating RAS arms, including the ACE1/Ang II/AT1R axis and the ACE2/Ang(1-7)/MasR axis, in alcohol addiction remain unclear. Using the 20% ethanol intermittent-access two-bottle-choice (IA2BC) paradigm, we observed significant alcohol preference and addictive behaviors in rats. Additionally, we observed significant disruption in the RAS and redox homeostasis in the ventral tegmental area (VTA), as indicated by upregulation of ACE1 activities, Ang II levels, AT1R expression, and glutathione disulfide contents, as well as downregulation of ACE2 activities, Ang(1-7) levels, MasR expression and glutathione content. Moreover, dopamine accumulated in the VTA and nucleus accumbens of IA2BC rats. Intra-VTA infusion of the antioxidant tempol substantially attenuated RAS imbalance and addictive behaviors. Intra-VTA infusion of the ACE1 inhibitor captopril significantly reduced oxidative stress, alcohol preference, addictive behaviors, and dopamine accumulation, whereas intra-VTA infusion of the ACE2 inhibitor MLN4760 had the opposite effects. The anti-addictive effects of the ACE2/Ang(1-7)/MasR axis were further observed using intra-VTA infusion of Ang(1-7) and a MasR-specific antagonist A779. Therefore, our findings suggest that excessive alcohol intake causes RAS imbalance via oxidative stress, and that a dysregulated RAS in the VTA contributes to alcohol addiction by stimulating oxidative stress and dopaminergic neurotransmission. Breaking the vicious cycle of RAS imbalance and oxidative stress using brain-permeable antioxidants, ACE1 inhibitors, ACE2 activators, or Ang(1-7) mimetics thus represents a promising strategy for combating alcohol addiction.
Collapse
Affiliation(s)
- Ming Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China; Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Chao Wu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Lixin Liu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Liang Gu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Zihao Wang
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Feng Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Donglin Zhu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
7
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Zhu H, Li T, Li C, Liu Y, Miao Y, Liu D, Shen Q. Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi Trichoderma guizhouense NJAU4742 under acid stress. Environ Microbiol 2023; 25:331-351. [PMID: 36367399 DOI: 10.1111/1462-2920.16286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
In this study, the growth of fungi Trichoderma guizhouense NJAU4742 was significantly inhibited under acid stress, and the genes related to acid stress were identified based on transcriptome analysis. Four genes including tna1, adh2/4, and bna3 were significantly up-regulated. Meanwhile, intracellular hydrogen ions accumulated under acid stress, and ATP synthesis was induced to transport hydrogen ions to maintain hydrogen ion balance. The enhancement of glycolysis pathway was also detected, and a large amount of pyruvic acid from glycolysis was accumulated due to the activity limitation of PDH enzymes. Finally, acetaldehyde accumulated, resulting in the induction of adh2/4. In order to cope with stress caused by acetaldehyde, cells enhanced the synthesis of NAD+ by increasing the expression of tna1 and bna3 genes. NAD+ effectively improved the antioxidant capacity of cells, but the NAD+ supplement pathway mediated by bna3 could also cause the accumulation of kynurenine (KYN), which was an inducer of apoptosis. In addition, KYN had a specific promoting effect on acetaldehyde synthesis by improving the expression of eno2 gene, which led to the extremely high intracellular acetaldehyde in the cell under acidic stress. Our findings provided a route to better understand the response of filamentous fungi under acid stress.
Collapse
Affiliation(s)
- Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chi Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Chen Y, Zhang J, Yang Y, Xiang K, Li H, Sun D, Chen L. Kynurenine‐3‐monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. J Cell Physiol 2022; 237:4339-4355. [DOI: 10.1002/jcp.30876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Jiahui Zhang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Yueying Yang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Ke Xiang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Hua Li
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Dejuan Sun
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Lixia Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| |
Collapse
|
10
|
Ma W, Ye L, Zhong C, Li J, Ye F, Lv L, Yu Y, Jiang S, Zhou P. Kynurenine produced by tryptophan 2,3-dioxygenase metabolism promotes glioma progression through an aryl hydrocarbon receptor-dependent signaling pathway. Cell Biol Int 2022; 46:1577-1587. [PMID: 35702760 DOI: 10.1002/cbin.11833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023]
Abstract
The current studies associated with tumor biology continue to describe a high correlation between tryptophan (Trp) metabolism and tumor progression. These findings reflect the complex underlying mechanism of tumor development and highlight the need to explore additional drug targets for carcinoma-associated diseases. In our study, we reported that elevated Trp metabolism was observed in highly malignant glioma tumor tissues from patients. The elevated Trp metabolism in glioma cells were induced by the overexpression of Trp 2,3-dioxygenase 2 (TDO2), which further contributed to the production of the metabolite kynurenine (Kyn). Subsequently, the Kyn derived from Trp metabolism was able to mediate the activation of the aryl hydrocarbon receptor (AhR) and downstream PI3K/AKT signals, resulting in the strengthening of tumor stemness and growth. Meanwhile, the activation of the AhR could promote the process of epithelial-mesenchymal transition in gliomas through a TGF-β-dependent mechanism, leading to enhanced tumor invasion in vitro and in vivo. Inhibition of the AhR using StemRegenin 1 was demonstrated to suppress glioma growth and improve the outcome of traditional chemotherapy in subcutaneous tumor-bearing mice, representing a promising therapeutic target for clinical glioma treatment.
Collapse
Affiliation(s)
- Weichao Ma
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Lu Ye
- Department of Oral Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhong Zhong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Li
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Feng Ye
- Department of neurosurgery, People's Hospital of Deyang, Deyang, Sichuan, China
| | - Liang Lv
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Yang Yu
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Shu Jiang
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| | - Peizhi Zhou
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu City, Sichuan, China
| |
Collapse
|
11
|
de Biedma-Elduayen LG, Giménez-Gómez P, Morales-Puerto N, Vidal R, de la Calle CN, Gutiérrez-López MD, O'Shea E, Colado MI. Influx of kynurenine into the brain is involved in the reduction of ethanol consumption induced by Ro 61-8048 after chronic intermittent ethanol in mice. Br J Pharmacol 2022; 179:3711-3726. [PMID: 35189673 PMCID: PMC9314579 DOI: 10.1111/bph.15825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The kynurenine pathway has been proposed as a new target for modulating drug abuse. We previously demonstrated that inhibition of kynurenine 3-monooxygenase (KMO) using Ro 61-8048 reduces ethanol consumption in a binge drinking model. Here we investigate the effect of the kynurenine pathway modulation in ethanol -dependent mice. EXPERIMENTAL APPROACH Adult male and female mice were subjected to the Chronic Intermittent Ethanol (CIE) paradigm. On the last day of CIE, mice were treated with Ro 61-8048, Ro 61-8048 + PNU-120596, a positive allosteric modulator of α7nAChR, and Ro 61-8048 + L-leucine or probenecid, which block the influx or efflux of kynurenine from the brain, respectively. Ethanol, water consumption and preference were measured and kynurenine levels in plasma and limbic forebrain were determined. KEY RESULTS Ro 61-8048 decreases consumption and preference for ethanol in both sexes exposed to the CIE model, an effect that is prevented by PNU-120596. The Ro 61-8048-induced decrease in ethanol consumption depends on the influx of kynurenine into the brain. CONCLUSION AND IMPLICATIONS Inhibition of KMO reduces ethanol consumption and preference in both male and female mice subjected to CIE model by a mechanism involving α7nAChR. Moreover, the effect which is mediated centrally depends on the influx of peripheral kynurenine to the brain and can be prolonged by blocking the efflux of kynurenine from the brain. Here, for the first time we demonstrate that the modulation of the kynurenine pathway is a valid strategy for the treatment of ethanol dependence in both sexes.
Collapse
Affiliation(s)
- Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Current address: University of Massachusetts Chan Medical School, The Brudnick Neuropsychiatric Research Institute, Worcester, MA
| | - Nuria Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Carlos Núñez de la Calle
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
12
|
Dawidowska J, Krzyżanowska M, Markuszewski MJ, Kaliszan M. The Application of Metabolomics in Forensic Science with Focus on Forensic Toxicology and Time-of-Death Estimation. Metabolites 2021; 11:metabo11120801. [PMID: 34940558 PMCID: PMC8708813 DOI: 10.3390/metabo11120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, the diagnostic methods used by scientists in forensic examinations have enormously expanded. Metabolomics provides an important contribution to analytical method development. The main purpose of this review was to investigate and summarize the most recent applications of metabolomics in forensic science. The primary research method was an extensive review of available international literature in PubMed. The keywords “forensic” and “metabolomics” were used as search criteria for the PubMed database scan. Most authors emphasized the analysis of different biological sample types using chromatography methods. The presented review is a summary of recently published implementations of metabolomics in forensic science and types of biological material used and techniques applied. Possible opportunities for valuable metabolomics’ applications are discussed to emphasize the essential necessities resulting in numerous nontargeted metabolomics’ assays.
Collapse
Affiliation(s)
- Joanna Dawidowska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (J.D.); (M.J.M.)
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (J.D.); (M.J.M.)
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-58-3491255
| |
Collapse
|
13
|
Leclercq S, Schwarz M, Delzenne NM, Stärkel P, de Timary P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Transl Psychiatry 2021; 11:503. [PMID: 34599147 PMCID: PMC8486842 DOI: 10.1038/s41398-021-01610-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The gut-brain communication is mostly driven by the immune, metabolic and neural pathways which remained poorly explored in patients with alcohol use disorder (AUD). The metabolites arising from the tryptophan-kynurenine pathway have gained considerable attention since they are at the interface between intestinal bacteria, host immune response and brain functions. This study described the circulating levels of kynurenine metabolites in AUD patients, at the onset (T1) and end (T2) of a 3-week detoxification program, and tested correlations between those metabolites and inflammatory markers, the gut microbiota and the psychological symptoms. Increased concentration of the neurotoxic metabolite quinolinic acid (QUIN) and decreased levels of the neuroprotector metabolite kynurenic acid (KYNA) which both modulate glutamatergic neurotransmission were observed in AUD patients, particularly at T2. The inflammatory marker hsCRP was associated with several metabolic ratios of the kynurenine pathway. Tryptophan, KYNA and QUIN were correlated with depression, alcohol craving and reaction time, respectively. Analysis of gut microbiota revealed that bacteria known as short-chain fatty acid producers, as well as bacterial metabolites including butyrate and medium-chain fatty acids were associated with some metabolites of the tryptophan-kynurenine pathway. Targeting the glutamatergic neurotransmission through the modulation of the kynurenine pathway, by manipulating the gut microbiota, might represent an interesting alternative for modulating alcohol-related behavior.
Collapse
Affiliation(s)
- Sophie Leclercq
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Markus Schwarz
- grid.411095.80000 0004 0477 2585Institute of Laboratory Medicine, LMU Klinikum Munich, Munich, Germany
| | - Nathalie M. Delzenne
- grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Peter Stärkel
- grid.7942.80000 0001 2294 713XLaboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.48769.340000 0004 0461 6320Department of Hepatogastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium. .,Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
14
|
Giménez-Gómez P, Ballestín R, Gil de Biedma-Elduayen L, Vidal R, Ferrer-Pérez C, Reguilón MD, O'Shea E, Miñarro J, Colado MI, Rodríguez-Arias M. Decreased kynurenine pathway potentiate resilience to social defeat effect on cocaine reward. Neuropharmacology 2021; 197:108753. [PMID: 34389399 DOI: 10.1016/j.neuropharm.2021.108753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023]
Abstract
The kynurenine (KYN) pathway of tryptophan (TRP) degradation is activated by stress and inflammatory factors. It is now well established that social stress induces the activation of the immune system, with central inflammation and KYN metabolism being two of the main factors linking stress with depression. The aim of the present study was to evaluate the long-lasting changes in the KYN pathway induced by social defeat (SD) associated with the resilience or susceptibility to an increase in the conditioned rewarding effects of cocaine. Mice were exposed to repeated SD and 3 weeks later, a conditioned place preference (CPP) induced by a subthreshold dose of cocaine (1.5 mg/kg) was developed. KYN levels in plasma, cerebellum, hippocampus, striatum and limbic forebrain were studied at the end of the CPP procedure. Changes in the KYN pathway after exposure to pharmacological (oxytocin and indomethacin) and environmental interventions (environmental enrichment) were also evaluated. Our results showed that defeated susceptible (SD-S) mice had higher conditioning scores than resilient mice (SD-R). In addition, although KYN concentration was elevated in all defeated mice, SD-R mice showed smaller increases in KYN concentration in the cerebellum than SD-S mice. Oxytocin or Indomethacin treatment before SD normalized cocaine-induced CPP, although the increase in the KYN pathway was maintained. However, environmental enrichment before SD normalized cocaine-induced CPP and prevented the increase in the KYN pathway. The present study highlights the role of the KYN pathway and anti-inflammatory drugs acting on TRP metabolism as pharmacological targets to potentiate resilience to social stress effects.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Raúl Ballestín
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Carmen Ferrer-Pérez
- Departmento de Psicología and Sociología, Universidad de Zaragoza, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - Marina D Reguilón
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
15
|
Taleb O, Maammar M, Klein C, Maitre M, Mensah-Nyagan AG. A Role for Xanthurenic Acid in the Control of Brain Dopaminergic Activity. Int J Mol Sci 2021; 22:ijms22136974. [PMID: 34203531 PMCID: PMC8268472 DOI: 10.3390/ijms22136974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Xanthurenic acid (XA) is a metabolite of the kynurenine pathway (KP) synthetized in the brain from dietary or microbial tryptophan that crosses the blood-brain barrier through carrier-mediated transport. XA and kynurenic acid (KYNA) are two structurally related compounds of KP occurring at micromolar concentrations in the CNS and suspected to modulate some pathophysiological mechanisms of neuropsychiatric and/or neurodegenerative diseases. Particularly, various data including XA cerebral distribution (from 1 µM in olfactory bulbs and cerebellum to 0.1–0.4 µM in A9 and A10), its release, and interactions with G protein-dependent XA-receptor, glutamate transporter and metabotropic receptors, strongly support a signaling and/or neuromodulatory role for XA. However, while the parent molecule KYNA is considered as potentially involved in neuropsychiatric disorders because of its inhibitory action on dopamine release in the striatum, the effect of XA on brain dopaminergic activity remains unknown. Here, we demonstrate that acute local/microdialysis-infusions of XA dose-dependently stimulate dopamine release in the rat prefrontal cortex (four-fold increase in the presence of 20 µM XA). This stimulatory effect is blocked by XA-receptor antagonist NCS-486. Interestingly, our results show that the peripheral/intraperitoneal administration of XA, which has been proven to enhance intra-cerebral XA concentrations (about 200% increase after 50 mg/kg XA i.p), also induces a dose-dependent increase of dopamine release in the cortex and striatum. Furthermore, our in vivo electrophysiological studies reveal that the repeated/daily administrations of XA reduce by 43% the number of spontaneously firing dopaminergic neurons in the ventral tegmental area. In the substantia nigra, XA treatment does not change the number of firing neurons. Altogether, our results suggest that XA may contribute together with KYNA to generate a KYNA/XA ratio that may crucially determine the brain normal dopaminergic activity. Imbalance of this ratio may result in dopaminergic dysfunctions related to several brain disorders, including psychotic diseases and drug dependence.
Collapse
|
16
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
17
|
Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110145. [PMID: 33203568 DOI: 10.1016/j.pnpbp.2020.110145] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
The intestine and the gut-associated limphoid tissue constitute the largest immunity organ of the human body. Among several possible tryptophan metabolism routes, the kynurenine pathway can be influenced by the gut microbiota. Disturbances of gut biodiversity may cause increased gut permeability and cause systemic inflammation, also related to central nervous system. Proinflammatory cytokines induce kynurenine pathway enzymes resulting in formation of neuroactive metabolites, which are being associated with several psychiatric disorders. The kynurenine pathway may also be influenced by certain bacteria species directly. The aim of this review is to highlight the current knowledge on the interaction of gut microbiota and the central nervous system with the kynurenine pathway taken into special account. Up to date study results on specific psychiatric disorders such as schizophrenia, bipolar disorder, Alzheimer's disease, autism spectrum disorders, depression and alcoholism are presented. Available evidence suggests that toxicity of kynurenine metabolites may be reduced by adjunction of probiotics which can affect proinflammatory cytokines. Due to their potential for modulation of the kynurenine pathway, gut microbiota pose an interesting target for future therapies.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland.
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| | | | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
18
|
Sharma R, Puckett H, Kemerling M, Parikh M, Sahota P, Thakkar M. Antisense-Induced Downregulation of Clock Genes in the Shell Region of the Nucleus Accumbens Reduces Binge Drinking in Mice. Alcohol Clin Exp Res 2021; 45:530-542. [PMID: 33606281 PMCID: PMC8535763 DOI: 10.1111/acer.14549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTIONS Binge drinking is a deadly pattern of alcohol consumption. Evidence suggests that genetic variation in clock genes is strongly associated with alcohol misuse; however, the neuroanatomical basis for such a relationship is unknown. The shell region of the nucleus accumbens (NAcSh) is well known to play a role in binge drinking. Hence, we examined whether clock genes in the NAcSh regulate binge drinking. METHODS To address this question, 2 experiments were performed on male C57BL/6J mice. In the first experiment, mice exposed to alcohol or sucrose under the 4-day drinking-in-the-dark (DID) paradigm were euthanized at 2 different time points on day 4 [7 hours after light (pre-binge drinking) or dark (post-binge drinking) onset]. The brains were processed for RT-PCR to examine the expression of circadian clock genes (Clock, Per1, and Per2) in the NAcSh and suprachiasmatic nucleus (SCN). In the second experiment, mice were exposed to alcohol, sucrose, or water as described above. On day 4, 1 hour prior to the onset of alcohol exposure, mice were bilaterally infused with either a mixture of circadian clock gene antisense oligodeoxynucleotides (AS-ODNs; antisense group) or nonsense/random ODNs (R-ODNs; control group) through surgically implanted cannulas above the NAcSh. Alcohol/sucrose/water consumption was measured for 4 hours. Blood alcohol concentration was measured to confirm binge drinking. Microinfusion sites were histologically verified using cresyl violet staining. RESULTS As compared to sucrose, mice euthanized post-binge drinking (not pre-binge drinking) on day 4 displayed a greater expression of circadian genes in the NAcSh but not in the SCN. Knockdown of clock genes in the NAcSh caused a significantly lower volume of alcohol to be consumed on day 4 than in the control treatment. No differences were found in sucrose or water consumption. CONCLUSIONS Our results suggest that clock genes in the NAcSh play a crucial role in binge drinking.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Hunter Puckett
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Micaela Kemerling
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Morales-Puerto N, Giménez-Gómez P, Pérez-Hernández M, Abuin-Martínez C, Gil de Biedma-Elduayen L, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. Addiction and the kynurenine pathway: A new dancing couple? Pharmacol Ther 2021; 223:107807. [PMID: 33476641 DOI: 10.1016/j.pharmthera.2021.107807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Drug use poses a serious threat to health systems throughout the world and the number of consumers rises relentlessly every year. The kynurenine pathway, main pathway of tryptophan degradation, has drawn interest in this field due to its relationship with addictive behaviour. Recently it has been confirmed that modulation of kynurenine metabolism at certain stages of the pathway can reduce, prevent or abolish drug seeking-like behaviours in studies with several different drugs. In this review, we present an up-to-date summary of the evidences of a relationship between drug use and the kynurenine pathway, both the alterations of the pathway due to drug use as well as modulation of the pathway as a potential approach to treat drug addiction. The review discusses ethanol, nicotine, cannabis, amphetamines, cocaine and opioids and new prospects in the drug research field are proposed.
Collapse
Affiliation(s)
- Nuria Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
20
|
Vidal R, García-Marchena N, O'Shea E, Requena-Ocaña N, Flores-López M, Araos P, Serrano A, Suárez J, Rubio G, Rodríguez de Fonseca F, Colado MI, Pavón FJ. Plasma tryptophan and kynurenine pathway metabolites in abstinent patients with alcohol use disorder and high prevalence of psychiatric comorbidity. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109958. [PMID: 32360814 DOI: 10.1016/j.pnpbp.2020.109958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alterations in tryptophan (TRP) metabolism has been linked to drug exposure and mental disorders. However, most of studies have been performed without considering the co-occurrence of both disorders in the context of addiction. This cross-sectional study examines TRP metabolism through the serotonin (5-HT) and kynurenine (KYN) pathways in subjects with alcohol use disorders (AUD) and high prevalence of psychiatric comorbidity. METHODS For this purpose, male and female abstinent AUD patients (N = 130) and healthy controls (N = 80) were clinically evaluated for substance use and mental disorders, and blood samples were collected to determine plasma concentrations of TRP, 5-HT, KYN and kynurenic acid (KA) using high performance liquid chromatography. Clinical and biochemical variables were analyzed for potential associations considering AUD, psychiatric comorbidity and sex. RESULTS TRP concentrations were significantly associated with an interaction effect between AUD diagnosis and sex (p < .01): TRP concentrations were lower in male AUD patients but higher in female AUD patients compared with their controls. KYN and KA concentrations were significantly associated with AUD diagnosis (p < .01 and p < .05, respectively). Thus, AUD patients showed significantly higher KYN concentrations and lower KA concentrations than controls. Regarding 5-HT concentrations, there were sex differences in the alcohol group (p < .05) and female AUD patients showed lower 5-HT concentrations than male AUD patients. Moreover, there was a significant interaction effect between psychiatric comorbidity and sex on TRP concentrations in the alcohol group (p < .01). Whereas male patients with both comorbid substance use and mental disorders showed lower TRP concentrations than male non-comorbid patients, female patients with comorbid mental disorders showed higher TRP concentrations than female non-comorbid patients. CONCLUSION While alterations in the KYN pathway appear to be directly associated with a history of AUD, altered TRP concentrations are associated with the presence of comorbid psychiatric disorders. Finally, sex differences in TRP metabolism must be considered in future studies.
Collapse
Affiliation(s)
- Rebeca Vidal
- Departamento Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Nuria García-Marchena
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain; Unidad de Adicciones, Servicio de Medicina Interna, Institut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Esther O'Shea
- Departamento Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Nerea Requena-Ocaña
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - María Flores-López
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Pedro Araos
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain; Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Gabriel Rubio
- Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - María Isabel Colado
- Departamento Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | - Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain; Unidad Gestión Clínica del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Lu Y, Shao M, Wu T. Kynurenine-3-monooxygenase: A new direction for the treatment in different diseases. Food Sci Nutr 2020; 8:711-719. [PMID: 32148781 PMCID: PMC7020307 DOI: 10.1002/fsn3.1418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
Kynurenine-3-monooxygenase (KMO) is an enzyme that relies on nicotinamide adenine dinucleotide phosphate (NADP), a key site in the kynurenine pathway (KP), which has great effects on neurological diseases, cancer, and peripheral inflammation. This review mainly pay attention to the research of KMO mechanism for the treatment of different diseases, and hopes to provide assistance for clinical and drug use. KMO controlling the chief division of the KP, which directly controls downstream product quinolinic acid (QUIN) and indirectly controls kynurenic acid (KYNA), plays an important role in many diseases, especially neurological diseases.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
22
|
Almeida PG, Nani JV, Oses JP, Brietzke E, Hayashi MA. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun Health 2020; 2:100034. [PMID: 38377429 PMCID: PMC8474594 DOI: 10.1016/j.bbih.2019.100034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Mental disorders (MDs) are highly prevalent and potentially debilitating complex disorders which causes remain elusive. Looking into deeper aspects of etiology or pathophysiology underlying these diseases would be highly beneficial, as the scarce knowledge in mechanistic and molecular pathways certainly represents an important limitation. Association between MDs and inflammation/neuroinflammation has been widely discussed and accepted by many, as high levels of pro-inflammatory cytokines were reported in patients with several MDs, such as schizophrenia (SCZ), bipolar disorder (BD) and major depression disorder (MDD), among others. Correlation of pro-inflammatory markers with symptoms intensity was also reported. However, the mechanisms underlying the inflammatory dysfunctions observed in MDs are not fully understood yet. In this context, microglial dysfunction has recently emerged as a possible pivotal player, as during the neuroinflammatory response, microglia can be over-activated, and excessive production of pro-inflammatory cytokines, which can modify the kynurenine and glutamate signaling, is reported. Moreover, microglial activation also results in increased astrocyte activity and consequent glutamate release, which are both toxic to the Central Nervous System (CNS). Also, as a result of increased microglial activation in MDs, products of the kynurenine pathway were shown to be changed, influencing then the dopaminergic, serotonergic, and glutamatergic signaling pathways. Therefore, in the present review, we aim to discuss how neuroinflammation impacts on glutamate and kynurenine signaling pathways, and how they can consequently influence the monoaminergic signaling. The consequent association with MDs main symptoms is also discussed. As such, this work aims to contribute to the field by providing insights into these alternative pathways and by shedding light on potential targets that could improve the strategies for pharmacological intervention and/or treatment protocols to combat the main pharmacologically unmatched symptoms of MDs, as the SCZ.
Collapse
Key Words
- AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- APCs, antigen presenting cells
- BBB, blood-brain barrier
- BD, bipolar disorder
- CCL, C–C motif chemokine ligand
- CLRs, C-type lectin receptors
- CNS, central nervous system
- CSF, cerebrospinal fluid
- CXCL, X–C motif chemokine ligand
- Glia
- IDO, indolamine 2,3-dioxygenase
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- Inflammation
- KYNA, kynurenic acid
- MD, mental disorders
- MDD, major depression disorder
- MRI, magnetic resonance imaging
- Mental disorders
- Microglial activation
- NF, necrosis factor
- NMDA, N-methyl-D-aspartate
- NMR, nuclear magnetic resonance
- PPI, prepulse inhibition
- PRRs, pattern recognition receptors
- QUIN, quinolinic acid
- SCZ, schizophrenia
- Schizophrenia
- TGF, tumor growth factor
- TLRs, toll-like receptors
- TNF, tumor necrosis factor
- α7-nAchR, alpha 7 nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Priscila G.C. Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jean Pierre Oses
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, ON, Canada
| | - Mirian A.F. Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
23
|
Giménez-Gómez P, Pérez-Hernández M, O'Shea E, Caso JR, Martín-Hernandez D, Cervera LA, Centelles MLGL, Gutiérrez-Lopez MD, Colado MI. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. FASEB J 2019; 33:12900-12914. [PMID: 31509716 DOI: 10.1096/fj.201900491rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - David Martín-Hernandez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Alou Cervera
- Área de Microbiología, Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - María Dolores Gutiérrez-Lopez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
24
|
Cseh EK, Veres G, Szentirmai M, Nánási N, Szatmári I, Fülöp F, Vécsei L, Zádori D. HPLC method for the assessment of tryptophan metabolism utilizing separate internal standard for each detector. Anal Biochem 2019; 574:7-14. [PMID: 30885797 DOI: 10.1016/j.ab.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/02/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
Abstract
The development of a validated method, applicable for the measurement of tryptophan (TRP) and serotonin (5-HT), and that of the neuroprotective branch of the kynurenine pathway from several different biological matrices, including mouse brain, is described. Following the spectral analysis of the metabolites, they were quantified with reversed-phase high-performance liquid chromatography (HPLC), using separate internal standards (ISs) for UV (3-nitro-L-tyrosine) and fluorescent (the newly utilized 4-hydroxyquinazoline-2-carboxylic acid) detectors. With regard to validation parameters, selectivity, linearity, limit of detection, limit of quantification, precision and recovery were determined. Although the linearity ranges were different for the assessed matrices, the correlation coefficient was >0.999 in each case. Furthermore, good intra- and inter-day precision values were obtained with coefficient of variation <5%, and bias <6.5% (except the 5-HT level in brain samples), respectively. The recoveries varied between 82.5% and 116%. The currently developed methods yield opportunities for the assessment of concentration changes in the TRP metabolism from a wide range of biological matrices, therefore they may well be utilized in future clinical and preclinical studies, especially in view that so many metabolites with the application of ISs have not been detected from mouse brain with such a simple HPLC method before.
Collapse
Affiliation(s)
- Edina Katalin Cseh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Nikolett Nánási
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Stereochemistry Research Group, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.
| |
Collapse
|