1
|
Walczyńska-Dragon K, Kurek-Górecka A, Fiegler-Rudol J, Nitecka-Buchta A, Baron S. The Therapeutic Potential of Cannabidiol in the Management of Temporomandibular Disorders and Orofacial Pain. Pharmaceutics 2025; 17:328. [PMID: 40142992 PMCID: PMC11945290 DOI: 10.3390/pharmaceutics17030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Temporomandibular disorders (TMDs) are a group of conditions affecting the temporomandibular joint (TMJ) and associated muscles, leading to pain, restricted jaw movement, and impaired quality of life. Conventional treatments, including physical therapy, medications, and surgical interventions, have varying degrees of success and potential side effects. Cannabidiol (CBD), a non-psychoactive component of cannabis, has gained attention for its anti-inflammatory, analgesic, and anxiolytic properties. This study explores the potential role of CBD in TMD management. Methods: A review of existing literature was conducted (2007-2024), focusing on preclinical and clinical studies assessing the efficacy of CBD in pain modulation, inflammation reduction, and muscle relaxation. Relevant studies were sourced from PubMed, Scopus, and Web of Science databases. Additionally, potential mechanisms of action, including interactions with the endocannabinoid system, were analyzed. Results: Studies suggest that CBD exerts analgesic and anti-inflammatory effects by modulating CB1 and CB2 receptors, reducing cytokine release, and influencing neurotransmitter pathways. Preliminary clinical evidence indicates that CBD may alleviate TMD-related pain and muscle tension with minimal adverse effects. However, high-quality randomized controlled trials are limited. Conclusions: CBD demonstrates promise as a potential adjunctive treatment for TMD. Further research, including well-designed clinical trials, is necessary to establish its efficacy, optimal dosage, and long-term safety.
Collapse
Affiliation(s)
- Karolina Walczyńska-Dragon
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| | - Anna Kurek-Górecka
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Jakub Fiegler-Rudol
- Student Scientific Society at the Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland;
| | - Aleksandra Nitecka-Buchta
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| | - Stefan Baron
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| |
Collapse
|
2
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Santos ADM, Carvalho HDO, Gonçalves DES, Gomes LP, Colares NND, dos Santos AVTDLT, dos Santos AYS, Teixeira TA, Carvalho JCT. Synergistic Pain-Reducing Effects of Bixa orellana (Chronic ® and Chronic In ®) and Cannabidiol-Rich Cannabis sativa Extracts in Experimental Pain Models. Pharmaceuticals (Basel) 2024; 17:1710. [PMID: 39770552 PMCID: PMC11678258 DOI: 10.3390/ph17121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The present study aimed to evaluate the potential synergy between pharmaceutical formulations containing Bixa orellana L. (granulated-CHR OR and injectable nanodispersion-CHR IN) in conjunction with a cannabidiol (CBD)-rich extract of Cannabis sativa L. (CSE) on experimental pain models in Wistar rats. Methods: Chemical analysis was performed using gas chromatography (GC-MS). The pain tests employed were acetic acid-induced writhing (injection i.p. of 0.9% acetic acid), formalin (solution 1%), hot plate (55 ± 0.5 °C), and cold-water tail withdrawal tests. Results: Chemical analyses by chromatography confirmed that the oil from B. orellana is rich in δ-tocotrienol (72.0 ± 1.0%), while the oil from Cannabis sativa highlighted the presence of cannabidiol (CBD). The results from the experimental pain tests indicated that the combined administration of formulations containing Bixa orellana and C. sativa, such as the granulated CHR OR (400 mg/kg, orally) with CSE (40 mg/kg, orally) or the nanodispersion CHR IN (10 mg/kg, intramuscularly) with CSE (40 mg/kg, orally), demonstrated significant results (p < 0.001) in pain reduction. Although the formulations containing Bixa orellana extract showed statistical significance in the tests when used in isolation, their effects were inferior compared to the combined use with CSE or the isolated use of CSE. These findings suggest that combining formulations containing extracts of these plant species may represent a viable therapeutic option, considering the synergistic action in reducing pain under the experimental conditions employed. Conclusions: these results imply that combining the phytocomplexes present in B. orellana and C. sativa may be a promising approach for pain treatment.
Collapse
Affiliation(s)
- Alicia de Melo Santos
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Helison de Oliveira Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Danna Emanuelle Santos Gonçalves
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Luciana Paes Gomes
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Nayara Nilcia Dias Colares
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil
| | - Adrielly Yasmin Sousa dos Santos
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
| | - Thiago Afonso Teixeira
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil
- Hospital Universitário, Universidade Federal do Amapá, R. do Estádio Zerão, s/n—Universidade, Macapá 68903-419, AP, Brazil
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02—Jardim Marco Zero, Macapá—AP, Macapá 68903-419, AP, Brazil; (A.d.M.S.); (H.d.O.C.); (D.E.S.G.); (L.P.G.); (N.N.D.C.); (A.V.T.d.L.T.d.S.); (A.Y.S.d.S.); (T.A.T.)
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil
- Hospital Universitário, Universidade Federal do Amapá, R. do Estádio Zerão, s/n—Universidade, Macapá 68903-419, AP, Brazil
| |
Collapse
|
4
|
Cásedas G, de Yarza-Sancho M, López V. Cannabidiol (CBD): A Systematic Review of Clinical and Preclinical Evidence in the Treatment of Pain. Pharmaceuticals (Basel) 2024; 17:1438. [PMID: 39598350 PMCID: PMC11597428 DOI: 10.3390/ph17111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cannabis sativa L. is a plant that has been used for thousands of years for its industrial and medicinal properties. In recent years, there has been a rise in the study of this plant due to its bioactive compounds for pharmaceutical applications. Particularly, cannabidiol has demonstrated analgesic and non-psychoactive properties. The objective of this systematic review is to update and to gather the clinical and preclinical evidence on CBD in pain treatment. Methods: This study was performed following the PRISMA guidelines and using the following search terms "((cannabidiol) NOT (THC)) NOT (tetrahydrocannabinol)) AND (pain treatment)" in PubMed and Web of Science, with the following inclusion criteria: CBD pain treatment without THC in monotherapy, including both clinical and preclinical trials. From the initial sample of more than 500 articles, a total of 40 studies were selected, eliminating duplicate studies from the databases and considering the inclusion and exclusion criteria. On one hand, clinical trials were analyzed using CBD products without THC used in monotherapy, assigning a Jadad score to evaluate the quality/bias of the trials; on the other hand, the main preclinical trials were analyzed, grouping the results into in vivo and in vitro trials. Results: Based on the review conducted, there is sufficient clinical and preclinical evidence of CBD in pain treatment, so CBD could be an effective and safe treatment in reducing pain due to its analgesic and anti-inflammatory properties. These effects appear to be primarily mediated by the activation of TRPV-1, 5HT-1A, and CB1, with emerging therapeutic relevance in the management of osteoarthritis and chronic pain. Conclusions: Although clinical and preclinical research show promising results, clinical evidence is limited, and more studies should be performed in the future with isolated CBD.
Collapse
Affiliation(s)
- Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain; (G.C.); (M.d.Y.-S.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Martín de Yarza-Sancho
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain; (G.C.); (M.d.Y.-S.)
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain; (G.C.); (M.d.Y.-S.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Buffon AC, Salm DC, Heymanns AC, Donatello NN, Martins DC, Wichmann JF, Giacomello L, Horewicz VV, Martins DF, Piovezan AP. Complex Regional Pain Syndrome Type I: Evidence for the CB1 and CB2 Receptors Immunocontent and Beneficial Effect of Local Administration of Cannabidiol in Mice. Cannabis Cannabinoid Res 2024; 9:1291-1300. [PMID: 37903029 DOI: 10.1089/can.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Introduction: Complex regional pain syndrome type I (CRPS-I) is a debilitating neuropathic painful condition associated with allodynia, hyperalgesia, sudomotor and/or vasomotor dysfunctions, turning investigation of its pathophysiology and new therapeutic strategies into an essential topic. We aim to investigate the impact of ischemia/reperfusion injury on the immunocontent of CB1 and CB2 cannabinoid receptor isoforms in the paws of mice submitted to a chronic postischemia pain (CPIP) model and the effects of local administration of cannabidiol (CBD) on mechanical hyperalgesia. Methods: Female Swiss mice, 30-35 g, were submitted to the CPIP model on the right hind paw. Skin and muscle samples were removed at different periods for western blot analysis. Results: No changes in the immunocontent of CB1 and CB2 receptors in paw muscle tissues after ischemia-reperfusion were observed. CBD promoted an antihyperalgesic effect in both phases. AM281 reversed the effect of CBD, whereas ruthenium red abolished the late phase. Conclusion: Our results point to the possible beneficial effects of local administration of CBD in modulating CRPS-I in humans. As possible targets for CBD antihyperalgesia in this model, the contribution of cannabinoid receptor CB1, in addition to TRPM8 is suggested.
Collapse
Affiliation(s)
- Alexandre C Buffon
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Ana C Heymanns
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Débora C Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | | | - Leandro Giacomello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Anna P Piovezan
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| |
Collapse
|
6
|
Freitas-Santos J, Brito IRR, Santana-Melo I, Oliveira KB, de Souza FMA, Gitai DLG, Duzzioni M, Bueno NB, de Araujo LA, Shetty AK, Castro OWD. Effects of cocaine, nicotine, and marijuana exposure in Drosophila Melanogaster development: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111049. [PMID: 38844126 DOI: 10.1016/j.pnpbp.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Abuse-related drug usage is a public health issue. Drosophila melanogaster has been used as an animal model to study the biological effects of these psychoactive substances in preclinical studies. Our objective in this review is to evaluate the adverse effects produced by cocaine, nicotine, and marijuana during the development of D. melanogaster. We searched experimental studies in which D. melanogaster was exposed to these three psychoactive drugs in seven online databases up to January 2023. Two reviewers independently extracted the data. Fifty-one studies met eligibility criteria and were included in the data extraction: nicotine (n = 26), cocaine (n = 20), and marijuana (n = 5). Fifteen studies were eligible for meta-analysis. Low doses (∼0.6 mM) of nicotine increased locomotor activity in fruit flies, while high doses (≥3 mM) led to a decrease. Similarly, exposure to cocaine increased locomotor activity, resulting in decreased climbing response in D. melanogaster. Studies with exposure to marijuana did not present a profile for our meta-analysis. However, this drug has been less associated with locomotor changes, but alterations in body weight and fat content and changes in cardiac function. Our analyses have shown that fruit flies exposed to drugs of abuse during different developmental stages, such as larvae and adults, exhibit molecular, morphological, behavioral, and survival changes that are dependent on the dosage. These phenotypes resemble the adverse effects of psychoactive substances in clinical medicine.
Collapse
Affiliation(s)
- Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Isa Rafaella Rocha Brito
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Daniel Leite Góes Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Nassib Bezerra Bueno
- Faculty of nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Lucas Anhezini de Araujo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
7
|
Khaspekov LG, Illarioshkin SN. Therapeutic Application of Modulators of Endogenous Cannabinoid System in Parkinson's Disease. Int J Mol Sci 2024; 25:8520. [PMID: 39126088 PMCID: PMC11312457 DOI: 10.3390/ijms25158520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson's disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD. However, fine regulation of the ECS is quite a complex task due to the functional diversity of CBRs in the basal ganglia and other parts of the central nervous system. In this review, the effects of ECS modulators in various experimental models of PD in vivo and in vitro, as well as in patients with PD, are analyzed. Prospects for the development of new cannabinoid drugs for the treatment of motor and non-motor symptoms in PD are presented.
Collapse
Affiliation(s)
- Leonid G. Khaspekov
- Brain Science Institute, Research Center of Neurology, Volokolamskoye Road, 80, 125367 Moscow, Russia
| | | |
Collapse
|
8
|
Salgado KDCB, Nascimento RGDF, Coelho PJFN, Oliveira LAM, Nogueira KOPC. Cannabidiol protects mouse hippocampal neurons from neurotoxicity induced by amyloid β-peptide 25-35. Toxicol In Vitro 2024; 99:105880. [PMID: 38901785 DOI: 10.1016/j.tiv.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, is a significant health concern, according to the World Health Organization (WHO). The neuropathological diagnostic criteria for AD are based on the deposition of amyloid-β peptide (Aβ) and the formation of intracellular tau protein tangles. These proteins are associated with several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, lipid peroxidation, reduced neuronal viability, and cell death. In this context, our study focuses on the potential therapeutic use of cannabidiol (CBD), a non-psychotropic cannabinoid with antioxidant and anti-inflammatory effects. We aim to evaluate CBD's neuroprotective role, particularly in protecting hippocampal neurons from Aβ25-35-induced toxicity. Our findings indicate that CBD significantly improves cell viability and decreases levels of lipid peroxidation and oxidative stress. The results demonstrate that CBD possesses a robust potential to rescue cells from induced neurotoxicity through its antioxidant properties. Additionally, the neuroprotective effect of CBD may be associated with the modulation of the endocannabinoid system. These findings suggest that CBD could be a promising compound for adjuvant treatments in neurodegenerative processes triggered by amyloid-β peptide.
Collapse
Affiliation(s)
| | | | | | - Laser Antonio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil
| | - Katiane Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil.
| |
Collapse
|
9
|
Nascimento GC, Escobar-Espinal D, Bálico GG, Silva NR, Del-Bel E. Cannabidiol and pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:29-63. [PMID: 39029988 DOI: 10.1016/bs.irn.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Chronic pain presents significant personal, psychological, and socioeconomic hurdles, impacting over 30% of adults worldwide and substantially contributing to disability. Unfortunately, current pharmacotherapy often proves inadequate, leaving fewer than 70% of patients with relief. This shortfall has sparked a drive to seek alternative treatments offering superior safety and efficacy profiles. Cannabinoid-based pharmaceuticals, notably cannabidiol (CBD), hold promise in pain management, driven by their natural origins, versatility, and reduced risk of addiction. As we navigate the opioid crisis, ongoing research plunges into CBD's therapeutic potential, buoyed by animal studies revealing its pain-relieving prowess through various system tweaks. However, the efficacy of cannabis in chronic pain management remains a contentious and stigmatized issue. The International Association for the Study of Pain (IASP) presently refrains from endorsing cannabinoid use for pain relief. Nevertheless, evidence indicates their potential in alleviating cancer-related, neuropathic, arthritis, and musculoskeletal pain, necessitating further investigation. Crucially, our comprehension of CBD's role in pain management is a journey still unfolding, with animal studies illustrating its analgesic effects through interactions with the endocannabinoid, inflammatory, and nociceptive systems. As the plot thickens, it's clear: the saga of chronic pain and CBD's potential offers a compelling narrative ripe for further exploration and understanding.
Collapse
Affiliation(s)
- Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
10
|
Del-Bel E, Barros-Pereira N, Moraes RPD, Mattos BAD, Alves-Fernandes TA, Abreu LBD, Nascimento GC, Escobar-Espinal D, Pedrazzi JFC, Jacob G, Milan BA, Bálico GG, Antonieto LR. A journey through cannabidiol in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:65-93. [PMID: 39029991 DOI: 10.1016/bs.irn.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Parkinson's disease is a chronic neurodegenerative disorder with no known cure characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. Non-motor symptoms like cognitive impairment, mood disturbances, and sleep disorders often accompany the disease. Pharmacological treatments for these symptoms are limited and frequently induce significant adverse reactions, underscoring the necessity for appropriate treatment options. Cannabidiol is a phytocannabinoid devoid of the euphoric and cognitive effects of tetrahydrocannabinol. The study of cannabidiol's pharmacological effects has increased exponentially in recent years. Preclinical and preliminary clinical studies suggest that cannabidiol holds therapeutic potential for alleviating symptoms of Parkinson's disease, offering neuroprotective, anti-inflammatory, and antioxidant properties. However, knowledge of cannabidiol neuromolecular mechanisms is limited, and its pharmacology, which appears complex, has not yet been fully elucidated. By examining the evidence, this review aims to provide and synthesize scientifically proven evidence for the potential use of cannabidiol as a novel treatment option for Parkinson's disease. We focus on studies that administrated cannabidiol alone. The results of preclinical trials using cannabidiol in models of Parkinson's disease are encouraging. Nevertheless, drawing firm conclusions on the therapeutic efficacy of cannabidiol for patients is challenging. Cannabidiol doses, formulations, outcome measures, and methodologies vary considerably across studies. Though, cannabidiol holds promise as a novel therapeutic option for managing both motor and non-motor symptoms of Parkinson's disease, offering hope for improved quality of life for affected individuals.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP Brazil.
| | - Nubia Barros-Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Rafaela Ponciano de Moraes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Bianca Andretto de Mattos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Antonia Alves-Fernandes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Borges de Abreu
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabrielle Jacob
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Bruna A Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Livia Rodrigues Antonieto
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
11
|
Escobar-Espinal DM, Vivanco-Estela AN, Barros N, Dos Santos Pereira M, Guimaraes FS, Del Bel E, Nascimento GC. Cannabidiol and it fluorinate analog PECS-101 reduces hyperalgesia and allodynia in trigeminal neuralgia via TRPV1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110996. [PMID: 38508408 DOI: 10.1016/j.pnpbp.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Collapse
Affiliation(s)
- Daniela Maria Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Airam Nicole Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Núbia Barros
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Francisco Silveira Guimaraes
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
12
|
Zhu K, Chen S, Qin X, Bai W, Hao J, Xu X, Guo H, Bai H, Yang Z, Wang S, Zhao Z, Ji T, Kong D, Zhang W. Exploring the therapeutic potential of cannabidiol for sleep deprivation-induced hyperalgesia. Neuropharmacology 2024; 249:109893. [PMID: 38428482 DOI: 10.1016/j.neuropharm.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.
Collapse
Affiliation(s)
- Kangsheng Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China; Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Wanjun Bai
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xiaolei Xu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Tengfei Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
13
|
Mancini M, Calculli A, Di Martino D, Pisani A. Interplay between endocannabinoids and dopamine in the basal ganglia: implications for pain in Parkinson's disease. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:33. [PMID: 38745258 PMCID: PMC11094869 DOI: 10.1186/s44158-024-00169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Pain is a complex phenomenon, and basal ganglia circuitry integrates many aspects of pain including motor, emotional, autonomic, and cognitive responses. Perturbations in dopamine (DA) signaling are implicated in the pathogenesis of chronic pain due to its involvement in both pain perception and relief. Several lines of evidence support the role of endocannabinoids (eCBs) in the regulation of many electrical and chemical aspects of DAergic neuron function including excitability, synaptic transmission, integration, and plasticity. However, eCBs play an even more intricate and intimate relationship with DA, as indicated by the adaptive changes in the eCB system following DA depletion. Although the precise mechanisms underlying DA control on pain are not fully understood, given the high correlation of eCB and DAergic system, it is conceivable that eCBs may be part of these mechanisms.In this brief survey, we describe the reciprocal regulation of eCB-DA neurotransmission with a particular emphasis on the actions of eCBs on ionic and synaptic signaling in DAergic neurons mediated by CB receptors or independent on them. Furthermore, we analyze the eCB-DA imbalance which characterizes pain condition and report the implications of reduced DA levels for pain in Parkinson's disease. Lastly, we discuss the potential of the eCB-DA system in the development of future therapeutic strategies for the treatment of pain.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
| | - Alessandra Calculli
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Deborah Di Martino
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy.
- IRCCS Mondino Foundation, Pavia, 27100, Italy.
| |
Collapse
|
14
|
Mustafa MA, Poklis JL, Karin KN, Elmer JA, Porter JH, Parra V, Lu D, Schlosburg JE, Lichtman AH. Investigation of Cannabidiol in the Mouse Drug Discrimination Paradigm. Cannabis Cannabinoid Res 2024; 9:581-590. [PMID: 36656312 PMCID: PMC10998012 DOI: 10.1089/can.2022.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has gained considerable public and scientific attention because of its known and potential medicinal properties, as well as its commercial success in a wide range of products. Although CBD lacks cannabimimetic intoxicating side effects in humans and fails to substitute for cannabinoid type-1 receptor (CB1R) agonists in laboratory animal models of drug discrimination paradigm, anecdotal reports describe it as producing a "pleasant" subjective effect in humans. Thus, we speculated that this phytocannabinoid may elicit distinct subjective effects. Accordingly, we investigated whether mice would learn to discriminate CBD from vehicle. Additionally, we examined whether CBD may act as a CB1R allosteric and whether it would elevate brain endocannabinoid concentrations. Materials and Methods: C57BL/6J mice underwent discrimination training of either CBD or the high-efficacy CB1R agonist CP55,940 from vehicle. Additionally, we examined whether CBD or the CB1R-positive allosteric modulator ZCZ011 would alter the CP55,940 discriminative cue. Finally, we tested whether an acute CBD injection would elevate endocannabinoid levels in brain, and also quantified blood and brain levels of CBD. Results: Mice failed to discriminate high doses of CBD from vehicle following 124 training days, though the same subjects subsequently acquired CP55,940 discrimination. In a second group of mice trained to discriminate CP55,940, CBD neither elicited substitution nor altered response rates. A single injection of 100 or 200 mg/kg CBD did not affect brain levels of endogenous cannabinoids and related lipids and resulted in high drug concentrations in blood and whole brain at 0.5 h and continued to increase at 3 h. Discussion: CBD did not engender an interoceptive stimulus, did not disrupt performance in a food-motivated operant task, and lacked apparent effectiveness in altering brain endocannabinoid levels or modulating the pharmacological effects of a CB1R agonist. These findings support the assertions that CBD lacks abuse liability and its acute administration does not appear to play a functional role in modulating key components of the endocannabinoid system in whole animals.
Collapse
Affiliation(s)
- Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kimberly N. Karin
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jayden A. Elmer
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph H. Porter
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Victoria Parra
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, USA
| | - Dai Lu
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, USA
| | - Joel E. Schlosburg
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, and Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Craft RM, Gogulski HY, Freels TG, Glodosky NC, McLaughlin RJ. Vaporized cannabis extract-induced antinociception in male vs female rats with persistent inflammatory pain. Pain 2023; 164:2036-2047. [PMID: 37027147 PMCID: PMC11323050 DOI: 10.1097/j.pain.0000000000002902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
ABSTRACT Although preclinical studies generally report robust antinociceptive effects of cannabinoids in rodent persistent pain models, randomized controlled trials in chronic pain patients report limited pain relief from cannabis/cannabinoids. Differences between animal and human studies that may contribute to these discrepant findings include route of cannabis/cannabinoid administration, type of cannabis/cannabinoid, and how pain is measured. To address these factors, rats with complete Freund adjuvant (CFA)-induced hind paw inflammation were exposed acutely or repeatedly to vaporized cannabis extract that was either tetrahydrocannabinol (THC) or cannabidiol (CBD)dominant. One measure of evoked pain (mechanical threshold), 2 functional measures of pain (hind paw weight-bearing, and locomotor activity), and hind paw edema were assessed for up to 2 hours after vapor exposure. Acute exposure to vaporized THC-dominant extract (200 or 400 mg/mL) decreased mechanical allodynia and hind paw edema and increased hind paw weight-bearing and locomotor activity, with no sex differences. After repeated exposure to vaporized THC-dominant extract (twice daily for 3 days), only the antiallodynic effect was significant. Acute exposure to vaporized CBD-dominant cannabis extract (200 mg/mL) did not produce any effects in either sex; repeated exposure to this extract (100, 200, or 400 mg/mL) decreased mechanical allodynia in male rats only. Sex differences (or lack thereof) in the effects of vaporized cannabis extracts were not explained by sex differences in plasma levels of THC, CBD, or their major metabolites. These results suggest that although vaporized THC-dominant extract is likely to be modestly effective against inflammatory pain in both male and female rats, tolerance may develop, and the CBD-dominant extract may be effective only in male rats.
Collapse
Affiliation(s)
| | | | - Timothy G Freels
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | | | - Ryan J McLaughlin
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| |
Collapse
|
16
|
Nascimento GC, Jacob G, Milan BA, Leal-Luiz G, Malzone BL, Vivanco-Estela AN, Escobar-Espinal D, Dias FJ, Del-Bel E. Brainstem Modulates Parkinsonism-Induced Orofacial Sensorimotor Dysfunctions. Int J Mol Sci 2023; 24:12270. [PMID: 37569642 PMCID: PMC10418831 DOI: 10.3390/ijms241512270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's Disease (PD), treated with the dopamine precursor l-3,4-dihydroxyphenylalanine (L-DOPA), displays motor and non-motor orofacial manifestations. We investigated the pathophysiologic mechanisms of the lateral pterygoid muscles (LPMs) and the trigeminal system related to PD-induced orofacial manifestations. A PD rat model was produced by unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. Abnormal involuntary movements (dyskinesia) and nociceptive responses were determined. We analyzed the immunodetection of Fos-B and microglia/astrocytes in trigeminal and facial nuclei and morphological markers in the LPMs. Hyperalgesia response was increased in hemiparkinsonian and dyskinetic rats. Hemiparkinsonism increased slow skeletal myosin fibers in the LPMs, while in the dyskinetic ones, these fibers decreased in the contralateral side of the lesion. Bilateral increased glycolytic metabolism and an inflammatory muscle profile were detected in dyskinetic rats. There was increased Fos-B expression in the spinal nucleus of lesioned rats and in the motor and facial nucleus in L-DOPA-induced dyskinetic rats in the contralateral side of the lesion. Glial cells were increased in the facial nucleus on the contralateral side of the lesion. Overall, spinal trigeminal nucleus activation may be associated with orofacial sensorial impairment in Parkinsonian rats, while a fatigue profile on LPMs is suggested in L-DOPA-induced dyskinesia when the motor and facial nucleus are activated.
Collapse
Affiliation(s)
- Glauce Crivelaro Nascimento
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
- Department of Integral Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gabrielle Jacob
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Bruna Araujo Milan
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Gabrielli Leal-Luiz
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Bruno Lima Malzone
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Airam Nicole Vivanco-Estela
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Daniela Escobar-Espinal
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
| | - Fernando José Dias
- Department of Integral Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Elaine Del-Bel
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (G.C.N.); (G.J.); (B.A.M.); (G.L.-L.); (B.L.M.); (A.N.V.-E.); (D.E.-E.)
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| |
Collapse
|
17
|
Castillo-Arellano J, Canseco-Alba A, Cutler SJ, León F. The Polypharmacological Effects of Cannabidiol. Molecules 2023; 28:3271. [PMID: 37050032 PMCID: PMC10096752 DOI: 10.3390/molecules28073271] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.
Collapse
Affiliation(s)
- Jorge Castillo-Arellano
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery of Mexico (INNN), Mexico City 14269, Mexico
| | - Stephen J. Cutler
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
18
|
Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:236-244. [PMID: 36973157 DOI: 10.1016/j.joim.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Cannabidiol (CBD), a nonpsychotropic phytocannabinoid that was once largely disregarded, is currently the subject of significant medicinal study. CBD is found in Cannabis sativa, and has a myriad of neuropharmacological impacts on the central nervous system, including the capacity to reduce neuroinflammation, protein misfolding and oxidative stress. On the other hand, it is well established that CBD generates its biological effects without exerting a large amount of intrinsic activity upon cannabinoid receptors. Because of this, CBD does not produce undesirable psychotropic effects that are typical of marijuana derivatives. Nonetheless, CBD displays the exceptional potential to become a supplementary medicine in various neurological diseases. Currently, many clinical trials are being conducted to investigate this possibility. This review focuses on the therapeutic effects of CBD in managing neurological disorders like Alzheimer's disease, Parkinson's disease and epilepsy. Overall, this review aims to build a stronger understanding of CBD and provide guidance for future fundamental scientific and clinical investigations, opening a new therapeutic window for neuroprotection. Please cite this article as: Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of Cannabidiol: Molecular mechanisms and clinical implications. J Integr Med. 2023.
Collapse
Affiliation(s)
- Srushti M Tambe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai 400019, India
| | - Suraj Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, India
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai 400019, India
| | - Mozaniel Oliveira
- Adolpho Ducke Laboratory, Emilio Goeldi Museum, Para 66077-830, Brazil.
| |
Collapse
|
19
|
Abrishamdar M, Farbood Y, Sarkaki A, Rashno M, Badavi M. Evaluation of betulinic acid effects on pain, memory, anxiety, catalepsy, and oxidative stress in animal model of Parkinson's disease. Metab Brain Dis 2023; 38:467-482. [PMID: 35708868 DOI: 10.1007/s11011-022-00962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
21
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
22
|
Urbi B, Lee Y, Hughes I, Thorning S, Broadley SA, Sabet A, Heshmat S. Effects of cannabinoids in Parkinson's disease animal models: a systematic review and meta-analysis. BMJ OPEN SCIENCE 2022; 6:e100302. [PMID: 36618606 PMCID: PMC9812814 DOI: 10.1136/bmjos-2022-100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Cannabis has been proposed as a potential treatment for Parkinson's disease (PD) due to its neuroprotective benefits. However, there has been no rigorous review of preclinical studies to evaluate any potential treatment effect. This systematic review was undertaken to provide evidence in support or against a treatment effect of cannabinoids in animal models of PD. Methods Databases were searched for any controlled comparative studies that assessed the effects of any cannabinoid, cannabinoid-based treatment or endocannabinoid transport blocker on behavioural symptoms in PD animal models. Results A total of 41 studies were identified to have met the criteria for this review. 14 of these studies were included in meta-analyses of rotarod, pole and open field tests. Meta-analysis of rotarod tests showed a weighted mean difference of 31.63 s for cannabinoid-treated group compared with control. Meta-analysis of pole tests also showed a positive treatment effect, evidenced by a weighted mean difference of -1.51 s for cannabinoid treat group compared with control. However, meta-analysis of open field test demonstrated a standardised mean difference of only 0.36 indicating no benefit. Conclusion This review demonstrates cannabinoid treatment effects in alleviating motor symptoms of PD animal models and supports the conduct of clinical trials of cannabis in PD population. However, there is no guarantee of successful clinical translation of this outcome because of the many variables that might have affected the results, such as the prevalent unclear and high risk of bias, the different study methods, PD animal models and cannabinoids used.
Collapse
Affiliation(s)
- Berzenn Urbi
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia,Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia
| | - Yunjoo Lee
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Sarah Thorning
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Simon A Broadley
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia,Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Arman Sabet
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia,Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Saman Heshmat
- Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| |
Collapse
|
23
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Pike CK, Kim M, Schnitzer K, Mercaldo N, Edwards R, Napadow V, Zhang Y, Morrissey EJ, Alshelh Z, Evins AE, Loggia ML, Gilman JM. Study protocol for a phase II, double-blind, randomised controlled trial of cannabidiol (CBD) compared with placebo for reduction of brain neuroinflammation in adults with chronic low back pain. BMJ Open 2022; 12:e063613. [PMID: 36123113 PMCID: PMC9486315 DOI: 10.1136/bmjopen-2022-063613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Chronic pain is a debilitating medical problem that is difficult to treat. Neuroinflammatory pathways have emerged as a potential therapeutic target, as preclinical studies have demonstrated that glial cells and neuroglial interactions play a role in the establishment and maintenance of pain. Recently, we used positron emission tomography (PET) to demonstrate increased levels of 18 kDa translocator protein (TSPO) binding, a marker of glial activation, in patients with chronic low back pain (cLBP). Cannabidiol (CBD) is a glial inhibitor in animal models, but studies have not assessed whether CBD reduces neuroinflammation in humans. The principal aim of this trial is to evaluate whether CBD, compared with placebo, affects neuroinflammation, as measured by TSPO levels. METHODS AND ANALYSIS This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Eighty adults (aged 18-75) with cLBP for >6 months will be randomised to either an FDA-approved CBD medication (Epidiolex) or matching placebo for 4 weeks using a dose-escalation design. All participants will undergo integrated PET/MRI at baseline and after 4 weeks of treatment to evaluate neuroinflammation using [11C]PBR28, a second-generation radioligand for TSPO. Our primary hypothesis is that participants randomised to CBD will demonstrate larger reductions in thalamic [11C]PBR28 signal compared with those receiving placebo. We will also assess the effect of CBD on (1) [11C]PBR28 signal from limbic regions, which our prior work has linked to depressive symptoms and (2) striatal activation in response to a reward task. Additionally, we will evaluate self-report measures of cLBP intensity and bothersomeness, depression and quality of life at baseline and 4 weeks. ETHICS AND DISSEMINATION This protocol is approved by the Massachusetts General Brigham Human Research Committee (protocol number: 2021P002617) and FDA (IND number: 143861) and registered with ClinicalTrials.gov. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT05066308; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Chelsea K Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Kristina Schnitzer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Edwards
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vitaly Napadow
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Janas Morrissey
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Zeynab Alshelh
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - A Eden Evins
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Validating a Portable Device for Blinking Analyses through Laboratory Neurophysiological Techniques. Brain Sci 2022; 12:brainsci12091228. [PMID: 36138962 PMCID: PMC9496691 DOI: 10.3390/brainsci12091228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Blinking analysis contributes to the understanding of physiological mechanisms in healthy subjects as well as the pathophysiological mechanisms of neurological diseases. To date, blinking is assessed by various neurophysiological techniques, including electromyographic (EMG) recordings and optoelectronic motion analysis. We recorded eye-blink kinematics with a new portable device, the EyeStat (Generation 3, blinktbi, Inc., Charleston, SC, USA), and compared the measurements with data obtained using traditional laboratory-based techniques. Sixteen healthy adults underwent voluntary, spontaneous, and reflex blinking recordings using the EyeStat device and the SMART motion analysis system (BTS, Milan, Italy). During the blinking recordings, the EMG activity was recorded from the orbicularis oculi muscles using surface electrodes. The blinking data were analyzed through dedicated software and evaluated with repeated-measure analyses of variance. The Pearson’s product-moment correlation coefficient served to assess possible associations between the EyeStat device, the SMART motion system, and the EMG data. We found that the EMG data collected during the EyeStat and SMART system recordings did not differ. The blinking data recorded with the EyeStat showed a linear relationship with the results obtained with the SMART system (r ranging from 0.85 to 0.57; p ranging from <0.001 to 0.02). These results demonstrate a high accuracy and reliability of a blinking analysis through this portable device, compared with standard techniques. EyeStat may make it easier to record blinking in research activities and in daily clinical practice, thus allowing large-scale studies in healthy subjects and patients with neurological diseases in an outpatient clinic setting.
Collapse
|
26
|
Kluger BM, Huang AP, Miyasaki JM. Cannabinoids in movement disorders. Parkinsonism Relat Disord 2022; 102:124-130. [PMID: 36038457 DOI: 10.1016/j.parkreldis.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION On the basis of both scientific progress and popular lore, there is growing optimism in the therapeutic potential of cannabis (marijuana) and cannabinoid-based chemicals for movement disorders. There is also notable skepticism regarding the scientific basis for this therapeutic optimism and significant concerns regarding the safety and regulation of cannabinoid products, particularly those available without prescription. METHODS In recognition of the high interest and controversial nature of this subject, the meeting committee of the International Parkinson and Movement Disorders Society arranged for a talk on cannabis at the 2019 annual meeting's Controversies in Movement Disorders plenary session. This paper summarizes the highlights of this session. RESULTS The endocannabinoid system is strongly tied to motor function and dysfunction, with basic research suggesting several promising therapeutic targets related to cannabinoids for movement disorders. Clinical research on cannabinoids for motor and nonmotor symptoms in Parkinson's disease, Huntington's disease, Tourette's syndrome, dystonia, and other movement disorders to date are promising at best and inconclusive or negative at worst. Research in other populations suggest efficacy for common symptoms like pain. While social campaigns against recreational cannabinoid use focus on cognitive changes in adolescents, the long-term sequelae of regulated medical use in older adults with movement disorders is unknown. The overall risks of cannabinoids may be similar to other commonly used medications and include falls and apathy. CONCLUSION Further research is greatly needed to better understand the actual clinical benefits and long-term side effects of medical cannabis products for movement disorders indications and populations.
Collapse
Affiliation(s)
- Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Huang
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janis M Miyasaki
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Cannabidiol alleviates the damage to dopaminergic neurons in MPTP-induced Parkinson's disease mice via regulating neuronal apoptosis and neuroinflammation. Neuroscience 2022; 498:64-72. [DOI: 10.1016/j.neuroscience.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022]
|
28
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Cannabidiol has therapeutic potential for myofascial pain in female and male parkinsonian rats. Neuropharmacology 2021; 196:108700. [PMID: 34246682 DOI: 10.1016/j.neuropharm.2021.108700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The musculoskeletal orofacial pain is a complex symptom of Parkinson's disease (PD) resulting in stomatognathic system dysfunctions aggravated by the disease rigidity and postural instability. We tested the effect of cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, in PD-related myofascial pain. Wistar adult female and male rats orofacial allodynic and hyperalgesic responses were tested by Von Frey and formalin tests, before and 21 days past 6-OHDA lesion. Algesic response was tested after masseter muscle injection of CBD (10, 50, 100 μg in 10 μL) or vehicle. Males compared to females in all estrous cycles' phases presented reduced orofacial allodynia and hyperalgesia. According to the estrous cycle's phases, females presented distinct orofacial nociceptive responses, being the estrus phase well-chosen for nociceptive analysis after 6-OHDA lesion (phase with fewer hormone alterations and adequate length). Dopaminergic neuron lesion decreased mechanical and inflammatory nociceptive thresholds in females and males in a higher proportion in females. CBD local treatment reduced the increased orofacial allodynia and hyperalgesia, in males and females. The female rats were more sensitive to CBD effect considering allodynia, responding to the lowest dose. Although females and males respond to the effect of three doses of CBD in the formalin test, males showed a superior reduction in the hyperalgesic response. These results indicate that hemiparkinsonian female in the estrus phase and male answer differently to the different doses of CBD therapy and nociceptive tests. CBD therapy is effective for parkinsonism-induced orofacial nociception.
Collapse
|
30
|
Marsh DT, Smid SD. Cannabis Phytochemicals: A Review of Phytocannabinoid Chemistry and Bioactivity as Neuroprotective Agents. Aust J Chem 2021. [DOI: 10.1071/ch20183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the advent of medical cannabis usage globally, there has been a renewed interest in exploring the chemical diversity of this unique plant. Cannabis produces hundreds of unique phytocannabinoids, which not only have diverse chemical structures but also a range of cellular and molecular actions, interesting pharmacological properties, and biological actions. In addition, it produces other flavonoids, stilbenoids, and terpenes that have been variably described as conferring additional or so-called entourage effects to whole-plant extracts when used in therapeutic settings. This review explores this phytochemical diversity in relation to specific bioactivity ascribed to phytocannabinoids as neuroprotective agents. It outlines emergent evidence for the potential for selected phytocannabinoids and other cannabis phytochemicals to mitigate factors such as inflammation and oxidative stress as drivers of neurotoxicity, in addition to focusing on specific interactions with pathological misfolding proteins, such as amyloid β, associated with major forms of neurodegenerative diseases such as Alzheimer’s disease.
Collapse
|
31
|
Franco GDRR, Smid S, Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr Neuropharmacol 2021; 19:449-464. [PMID: 32691712 PMCID: PMC8206465 DOI: 10.2174/1570159x18666200720172624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022] Open
Abstract
In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer's (AD), Parkinson's (PD) and Huntington's disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present state of the art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.
Collapse
Affiliation(s)
| | | | - Cláudio Viegas
- Address correspondence to this author at the PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil; Tel/Fax: +55 35 3701-1880; E-mail:
| |
Collapse
|
32
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
33
|
Leehey MA, Liu Y, Hart F, Epstein C, Cook M, Sillau S, Klawitter J, Newman H, Sempio C, Forman L, Seeberger L, Klepitskaya O, Baud Z, Bainbridge J. Safety and Tolerability of Cannabidiol in Parkinson Disease: An Open Label, Dose-Escalation Study. Cannabis Cannabinoid Res 2020; 5:326-336. [PMID: 33381646 PMCID: PMC7759259 DOI: 10.1089/can.2019.0068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabis is increasingly used in Parkinson disease (PD), despite little information regarding benefits and risks. Objectives: To investigate the safety and tolerability of a range of doses of cannabidiol (CBD), a nonintoxicating component of cannabis, and it's effect on common parkinsonian symptoms. Methods: In this open-label study Coloradans with PD, substantial rest tremor, not using cannabis received plant-derived highly purified CBD (Epidiolex®; 100 mg/mL). CBD was titrated from 5 to 20-25 mg/kg/day and maintained for 10-15 days. Results: Fifteen participants enrolled, two were screen failures. All 13 participants (10 male), mean (SD) age 68.15 (6.05), with 6.1 (4.0) years of PD, reported adverse events, including diarrhea (85%), somnolence (69%), fatigue (62%), weight gain (31%), dizziness (23%), abdominal pain (23%), and headache, weight loss, nausea, anorexia, and increased appetite (each 5%). Adverse events were mostly mild; none serious. Elevated liver enzymes, mostly a cholestatic pattern, occurred in five (38.5%) participants on 20-25 mg/kg/day, only one symptomatic. Three (23%) dropped out due to intolerance. Ten (eight male) that completed the study had improvement in total and motor Movement Disorder Society Unified Parkinson Disease Rating Scale scores of 7.70 (9.39, mean decrease 17.8%, p=0.012) and 6.10 (6.64, mean decrease 24.7%, p=0.004), respectively. Nighttime sleep and emotional/behavioral dyscontrol scores also improved significantly. Conclusions: CBD, in the form of Epidiolex, may be efficacious in PD, but the relatively high dose used in this study was associated with liver enzyme elevations. Randomized controlled trials are needed to investigate various forms of cannabis in PD.
Collapse
Affiliation(s)
- Maureen A. Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Felecia Hart
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christen Epstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mary Cook
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heike Newman
- Regulatory Compliance Office, University of Colorado, Aurora, Colorado, USA
| | - Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa Forman
- Department of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren Seeberger
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Zachrey Baud
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jacquelyn Bainbridge
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
34
|
Mlost J, Bryk M, Starowicz K. Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Int J Mol Sci 2020; 21:ijms21228870. [PMID: 33238607 PMCID: PMC7700528 DOI: 10.3390/ijms21228870] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/03/2023] Open
Abstract
Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.
Collapse
|
35
|
Paparella G, Di Stefano G, Fasolino A, Di Pietro G, Colella D, Truini A, Cruccu G, Berardelli A, Bologna M. Painful stimulation increases spontaneous blink rate in healthy subjects. Sci Rep 2020; 10:20014. [PMID: 33203984 PMCID: PMC7672065 DOI: 10.1038/s41598-020-76804-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Spontaneous blink rate is considered a biomarker of central dopaminergic activity. Recent evidence suggests that the central dopaminergic system plays a role in nociception. In the present study, we aimed to investigate whether pain modulates spontaneous blink rate in healthy subjects. We enrolled 15 participants. Spontaneous blink rate was quantified with an optoelectronic system before and after: (1) a painful laser stimulation, and (2) an acoustic startling stimulation. In control experiments, we investigated whether laser stimulation effects depended on stimulation intensity and whether laser stimulation induced any changes in the blink reflex recovery cycle. Finally, we investigated any relationship between spontaneous blink rate modification and pain modulation effect during the cold pressor test. Laser, but not acoustic, stimulation increased spontaneous blink rate. This effect was independent of stimulation intensity and negatively correlated with pain perception. No changes in trigeminal-facial reflex circuit excitability were elicited by laser stimulation. The cold pressor test also induced an increased spontaneous blink rate. Our study provides evidence on the role of dopamine in nociception and suggests that dopaminergic activity may be involved in pain modulation. These findings lay the groundwork for further investigations in patients with pathological conditions characterized by dopaminergic deficit and pain.
Collapse
Affiliation(s)
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Alessandra Fasolino
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Giuseppe Di Pietro
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Andrea Truini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| |
Collapse
|
36
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
37
|
Argueta DA, Ventura CM, Kiven S, Sagi V, Gupta K. A Balanced Approach for Cannabidiol Use in Chronic Pain. Front Pharmacol 2020; 11:561. [PMID: 32425793 PMCID: PMC7204604 DOI: 10.3389/fphar.2020.00561] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive constituent of Cannabis sativa L., has gained traction as a potential treatment for intractable chronic pain in many conditions. Clinical evidence suggests that CBD provides therapeutic benefit in certain forms of epilepsy and imparts analgesia in certain conditions, and improves quality of life. CBD continues to be Schedule I or V on the list of controlled substances of the Drug Enforcement Agency of the United States. However, preparations labeled CBD are available publicly in stores and on the streets. However, use of CBD does not always resolve pain. CBD purchased freely entails the risk of adulteration by potentially hazardous chemicals. As well, CBD use by pregnant women is rising and poses a major health-hazard for future generations. In this mini-review, we present balanced and unbiased pre-clinical and clinical findings for the beneficial effects of CBD treatment on chronic pain and its deleterious effects on prenatal development.
Collapse
Affiliation(s)
- Donovan A Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher M Ventura
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Varun Sagi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States.,Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States.,Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA, United States
| |
Collapse
|
38
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|