1
|
Facal F, Costas J. Shared polygenic susceptibility to treatment response in severe affective and psychotic disorders: Evidence from GWAS data sets. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111183. [PMID: 39490915 DOI: 10.1016/j.pnpbp.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
While schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) genetically correlate, the pleiotropy underlying response/resistance to drugs used in these disorders has not been investigated. The aim of this study is to analyze the genetic relationship between treatment-resistant schizophrenia (TRS), response to lithium in BD (respLi) and response to antidepressants in MDD (respAD) using the conditional/conjunctional false discovery rate (cond/conjFDR) methodology, based on the hypothesis that shared mechanisms related to a common psychopathology factor underlie these phenotypes. A cross-trait polygenic enrichment for TRS conditioned on associations with respLi was observed. The conjFDR analysis identified rs11631065 (chr15:66654304) as a shared locus between them. One of the genes at this locus is MAP2K1, previously reported as associated with TRS after conditioning on body mass index genome-wide association study (GWAS). The set of genes at TRS-respLi conjFDR < 0.95 showed enrichment in response to psychotropic drugs in severe mental disorders from GWAS Catalog as well as in neurodevelopment and synaptic pathways. In conclusion, our study constitutes the first evidence of a transdiagnostic genetic signal associated with response to different pharmacological treatments in psychotic and affective disorders. It is necessary to confirm these results when larger GWAS of these phenotypes are available.
Collapse
Affiliation(s)
- Fernando Facal
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
2
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
3
|
Babenko VA, Yakupova EI, Pevzner IB, Bocharnikov AD, Zorova LD, Fedulova KS, Grebenchikov OA, Kuzovlev AN, Grechko AV, Silachev DN, Rahimi-Moghaddam P, Plotnikov EY. Effects of Lithium Ions on tPA-Induced Hemorrhagic Transformation under Stroke. Biomedicines 2024; 12:1325. [PMID: 38927532 PMCID: PMC11201972 DOI: 10.3390/biomedicines12061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Thrombolytic therapy with the tissue plasminogen activator (tPA) is a therapeutic option for acute ischemic stroke. However, this approach is subject to several limitations, particularly the increased risk of hemorrhagic transformation (HT). Lithium salts show neuroprotective effects in stroke, but their effects on HT mechanisms are still unknown. In our study, we use the models of photothrombosis (PT)-induced brain ischemia and oxygen-glucose deprivation (OGD) to investigate the effect of Li+ on tPA-induced changes in brain and endothelial cell cultures. We found that tPA did not affect lesion volume or exacerbate neurological deficits but disrupted the blood-brain barrier. We demonstrate that poststroke treatment with Li+ improves neurological status and increases blood-brain barrier integrity after thrombolytic therapy. Under conditions of OGD, tPA treatment increased MMP-2/9 levels in endothelial cells, and preincubation with LiCl abolished this MMP activation. Moreover, we observed the effect of Li+ on glycolysis in tPA-treated endothelial cells, which we hypothesized to have an effect on MMP expression.
Collapse
Affiliation(s)
- Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexey D. Bocharnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- Advanced Engineering School “Intelligent Theranostics Systems”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Kseniya S. Fedulova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Oleg A. Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
4
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
5
|
Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, Lutz AK. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2024; 29:704-717. [PMID: 38123724 PMCID: PMC11153165 DOI: 10.1038/s41380-023-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and β-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.
Collapse
Affiliation(s)
- Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
6
|
Li J, Shen S, Shen H. Heat-shock protein A12A attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell dysfunction via PGC-1α/SIRT3 pathway. Drug Dev Res 2024; 85:e22130. [PMID: 37942840 DOI: 10.1002/ddr.22130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Ischemic stroke is a life-threatening brain disease with the leading cause of disability and mortality worldwide. Heat-shock protein A12A (HSPA12A) is recognized as a neuroprotective target for treating ischemic stroke; however, its regulatory mechanism has been not fully elucidated yet. Human brain microvascular endothelial cells (hBMECs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemic stroke. Gain- and loss-of-function experiments were conducted to explore the regulation of HSAPA12 and PGC-1α. Cell viability, apoptosis, and permeability were assessed by CCK-8, TUNEL, and transendothelial electrical resistance (TEER) assays, respectively. The expression of HSPA12A and corresponding proteins was measured by western blot. Cell immunofluorescence was adopted to evaluate ZO-1 expression. THP-1 cells were applied to adhere hBMECs in vitro to simulate leukocyte adhesion in the brain. HSPA12A was downregulated in OGD/R-treated hBMECs. HSPA12A overexpression significantly suppressed OGD/R-induced cell viability loss and apoptosis in hBMECs. Meanwhile, HSPA12A overexpression attenuated blood-brain barrier (BBB) integrity in OGD/R-induced hBMECs, evidenced by the restored TEER value and the upregulated ZO-1, occludin, and claudin-5. HSPA12A also restricted OGD/R-induced attachment of THP-1 cells to hBMECs, accompanied with downregulating ICAM-1 and VCAM-1. Additionally, OGD/R-caused downregulation of PGC-1α/SIRT3 in hBMECs was partly restored by HSPA12A overexpression. Furthermore, the above effects of HSPA12A on OGD/R-induced hBMECs injury were partly reversed by PGC-1α knockdown. HSPA12A plays a protective role against OGD/R-induced hBMECs injury by upregulating PGC-1α, providing a potential neuroprotective role of HSPA12A in ischemic stroke.
Collapse
Affiliation(s)
- Jun Li
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shouyin Shen
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Haiyan Shen
- General Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
8
|
Rana AK, Kumar R, Shukla DN, Singh D. Lithium co-administration with rutin improves post-stroke neurological outcomes via suppressing Gsk-3β activity in a rat model. Free Radic Biol Med 2023; 207:107-119. [PMID: 37414348 DOI: 10.1016/j.freeradbiomed.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of adult disability worldwide. Reperfusion is the only therapeutic option with a lot of side effects. In the current study, we investigated the efficacy of rutin and lithium co-treatment in improving post-stroke neurological outcomes in a transient global cerebral ischemia-reperfusion injury rat model. Middle-aged male rats were subjected to transient global cerebral ischemia-reperfusion. NORT and Y-maze were used to assess the cognitive processes. Lipid peroxidation, protein carbonylation, and nitric oxide assays were performed to study oxidative stress. The excitotoxicity index was calculated by HPLC. Real time-PCR and western blotting were performed to study gene and protein expressions. The co-administration of rutin and lithium improved the overall survival, recognition memory, spatial working memory, and neurological score following cerebral ischemia-reperfusion in rats. Further, a marked decrease in malonaldehyde, protein carbonyls, and nitric oxide levels was observed following combined treatment. The mRNA expression of antioxidant (Hmox1 and Nqo1) and pro-inflammatory (Il2, Il6, and Il1β) markers were significantly attenuated in the rutin and lithium co-administrated group. The treatment inhibited the Gsk-3β and maintained a normal pool of the downstream β-catenin and Nrf2 proteins. The results revealed that co-administration of rutin and lithium had a neuroprotective potential, suggesting it to be a viable treatment to overcome post-stroke deaths and neurological complications.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durgesh Nandan Shukla
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Ponzer K, Millischer V, Schalling M, Gissler M, Lavebratt C, Backlund L. Lithium and risk of cardiovascular disease, dementia and venous thromboembolism. Bipolar Disord 2023; 25:391-401. [PMID: 36651280 DOI: 10.1111/bdi.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine if long-term lithium treatment is associated with protective effects or increased risk of vascular, neurological, and renal disorders. METHODS Using nationwide registers, we included all citizens of Finland with dispensations of lithium for three or more consecutive years between 1995 and 2016. We identified 9698 cases and matched 96,507 controls without lithium treatment. Studied outcomes were vascular, neurological, renal disorders, and suicide. Analyses were performed applying Cox proportional hazards modeling in full cohort and in further subcohort analysis of individuals with a comparable diagnosis of mood or psychotic disorder. RESULTS Lithium users had a significantly higher overall disease burden compared to matched population controls, including a higher risk of cardiovascular and cerebrovascular disorders and dementia. However, compared to individuals with a diagnosis of mood or psychotic disorders without lithium treatment, we observed a lower risk of cardiovascular and cerebrovascular disorders (HR = 0.80, 99% CI = 0.73-0.89), and no significant difference for dementia (HR = 1.15, 99% CI = 0.99-1.33), in lithium users. Pulmonary embolism was more common in the lithium-treated cases both in comparison to the general population (HR = 2.86, 99% CI = 2.42-3.37) and in comparison to the psychiatric subcohort (HR = 1.68, 99% CI = 1.31-2.17). Similarly, the risks of Parkinson's disease and kidney disease were higher in both comparisons. CONCLUSIONS We conclude that individuals prescribed lithium have a lower risk of cardiovascular and cerebrovascular disease, but no marked effect on dementia, compared to individuals with a mood or psychotic disorder not prescribed lithium. Venous thromboembolism, Parkinson's disease, and kidney disease were significantly more prevalent in individuals prescribed lithium.
Collapse
Affiliation(s)
- Katja Ponzer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
10
|
Babenko VA, Fedulova KS, Silachev DN, Rahimi-Moghaddam P, Kalyuzhnaya YN, Demyanenko SV, Plotnikov EY. The Role of Matrix Metalloproteinases in Hemorrhagic Transformation in the Treatment of Stroke with Tissue Plasminogen Activator. J Pers Med 2023; 13:1175. [PMID: 37511788 PMCID: PMC10381732 DOI: 10.3390/jpm13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia S Fedulova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Yulia N Kalyuzhnaya
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Shaikh SA, Muthuraman A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals (Basel) 2023; 16:828. [PMID: 37375775 DOI: 10.3390/ph16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats. Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.
Collapse
Affiliation(s)
- Sohrab A Shaikh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
12
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:739. [PMID: 37242521 PMCID: PMC10221447 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia;
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
13
|
Effectiveness of coenzyme Q10 on learning and memory and synaptic plasticity impairment in an aged Aβ-induced rat model of Alzheimer's disease: a behavioral, biochemical, and electrophysiological study. Psychopharmacology (Berl) 2023; 240:951-967. [PMID: 36811650 DOI: 10.1007/s00213-023-06338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
RATIONALE Aging is the major risk factor for Alzheimer's disease (AD), and cognitive and memory impairments are common among the elderly. Interestingly, coenzyme Q10 (Q10) levels decline in the brain of aging animals. Q10 is a substantial antioxidant substance, which has an important role in the mitochondria. OBJECTIVE We assessed the possible effects of Q10 on learning and memory and synaptic plasticity in aged β-amyloid (Aβ)-induced AD rats. METHODS In this study, 40 Wistar rats (24-36 months old; 360-450 g) were randomly assigned to four groups (n = 10 rats/group)-group I: control, group II: Aβ, group III: Q10; 50 mg/kg, and group IV: Q10+Aβ. Q10 was administered orally by gavage daily for 4 weeks before the Aβ injection. The cognitive function and learning and memory of the rats were measured by the novel object recognition (NOR), Morris water maze (MWM), and passive avoidance learning (PAL) tests. Finally, malondialdehyde (MDA), total antioxidant capacity (TAC), total thiol group (TTG), and total oxidant status (TOS) were measured. RESULTS Q10 improved the Aβ-related decrease in the discrimination index in the NOR test, spatial learning and memory in the MWM test, passive avoidance learning and memory in the PAL test, and long-term potentiation (LTP) impairment in the hippocampal PP-DG pathway in aged rats. In addition, Aβ injection significantly increased serum MDA and TOS levels. Q10, however, significantly reversed these parameters and also increased TAC and TTG levels in the Aβ+Q10 group. CONCLUSIONS Our experimental findings suggest that Q10 supplementation can suppress the progression of neurodegeneration that otherwise impairs learning and memory and reduces synaptic plasticity in our experimental animals. Therefore, similar supplemental Q10 treatment given to humans with AD could possibly provide them a better quality of life.
Collapse
|
14
|
Zhang YP, Yang Q, Li YA, Yu MH, He GW, Zhu YX, Liu ZG, Liu XC. Inhibition of the Activating Transcription Factor 6 Branch of Endoplasmic Reticulum Stress Ameliorates Brain Injury after Deep Hypothermic Circulatory Arrest. J Clin Med 2023; 12:814. [PMID: 36769462 PMCID: PMC9917384 DOI: 10.3390/jcm12030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen-glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
Collapse
Affiliation(s)
- You-Peng Zhang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Qin Yang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Yi-Ai Li
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Ming-Huan Yu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Guo-Wei He
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yu-Xiang Zhu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| |
Collapse
|
15
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
16
|
Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway. Biosci Rep 2022; 42:232083. [PMID: 36367210 PMCID: PMC9744719 DOI: 10.1042/bsr20221443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. METHODS An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 µmol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 μmol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. RESULTS In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. CONCLUSIONS These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
Collapse
|
17
|
Lithium Biological Action Mechanisms after Ischemic Stroke. Life (Basel) 2022; 12:life12111680. [DOI: 10.3390/life12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lithium is a source of great scientific interest because although it has such a simple structure, relatively easy-to-analyze chemistry, and well-established physical properties, the plethora of effects on biological systems—which influence numerous cellular and molecular processes through not entirely explained mechanisms of action—generate a mystery that modern science is still trying to decipher. Lithium has multiple effects on neurotransmitter-mediated receptor signaling, ion transport, signaling cascades, hormonal regulation, circadian rhythm, and gene expression. The biochemical mechanisms of lithium action appear to be multifactorial and interrelated with the functioning of several enzymes, hormones, vitamins, and growth and transformation factors. The widespread and chaotic marketing of lithium salts in potions and mineral waters, always at inadequate concentrations for various diseases, has contributed to the general disillusionment with empirical medical hypotheses about the therapeutic role of lithium. Lithium salts were first used therapeutically in 1850 to relieve the symptoms of gout, rheumatism, and kidney stones. In 1949, Cade was credited with discovering the sedative effect of lithium salts in the state of manic agitation, but frequent cases of intoxication accompanied the therapy. In the 1960s, lithium was shown to prevent manic and also depressive recurrences. This prophylactic effect was first demonstrated in an open-label study using the “mirror” method and was later (after 1970) confirmed by several placebo-controlled double-blind studies. Lithium prophylaxis was similarly effective in bipolar and also unipolar patients. In 1967, the therapeutic value of lithemia was determined, included in the range of 0.5–1.5 mEq/L. Recently, new therapeutic perspectives on lithium are connected with improved neurological outcomes after ischemic stroke. The effects of lithium on the development and maintenance of neuroprotection can be divided into two categories: short-term effects and long-term effects. Unfortunately, the existing studies do not fully explain the lithium biological action mechanisms after ischemic stroke.
Collapse
|
18
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
19
|
Almeida OP, Singulani MP, Ford AH, Hackett ML, Etherton-Beer C, Flicker L, Hankey GJ, De Paula VJR, Penteado CT, Forlenza OV. Lithium and Stroke Recovery: A Systematic Review and Meta-Analysis of Stroke Models in Rodents and Human Data. Stroke 2022; 53:2935-2944. [PMID: 35968702 DOI: 10.1161/strokeaha.122.039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans. METHODS This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Medline, Embase, and PsycINFO for preclinical and clinical studies published between January 2000 and September 2021. A random-effects meta-analysis was conducted from observational studies. RESULTS From 1625 retrieved studies, 42 were included in the systematic review. Of those, we identified 36 rodent models of stroke using preinsult or postinsult treatment with lithium, and 6 studies were conducted in human samples, of which 4 could be meta-analyzed. The review of animal models was stratified according to the type of stroke and outcomes. Human data were subdivided into observational and intervention studies. Treatment of rodents with lithium was associated with smaller stroke volumes, decreased apoptosis, and improved poststroke function. In humans, exposure to lithium was associated with a lower risk of stroke among adults with bipolar disorder in 2 of 4 studies. Two small trials showed equivocal clinical benefits of lithium poststroke. CONCLUSIONS Animal models of stroke show consistent biological and functional evidence of benefits associated with lithium treatment, whereas human evidence remains sparse and inconclusive. The potential role of lithium in poststroke recovery is yet to be adequately tested in humans.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Monique P Singulani
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Andrew H Ford
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Maree L Hackett
- The George Institute for Global Health, the University of New South Wales, Sydney, Australia (M.L.H.)
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Vanessa J R De Paula
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Camila T Penteado
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Orestes V Forlenza
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| |
Collapse
|
20
|
Hung SY, Chung HY, Luo ST, Chu YT, Chen YH, MacDonald IJ, Chien SY, Kotha P, Yang LY, Hwang LL, Dun NJ, Chuang DM, Chen YH. Electroacupuncture improves TBI dysfunction by targeting HDAC overexpression and BDNF-associated Akt/GSK-3β signaling. Front Cell Neurosci 2022; 16:880267. [PMID: 36016833 PMCID: PMC9396337 DOI: 10.3389/fncel.2022.880267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acupuncture or electroacupuncture (EA) appears to be a potential treatment in acute clinical traumatic brain injury (TBI); however, it remains uncertain whether acupuncture affects post-TBI histone deacetylase (HDAC) expression or impacts other biochemical/neurobiological events. Materials and methods We used behavioral testing, Western blot, and immunohistochemistry analysis to evaluate the cellular and molecular effects of EA at LI4 and LI11 in both weight drop-impact acceleration (WD)- and controlled cortical impact (CCI)-induced TBI models. Results Both WD- and CCI-induced TBI caused behavioral dysfunction, increased cortical levels of HDAC1 and HDAC3 isoforms, activated microglia and astrocytes, and decreased cortical levels of BDNF as well as its downstream mediators phosphorylated-Akt and phosphorylated-GSK-3β. Application of EA reversed motor, sensorimotor, and learning/memory deficits. EA also restored overexpression of HDAC1 and HDAC3, and recovered downregulation of BDNF-associated signaling in the cortex of TBI mice. Conclusion The results strongly suggest that acupuncture has multiple benefits against TBI-associated adverse behavioral and biochemical effects and that the underlying mechanisms are likely mediated by targeting HDAC overexpression and aberrant BDNF-associated Akt/GSK-3 signaling.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Iona J. MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- *Correspondence: Yi-Hung Chen,
| |
Collapse
|
21
|
Roflumilast, a cyclic nucleotide phosphodiesterase 4 inhibitor, protects against cerebrovascular endothelial injury following cerebral ischemia/reperfusion by activating the Notch1/Hes1 pathway. Eur J Pharmacol 2022; 926:175027. [DOI: 10.1016/j.ejphar.2022.175027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
22
|
An J, Zhao L, Duan R, Sun K, Lu W, Yang J, Liang Y, Liu J, Zhang Z, Li L, Shi J. Potential nanotherapeutic strategies for perioperative stroke. CNS Neurosci Ther 2022; 28:510-520. [PMID: 35243774 PMCID: PMC8928924 DOI: 10.1111/cns.13819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
AIMS Based on the complex pathological environment of perioperative stroke, the development of targeted therapeutic strategies is important to control the development of perioperative stroke. DISCUSSIONS Recently, great progress has been made in nanotechnology, and nanodrug delivery systems have been developed for the treatment of ischemic stroke. CONCLUSION In this review, the pathological processes and mechanisms of ischemic stroke during perioperative stroke onset were systematically sorted. As a potential treatment strategy for perioperative stroke, the review also summarizes the multifunctional nanodelivery systems based on ischemic stroke, thus providing insight into the nanotherapeutic strategies for perioperative stroke.
Collapse
Affiliation(s)
- Jingyi An
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Ling Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxin Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang CC, Wu TS, Shan YS, Lee AH, Lee EJ. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res 2022; 44:870-878. [PMID: 35348035 DOI: 10.1080/01616412.2022.2056817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity. METHODS Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting. RESULTS Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD. CONCLUSION Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.Abbreviations: BDNF: brain-derived neurotrophic factor; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GAP-43: growth-associated protein-43; GSK-3β: glycogen synthase kinase-3β; HBSS: Hank's balanced salt solution; LCBF: local cortical blood perfusion; LDF: laser-Doppler flowmetry; MCAO: middle cerebral artery occlusion; MMP: matrix metalloproteinase; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; OCT: optimal cutting temperature compound; OGD: oxygen-glucose deprivation; PSD-95: postsynaptic density-95; SDS: sodium dodecyl sulfate; SNAP-25: synaptosomal-associated protein-25; SSEP: somatosensory evoked potential.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chih Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
The neuroprotective mechanism of lithium after ischaemic stroke. Commun Biol 2022; 5:105. [PMID: 35115638 PMCID: PMC8814028 DOI: 10.1038/s42003-022-03051-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stroke causes degeneration and death of neurones leading to the loss of motor function and frequent occurrence of cognitive impairment and depression. Lithium (Li+), the archetypal mood stabiliser, is neuroprotective in animal models of stroke, albeit underlying mechanisms remain unknown. We discover that Li+ inhibits activation of nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in the middle cerebral artery occlusion (MCAO) stroke model in mice. This action of Li+ is mediated by two signalling pathways of AKT/GSK3β/β-catenin and AKT/FoxO3a/β-catenin which converge in suppressing the production of reactive oxygen species (ROS). Using immunocytochemstry, MRI imaging, and cell sorting with subsequent mRNA and protein quantification, we demonstrate that Li+ decreases the infarct volume, improves motor function, and alleviates associated cognitive and depressive impairments. In conclusion, this study reveals molecular mechanisms of Li+ neuroprotection during brain ischaemia, thus providing the theoretical background to extend clinical applications of Li+ for treatment of ischemic stroke.
Collapse
|
25
|
Ates N, Caglayan A, Balcikanli Z, Sertel E, Beker MC, Dilsiz P, Caglayan AB, Celik S, Dasdelen MF, Caglayan B, Yigitbasi T, Ozbek H, Doeppner TR, Hermann DM, Kilic E. Phosphorylation of PI3K/Akt at Thr308, but not MAPK kinase, mediates lithium-induced neuroprotection against cerebral ischemia in mice. Exp Neurol 2022; 351:113996. [PMID: 35122865 DOI: 10.1016/j.expneurol.2022.113996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/31/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Lithium, in addition to its effect on acute and long-term bipolar disorder, is involved in neuroprotection after ischemic stroke. Yet, its mechanism of action is still poorly understood, which was only limited to its modulatory effect on GSK pathway. Therefore, we initially analyzed the dose-dependent effects of lithium on neurological deficits, infarct volume, brain edema and blood-brain barrier integrity, along with neuronal injury and survival in mice subjected to focal cerebral ischemia. Thereafter, we investigated the involvement of the PI3K/Akt and MEK signal transduction pathways and their components. Our observations revealed that 2 mmol/kg lithium significantly improved post-ischemic brain tissue survival. Although, 2 mmol/kg lithium had no negative effect on brain microcirculation, 5 and 20 mmol/kg lithium reduced brain perfusion. Furthermore, supratherapeutic dose of lithium in 20 mmol/kg lead to animal death. In addition, improvement of brain perfusion with L-arginine, did not change the effect of 5 mmol/kg lithium on brain injury. Additionally, post-stroke blood-brain barrier leakage, hemodynamic impairment and apoptosis have been reversed by lithium treatment. Interestingly, lithium-induced neuroprotection was associated with increased phosphorylation of Akt at Thr308 and suppressed GSK-3β phosphorylation at Ser9 residue. Lithium upregulated Erk-2 and downregulated JNK-2 phosphorylation. To distinguish whether neuroprotective effects of lithium are modulated by PI3K/Akt or MEK, we sequentially blocked these pathways and demonstrated that the neuroprotective activity of lithium persisted during MEK/ERK inhibition, whereas PI3K/Akt inhibition abolished neuroprotection. Collectively, we demonstrated lithium exerts its post-stroke neuroprotective activity via the PI3K/Akt pathway, specifically via Akt phosphorylation at Thr308, but not via MEK/ERK.
Collapse
Affiliation(s)
- Nilay Ates
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Aysun Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Zeynep Balcikanli
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Elif Sertel
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Pelin Dilsiz
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Süleyman Celik
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Muhammed Furkan Dasdelen
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Berrak Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, International School of Medicine, Dept. of Medical Biology, Istanbul, Turkey
| | - Türkan Yigitbasi
- Istanbul Medipol University, Faculty of Medicine, Dept. of Biochemistry, Istanbul, Turkey
| | - Hanefi Ozbek
- Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Thorsten Roland Doeppner
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Dirk Matthias Hermann
- University Hospital Essen, University of Duisburg-Essen, Department of Neurology, Essen, Germany
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey.
| |
Collapse
|
26
|
Zhou W, Zhang Y, Jiao Y, Yin W, Dong H, Xu S, Tang D, Jiang J, Shao J, Wang Z, Yu W. Dexmedetomidine maintains blood-brain barrier integrity by inhibiting Drp1-related endothelial mitochondrial dysfunction in ischemic stroke. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1177-1188. [PMID: 34244711 DOI: 10.1093/abbs/gmab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second leading cause of death and long-term disability worldwide, which lacks effective treatment. Perioperative stroke is associated with much higher rates of mortality and disability. The neuroprotective role of dexmedetomidine (Dex), a highly selective agonist of alpha2-adrenergic receptor, has been reported in a stroke rat model, and it was found that pretreatment of Dex before stroke could alleviate blood-brain barrier (BBB) breakdown. However, the underlying mechanisms are still unknown. As the brain endothelial cells are the main constituents of BBB and in high demand of energy, mitochondrial function of endothelial cells plays an important role in the maintenance of BBB. Given that dynamin-related protein 1 (Drp1) is a protein mediating mitochondrial fission, with mitochondrial fusion that balances mitochondrial morphology and ensures mitochondria function, the present study was designed to investigate the possible role of Drp1 in endothelial cells involved in the neuroprotective effects of Dex in ischemic stroke. Our results showed that preconditioning with Dex reduced infarction volume, alleviated brain water content and BBB damage, and improved neurological scores in middle cerebral artery occlusion rats. Meanwhile, Dex enhanced cell activity and decreased cell apoptosis in oxygen-glucose deprivation human brain microvascular endothelial cells in vitro. These protective effects of Dex were correlated with the mitochondrial morphology integrality of endothelial cells, mediated by increased phosphorylation of serine 637 in Drp1, and could be reversed by α2-adrenergic receptor antagonist Yohimbine and AMP-activated protein kinase inhibitor Compound C. These findings suggest new molecular pathways involved in the neuroprotective effects of Dex in ischemic stroke. As Dex is routinely used as a sedative drug clinically, our findings provide molecular evidence that it has perioperative neuroprotection from ischemic stroke.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Yin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haiping Dong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junli Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, No.1 School of Clinical Medicine, Kunming Medical University, Kunming 650011, China
| | - Zhenhong Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
27
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
28
|
Rinaldi C, Donato L, Alibrandi S, Scimone C, D’Angelo R, Sidoti A. Oxidative Stress and the Neurovascular Unit. Life (Basel) 2021; 11:767. [PMID: 34440511 PMCID: PMC8398978 DOI: 10.3390/life11080767] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept that clearly describes the relationship between brain cells and their blood vessels. The components of the NVU, comprising different types of cells, are so interrelated and associated with each other that they are considered as a single functioning unit. For this reason, even slight disturbances in the NVU could severely affect brain homeostasis and health. In this review, we aim to describe the current state of knowledge concerning the role of oxidative stress on the neurovascular unit and the role of a single cell type in the NVU crosstalk.
Collapse
Affiliation(s)
- Carmela Rinaldi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| |
Collapse
|
29
|
Liu J, Luo R, Wang J, Luan X, Wu D, Chen H, Hou Q, Mao G, Li X. Tumor Cell-Derived Exosomal miR-770 Inhibits M2 Macrophage Polarization via Targeting MAP3K1 to Inhibit the Invasion of Non-small Cell Lung Cancer Cells. Front Cell Dev Biol 2021; 9:679658. [PMID: 34195198 PMCID: PMC8236888 DOI: 10.3389/fcell.2021.679658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a type lung cancer with high malignant behaviors. MicroRNAs (miRNAs) are known to be involved in progression of NSCLC. In order to explore potential targets for the treatment of NSCLC, bioinformatics tool was used to analyze differential expressed miRNAs between NSCLC and adjacent normal tissues. METHODS Bioinformatics tool was used to find potential targets for NSCLC. Cell proliferation was investigated by Ki67 staining. Cell apoptosis was measured by flow cytometry. mRNA and protein expression in NSCLC cells were detected by RT-qPCR and Western-blot, respectively. Transwell assay was performed to test the cell migration and invasion. In order to investigate the function of exosomal miRNA in NSCLC, in vivo model of NSCLC was constructed. RESULTS MiR-770 was identified to be downregulated in NSCLC, and miR-770 agomir could significantly inhibit NSCLC cell proliferation through inducing the apoptosis. Additionally, the metastasis of NSCLC cells was decreased by miR-770 agomir. MAP3K1 was identified to be the target mRNA of miR-770. Meanwhile, tumor cell-derived exosomal miR-770 inhibited M2 macrophage polarization via downregulation of MAP3K1, which in turn suppressed NSCLC cell invasion. Besides, tumor cell-derived exosomal miR-770 markedly decreased NSCLC tumor growth in vivo through suppressing M2 macrophage polarization. CONCLUSION Tumor cell-derived exosomal miR-770 inhibits M2 macrophage polarization to inhibit the invasion of NSCLC cells via targeting MAP3K1. Thus, this study provided a new strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ruixing Luo
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junbin Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinyu Luan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Da Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hua Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qinghua Hou
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guangxian Mao
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
30
|
Khayachi A, Ase A, Liao C, Kamesh A, Kuhlmann N, Schorova L, Chaumette B, Dion P, Alda M, Séguéla P, Rouleau G, Milnerwood A. Chronic lithium treatment alters the excitatory/ inhibitory balance of synaptic networks and reduces mGluR5-PKC signalling in mouse cortical neurons. J Psychiatry Neurosci 2021; 46:E402-E414. [PMID: 34077150 PMCID: PMC8327978 DOI: 10.1503/jpn.200185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium’s mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory–inhibitory balance toward inhibition. Limitations The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.
Collapse
Affiliation(s)
- Anouar Khayachi
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Ariel Ase
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Calwing Liao
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Anusha Kamesh
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Naila Kuhlmann
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Lenka Schorova
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Boris Chaumette
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Patrick Dion
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Martin Alda
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Philippe Séguéla
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Guy Rouleau
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Austen Milnerwood
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| |
Collapse
|
31
|
The association between accelerated vascular aging and cyclothymic affective temperament in women. J Psychosom Res 2021; 145:110423. [PMID: 33773765 DOI: 10.1016/j.jpsychores.2021.110423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Affective temperaments (depressive, anxious, irritable, hyperthymic, cyclothymic) are regarded as the biologically stable core of personality. Accumulating data suggest their relationship with cardiovascular diseases. However, there are currently limited data on the association of affective temperaments and accelerated vascular aging. The aim of our study was to evaluate the relationship between affective temperaments and vascular age, as assessed by coronary artery calcium scoring (CACS). METHODS In our cross-sectional study, 209 consecutive patients referred to coronary computed tomography angiography (CCTA) due to suspected coronary artery disease (CAD) were included. All patients completed the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A) and the Beck Depression Inventory (BDI). Vascular age was estimated using CACS and its difference from chronological age for each patient was calculated. Linear regression analysis was used to identify predictors of accelerated vascular aging in the entire cohort and in male and female sub-populations. RESULTS Besides traditional risk factors, cyclothymic temperament score proved to be an independent predictor of accelerated vascular aging in women (β = 0.89 [95%CI: 0.04-1.75]), while this association was absent in men. CONCLUSIONS Our results suggest that cyclothymic affective temperament is associated with accelerated vascular aging in women. Assessment of affective temperaments may potentiate more precise cardiovascular risk stratification of patients.
Collapse
|
32
|
Xie L, Lu B, Ma Y, Yin J, Zhai X, Chen C, Xie W, Zhang Y, Zheng L, Li P. The 100 most-cited articles about the role of neurovascular unit in stroke 2001-2020: A bibliometric analysis. CNS Neurosci Ther 2021; 27:743-752. [PMID: 33764687 PMCID: PMC8193691 DOI: 10.1111/cns.13636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
Background The neurovascular unit (NVU) is emerging as a potential therapeutic target in neurological conditions, such as stroke, brain injury, Alzheimer's disease, and Parkinson's disease; meanwhile, stroke is the second leading cause of death globally. The purpose of the study is to analyze the most influential articles, authors, countries, and topics in the role of NVU in stroke. Methods The Web of Science (WoS) database was used for bibliometric analysis using the search terms “Stroke” and “Neurovascular unit” on January 1st, 2021. Data were extracted from the WoS database to identify collaborations between authors, countries, organizations, and keywords using VOSviewer (1.6.16 mac). Two bibliometric indicators, the activity index (AI) and category normalized citation impact (CNCI), were computed. The keywords of bursts were also identified by CiteSpace. Results A total of 770 articles were analyzed by VOSviewer. AIs and CNCIs were computed of the eighteen countries according to VOSviewer co‐authorship analysis results. The majority of authors mainly came from the United States and Japan. Romania, Hungary, and Poland have emerged as rising‐star countries. In the 100 most‐cited articles, the number of citations ranged from 1873 to 69, with a total of 15,758 citations. Most articles were published in 2011 and 2012 (n = 13 each), followed by 2009 (n = 11) and 2013, 2014, and 2015 (n = 8 each). Stroke and Journal of Cerebral Blood Flow and Metabolism were the two top journals. EH Lo from Harvard University/ Massachusetts General Hospital was the top first author and corresponding author. Harvard University/Massachusetts General Hospital was the most productive affiliated institution with 15 publications. Conclusion There has been growing attention and efforts made in the field of stroke and NVU. The merit of the above findings may help to shape the research policy in ischemic stroke both at the country and institutional level.
Collapse
Affiliation(s)
- Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Bingwei Lu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Yezhi Ma
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Jiemin Yin
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
33
|
Haupt M, Bähr M, Doeppner TR. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen Res 2021; 16:2383-2387. [PMID: 33907010 PMCID: PMC8374558 DOI: 10.4103/1673-5374.313015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lithium has been used in the treatment of bipolar disorders for decades, but the exact mechanisms of action remain elusive to this day. Recent evidence suggests that lithium is critically involved in a variety of signaling pathways affecting apoptosis, inflammation, and neurogenesis, all of which contributing to the complex pathophysiology of various neurological diseases. As a matter of fact, preclinical work reports both acute and long-term neuroprotection in distinct neurological disease models such as Parkinson’s disease, traumatic brain injury, Alzheimer’s disease, and ischemic stroke. Lithium treatment reduces cell injury, decreases α-synuclein aggregation and Tau protein phosphorylation, modulates inflammation and even stimulates neuroregeneration under experimental conditions of Parkinson’s disease, traumatic brain injury, and Alzheimer’s disease. The therapeutic impact of lithium under conditions of ischemic stroke was also studied in numerous preclinical in vitro and in vivo studies, giving rise to a randomized double-blind clinical stroke trial. The preclinic data revealed a lithium-induced upregulation of anti-apoptotic proteins such as B-cell lymphoma 2, heat shock protein 70, and activated protein 1, resulting in decreased neuronal cell loss. Lithium, however, does not only yield postischemic neuroprotection but also enhances endogenous neuroregeneration by stimulating neural stem cell proliferation and by regulating distinct signaling pathways such as the RE1-silencing transcription factor. In line with this, lithium treatment has been shown to modulate postischemic cytokine secretion patterns, diminishing microglial activation and stabilizing blood-brain barrier integrity yielding reduced levels of neuroinflammation. The aforementioned observations culminated in a first clinical trial, which revealed an improved motor recovery in patients with cortical stroke after lithium treatment. Beside its well-known psychiatric indications, lithium is thus a promising neuroprotective candidate for the aforementioned neurological diseases. A detailed understanding of the lithium-induced mechanisms, however, is important for prospective clinical trials which may pave the way for a successful bench-to-bedside translation in the future. In this review, we will give an overview of lithium-induced neuroprotective mechanisms under various pathological conditions, with special emphasis on ischemic stroke.
Collapse
Affiliation(s)
- Matteo Haupt
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Mathias Bähr
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Thorsten R Doeppner
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| |
Collapse
|
34
|
Shindo A, Takase H, Hamanaka G, Chung KK, Mandeville ET, Egawa N, Maki T, Borlongan M, Takahashi R, Lok J, Tomimoto H, Lo EH, Arai K. Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neurosci Ther 2020; 27:60-70. [PMID: 33314664 PMCID: PMC7804900 DOI: 10.1111/cns.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent clinical studies suggest that pentraxin 3 (PTX3), which is known as an acute-phase protein that is produced rapidly at local sites of inflammation, may be a new biomarker of disease risk for central nervous system disorders, including stroke. However, the effects of PTX3 on cerebrovascular function in the neurovascular unit (NVU) after stroke are mostly unknown, and the basic research regarding the roles of PTX3 in NVU function is still limited. In this reverse translational study, we prepared mouse models of white matter stroke by vasoconstrictor (ET-1 or L-Nio) injection into the corpus callosum region to examine the roles of PTX3 in the pathology of cerebral white matter stroke. PTX3 expression was upregulated in GFAP-positive astrocytes around the affected region in white matter for at least 21 days after vasoconstrictor injection. When PTX3 expression was reduced by PTX3 siRNA, blood-brain barrier (BBB) damage at day 3 after white matter stroke was exacerbated. In contrast, when PTX3 siRNA was administered at day 7 after white matter stroke, compensatory angiogenesis at day 21 was promoted. In vitro cell culture experiments confirmed the inhibitory effect of PTX3 in angiogenesis, that is, recombinant PTX3 suppressed the tube formation of cultured endothelial cells in a Matrigel-based in vitro angiogenesis assay. Taken together, our findings may support a novel concept that astrocyte-derived PTX3 plays biphasic roles in cerebrovascular function after white matter stroke; additionally, it may also provide a proof-of-concept that PTX3 could be a therapeutic target for white matter-related diseases, including stroke.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mia Borlongan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|