1
|
Turker S, Fumagalli B, Kuhnke P, Hartwigsen G. The 'reading' brain: Meta-analytic insight into functional activation during reading in adults. Neurosci Biobehav Rev 2025:106166. [PMID: 40254114 DOI: 10.1016/j.neubiorev.2025.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Literacy provides the key to social contacts, education, and employment, and significantly influences well-being and mental health. Summarizing 163 studies, the present coordinate-based meta-analysis confirms the importance of classical left-hemispheric language regions and the cerebellum across reading tasks. We found high processing specificity for letter, word, sentence, and text reading exclusively in left-hemispheric areas. Subregions within the left inferior frontal gyrus showed differential engagement for word and pseudoword reading, while subregions within the left temporo-occipital cortex showed differential engagement for words and sentences. The direct comparison of overt and covert reading revealed higher activation likelihood in auditory and motor regions during the first, and more consistent reliance on multiple demand regions during the latter. Last, silent word and pseudoword reading (explicit reading) yielded more consistent activation in left orbito-frontal, cerebellar and temporal cortices when compared to lexical decisions (implicit reading). Lexical decisions, in contrast, showed more consistent bilateral recruitment of inferior frontal and insular regions. The present meta-analysis significantly extends our understanding of the neural architecture underlying reading processes, corroborates findings from neurostimulation studies and can provide valuable neural insight into reading models.
Collapse
Affiliation(s)
- Sabrina Turker
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany; Brain and Language Lab, Department for Behavioral and Cognitive Biology, Department of Life Sciences, Vienna University.
| | - Beatrice Fumagalli
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany
| | - Philipp Kuhnke
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Neumarkt 9-19, 04109 Leipzig University, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Neumarkt 9-19, 04109 Leipzig University, Germany
| |
Collapse
|
2
|
Seghier ML, Boudelaa S. Constraining current neuroanatomical models of reading: the view from Arabic. Brain Struct Funct 2024; 229:2167-2185. [PMID: 38969935 DOI: 10.1007/s00429-024-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Sami Boudelaa
- Department of Cognitive Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
3
|
Lou C, Joanisse MF. Control energy detects discrepancies in good vs. poor readers' structural-functional coupling during a rhyming task. Neuroimage 2024; 303:120941. [PMID: 39561914 DOI: 10.1016/j.neuroimage.2024.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024] Open
Abstract
Neuroimaging studies have identified functional and structural brain circuits that support reading. However, much less is known about how reading-related functional dynamics are constrained by white matter structure. Network control theory proposes that cortical brain dynamics are linearly determined by the white matter connectome, using control energy to evaluate the difficulty of the transition from one cognitive state to another. Here we apply this approach to linking brain dynamics with reading ability and disability in school-age children. A total of 51 children ages 8.25 -14.6 years performed an in-scanner rhyming task in visual and auditory modalities, with orthographic (spelling) and phonological (rhyming) similarity manipulated across trials. White matter structure and fMRI activation were used conjointly to compute the control energy of the reading network in each condition relative to a null fixation state. We then tested differences in control energy across trial types, finding higher control energy during non-word trials than word trials, and during incongruent trials than congruent trials. ROI analyses further showed a dissociation between control energy of the left fusiform and superior temporal gyrus depending on stimulus modality, with higher control energy for visual modalities in fusiform and higher control energy for auditory modalities in STG. Together, this study highlights that control theory can explain variations on cognitive demands in higher-level abilities such as reading, beyond what can be inferred from either functional or structural MRI measures alone.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA; Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
4
|
Hauw F, Béranger B, Cohen L. Subtitled speech: the neural mechanisms of ticker-tape synaesthesia. Brain 2024; 147:2530-2541. [PMID: 38620012 PMCID: PMC11224615 DOI: 10.1093/brain/awae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| | - Benoît Béranger
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| |
Collapse
|
5
|
Hauw F, El Soudany M, Rosso C, Daunizeau J, Cohen L. A single case neuroimaging study of tickertape synesthesia. Sci Rep 2023; 13:12185. [PMID: 37500762 PMCID: PMC10374523 DOI: 10.1038/s41598-023-39276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Reading acquisition is enabled by deep changes in the brain's visual system and language areas, and in the links subtending their collaboration. Disruption of those plastic processes commonly results in developmental dyslexia. However, atypical development of reading mechanisms may occasionally result in ticker-tape synesthesia (TTS), a condition described by Francis Galton in 1883 wherein individuals "see mentally in print every word that is uttered (…) as from a long imaginary strip of paper". While reading is the bottom-up translation of letters into speech, TTS may be viewed as its opposite, the top-down translation of speech into internally visualized letters. In a series of functional MRI experiments, we studied MK, a man with TTS. We showed that a set of left-hemispheric areas were more active in MK than in controls during the perception of normal than reversed speech, including frontoparietal areas involved in speech processing, and the Visual Word Form Area, an occipitotemporal region subtending orthography. Those areas were identical to those involved in reading, supporting the construal of TTS as upended reading. Using dynamic causal modeling, we further showed that, parallel to reading, TTS induced by spoken words and pseudowords relied on top-down flow of information along distinct lexical and phonological routes, involving the middle temporal and supramarginal gyri, respectively. Future studies of TTS should shed new light on the neurodevelopmental mechanisms of reading acquisition, their variability and their disorders.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France.
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France.
| | - Mohamed El Soudany
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Charlotte Rosso
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean Daunizeau
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France
| |
Collapse
|
6
|
Eckert MA, Vaden KI, Iuricich F. Cortical asymmetries at different spatial hierarchies relate to phonological processing ability. PLoS Biol 2022; 20:e3001591. [PMID: 35381012 PMCID: PMC8982829 DOI: 10.1371/journal.pbio.3001591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The ability to map speech sounds to corresponding letters is critical for establishing proficient reading. People vary in this phonological processing ability, which has been hypothesized to result from variation in hemispheric asymmetries within brain regions that support language. A cerebral lateralization hypothesis predicts that more asymmetric brain structures facilitate the development of foundational reading skills like phonological processing. That is, structural asymmetries are predicted to linearly increase with ability. In contrast, a canalization hypothesis predicts that asymmetries constrain behavioral performance within a normal range. That is, structural asymmetries are predicted to quadratically relate to phonological processing, with average phonological processing occurring in people with the most asymmetric structures. These predictions were examined in relatively large samples of children (N = 424) and adults (N = 300), using a topological asymmetry analysis of T1-weighted brain images and a decoding measure of phonological processing. There was limited evidence of structural asymmetry and phonological decoding associations in classic language-related brain regions. However, and in modest support of the cerebral lateralization hypothesis, small to medium effect sizes were observed where phonological decoding accuracy increased with the magnitude of the largest structural asymmetry across left hemisphere cortical regions, but not right hemisphere cortical regions, for both the adult and pediatric samples. In support of the canalization hypothesis, small to medium effect sizes were observed where phonological decoding in the normal range was associated with increased asymmetries in specific cortical regions for both the adult and pediatric samples, which included performance monitoring and motor planning brain regions that contribute to oral and written language functions. Thus, the relevance of each hypothesis to phonological decoding may depend on the scale of brain organization.
Collapse
Affiliation(s)
- Mark A. Eckert
- Hearing Research Program, Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth I. Vaden
- Hearing Research Program, Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Federico Iuricich
- Visual Computing Division, School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | | |
Collapse
|
7
|
Bucur M, Papagno C. An ALE meta-analytical review of the neural correlates of abstract and concrete words. Sci Rep 2021; 11:15727. [PMID: 34344915 PMCID: PMC8333331 DOI: 10.1038/s41598-021-94506-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Several clinical studies have reported a double dissociation between abstract and concrete concepts, suggesting that they are processed by at least partly different networks in the brain. However, neuroimaging data seem not in line with neuropsychological reports. Using the ALE method, we run a meta-analysis on 32 brain-activation imaging studies that considered only nouns and verbs. Five clusters were associated with concrete words, four clusters with abstract words. When only nouns were selected three left activation clusters were found to be associated with concrete stimuli and only one with abstract nouns (left IFG). These results confirm that concrete and abstract words processing involves at least partially segregated brain areas, the IFG being relevant for abstract nouns and verbs while more posterior temporoparietal-occipital regions seem to be crucial for processing concrete words, in contrast with the neuropsychological literature that suggests a temporal anterior involvement for concrete words. We investigated the possible reasons that produce different outcomes in neuroimaging and clinical studies.
Collapse
Affiliation(s)
- Madalina Bucur
- CeRiN (Center for Cognitive Neurorehabilitation), Center for Mind/Brain Sciences (CIMeC), University of Trento, Via Matteo del Ben 5/b, 38068, Rovereto, TN, Italy
| | - Costanza Papagno
- CeRiN (Center for Cognitive Neurorehabilitation), Center for Mind/Brain Sciences (CIMeC), University of Trento, Via Matteo del Ben 5/b, 38068, Rovereto, TN, Italy.
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
8
|
Wang J, Rice ML, Booth JR. Syntactic and Semantic Specialization and Integration in 5- to 6-Year-Old Children during Auditory Sentence Processing. J Cogn Neurosci 2020; 32:36-49. [PMID: 31596168 PMCID: PMC8905464 DOI: 10.1162/jocn_a_01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies have found specialized syntactic and semantic processes in the adult brain during language comprehension. Young children have sophisticated semantic and syntactic aspects of language, yet many previous fMRI studies failed to detect this specialization, possibly due to experimental design and analytical methods. In this current study, 5- to 6-year-old children completed a syntactic task and a semantic task to dissociate these two processes. Multivoxel pattern analysis was used to examine the correlation of patterns within a task (between runs) or across tasks. We found that the left middle temporal gyrus showed more similar patterns within the semantic task compared with across tasks, whereas there was no difference in the correlation within the syntactic task compared with across tasks, suggesting its specialization in semantic processing. Moreover, the left superior temporal gyrus showed more similar patterns within both the semantic task and the syntactic task as compared with across tasks, suggesting its role in integration of semantic and syntactic information. In contrast to the temporal lobe, we did not find specialization or integration effects in either the opercular or triangular part of the inferior frontal gyrus. Overall, our study showed that 5- to 6-year-old children have already developed specialization and integration in the temporal lobe, but not in the frontal lobe, consistent with developmental neurocognitive models of language comprehension in typically developing young children.
Collapse
|
9
|
Mattheiss SR, Levinson H, Graves WW. Duality of Function: Activation for Meaningless Nonwords and Semantic Codes in the Same Brain Areas. Cereb Cortex 2019; 28:2516-2524. [PMID: 29901789 PMCID: PMC5998986 DOI: 10.1093/cercor/bhy053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/16/2018] [Indexed: 11/29/2022] Open
Abstract
Studies of the neural substrates of semantic (word meaning) processing have typically focused on semantic manipulations, with less consideration for potential differences in difficulty across conditions. While the idea that particular brain regions can support multiple functions is widely accepted, studies of specific cognitive domains rarely test for co-location with other functions. Here we start with standard univariate analyses comparing words to meaningless nonwords, replicating our recent finding that this contrast can activate task-positive regions for words, and default-mode regions in the putative semantic network for nonwords, pointing to difficulty effects. Critically, this was followed up with a multivariate analysis to test whether the same areas activated for meaningless nonwords contained semantic information sufficient to distinguish high- from low-imageability words. Indeed, this classification was performed reliably better than chance at 75% accuracy. This is compatible with two non-exclusive interpretations. Numerous areas in the default-mode network are task-negative in the sense of activating for less demanding conditions, and the same areas contain information supporting semantic cognition. Therefore, while areas of the default mode network have been hypothesized to support semantic cognition, we offer evidence that these areas can respond to both domain-general difficulty effects, and to specific aspects of semantics.
Collapse
Affiliation(s)
- Samantha R Mattheiss
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| | - Hillary Levinson
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| | - William W Graves
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| |
Collapse
|
10
|
Chou TL, Wong CH, Chen SY, Fan LY, Booth JR. Developmental changes of association strength and categorical relatedness on semantic processing in the brain. BRAIN AND LANGUAGE 2019; 189:10-19. [PMID: 30593860 DOI: 10.1016/j.bandl.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Semantic knowledge has thematic relations of contiguity based on association and taxonomic relations of similarity based on shared features to form categories. It is unknown if there are distinct brain networks between thematic and taxonomic organizations in children and if this distinction is related to changes in specialized brain regions with age and/or skill. We orthogonally manipulated association strength (strong, weak) and categorical relatedness (high, low) to examine 10- to 14-year-old children over a two-year interval. Moreover, we examined whether initial behavioral performance predicted brain activation changes. Weak versus strong association strength produced greater activation over time in left middle temporal gyrus and inferior frontal gyrus, and initial accuracy predicted activation changes in the latter. Moreover, high versus low categorical relatedness produced greater activation over time in left occipito-temporal cortex and precuneus, and initial accuracy predicted activation changes in the latter. These developmental findings suggest different organization for thematic and taxonomic relations.
Collapse
Affiliation(s)
- Tai-Li Chou
- Department of Psychology, National Taiwan University, Taiwan; Center for Advanced Study in the Behavioral Sciences, Stanford University, USA.
| | - Ciao-Han Wong
- Department of Psychology, National Taiwan University, Taiwan
| | - Shiou-Yuan Chen
- Department of Early Childhood Education, University of Taipei, Taiwan
| | - Li-Ying Fan
- Department of Education, National Taipei University of Education, Taiwan
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, USA.
| |
Collapse
|
11
|
Xia Z, Zhang L, Hoeft F, Gu B, Gong G, Shu H. Neural Correlates of Oral Word Reading, Silent Reading Comprehension, and Cognitive Subcomponents. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2018; 42:342-356. [PMID: 29904229 DOI: 10.1177/0165025417727872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to read is essential for cognitive development. To deepen our understanding of reading acquisition, we explored the neuroanatomical correlates (cortical thickness (CT)) of word reading fluency and sentence comprehension efficiency in Chinese with a group of typically developing children (N = 21; 12 females and 9 males; age range 10.7-12.3 years). Then, we investigated the relationship between the CT of reading-defined regions and the cognitive subcomponents of reading to determine whether our study lends support to the multi-component model. The results demonstrated that children's performance on oral word reading was positively correlated with CT in the left superior temporal gyrus (LSTG), inferior temporal gyrus (LITG), supramarginal gyrus (LSMG) and right superior temporal gyrus (RSTG). Moreover, CT in the LSTG, LSMG and LITG uniquely predicted children's phonetic representation, phonological awareness, and orthography-phonology mapping skills, respectively. By contrast, children's performance on sentence reading comprehension was positively correlated with CT in the left parahippocampus (LPHP) and right calcarine fissure (RV1). As for the subcomponents of reading, CT in the LPHP was exclusively correlated with morphological awareness, whereas CT in the RV1 was correlated with orthography-semantic mapping. Taken together, these findings indicate that the reading network of typically developing children consists of multiple subdivisions, thus providing neuroanatomical evidence in support of the multi-componential view of reading.
Collapse
Affiliation(s)
- Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China.,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), USA
| | - Linjun Zhang
- Faculty of Linguistic Sciences and KIT-BLCU MEG Laboratory for Brain Science, Beijing Language and Culture University, China
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), USA.,Precision Learning Center (PrecL), UC, USA.,Dyslexia Center, UCSF, USA.,Haskins Laboratories, 300 George Street #900, New Haven, USA.,Department of Neuropsychiatry, Keio University School of Medicine, Japan
| | - Bin Gu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| |
Collapse
|
12
|
Vignali L, Hawelka S, Hutzler F, Richlan F. Processing of parafoveally presented words. An fMRI study. Neuroimage 2018; 184:1-9. [PMID: 30165250 DOI: 10.1016/j.neuroimage.2018.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/06/2018] [Accepted: 08/25/2018] [Indexed: 11/28/2022] Open
Abstract
The present fMRI study investigated neural correlates of parafoveal preprocessing during reading and the type of information that is accessible from the upcoming - not yet fixated - word. Participants performed a lexical decision flanker task while the constraints imposed by the first three letters (the initial trigram) of parafoveally presented words were controlled. Behavioral results evidenced that the amount of information extracted from parafoveal stimuli, was affected by the difficulty of the foveal stimulus. Easy to process foveal stimuli (i.e., high frequency nouns) allowed parafoveal information to be extracted up to the lexical level. Conversely, when foveal stimuli were difficult to process (orthographically legal nonwords) only constraining trigrams modulated the task performance. Neuroimaging findings showed no effects of lexicality (i.e., difference between words and pseudowords) in the parafovea independently from the difficulty of the foveal stimulus. The constraints imposed by the initial trigrams, however, modulated the hemodynamic response in the left supramarginal gyrus. We interpreted the supramarginal activation as reflecting sublexical (phonological) processes. The missing parafoveal lexicality effect was discussed in relation to findings of experiments which observed effects of parafoveal semantic congruency on electrophysiological correlates.
Collapse
Affiliation(s)
- Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, TN, Italy; International School for Advanced Studies (SISSA), 34136 Trieste, Italy; Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | - Stefan Hawelka
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Florian Hutzler
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| |
Collapse
|
13
|
Faroqi-Shah Y, Sebastian R, Woude AV. Neural representation of word categories is distinct in the temporal lobe: An activation likelihood analysis. Hum Brain Mapp 2018; 39:4925-4938. [PMID: 30120847 DOI: 10.1002/hbm.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022] Open
Abstract
The distinction between nouns and verbs is a language universal. Yet, functional neuroimaging studies comparing noun and verb processing have yielded inconsistent findings, ranging from a complete frontal(verb)-temporal(noun) dichotomy to a complete overlap in activation patterns. The current study addressed the debate about neural distinctions between nouns and verbs by conducting an activation likelihood estimation (ALE) meta-analysis of probabilistic cytoarchitectonic maps. Two levels of analysis were conducted: simple effects (Verbs vs. Baseline, Nouns vs. Baseline), and direct comparisons (Verbs vs. Nouns, Nouns vs. Verbs). Nouns were uniquely associated with a left medial temporal cluster (BA37). Activation foci for verbs included extensive inferior frontal (BA44-47) and mid-temporal (BA22, 21) regions in the left hemisphere. These findings confirm that the two grammatical classes have distinct neural architecture in supra-modal brain regions. Further, nouns and verbs overlapped in a small left lateral inferior temporal activation cluster (BA37), which is a region for modality-independent, grammatical class-independent lexical representations. These findings are most consistent with the view that as one acquires language, linguistic representations for a lexical category shift from the modality specific cortices which represent prototypical members of that category (e.g., motion for verbs) to abstract amodal representations in close proximity to modality specific cortices.
Collapse
Affiliation(s)
- Yasmeen Faroqi-Shah
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Ashlyn Vander Woude
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|
14
|
Current perspectives on the cerebellum and reading development. Neurosci Biobehav Rev 2018; 92:55-66. [PMID: 29730484 DOI: 10.1016/j.neubiorev.2018.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses.
Collapse
|
15
|
Saxe GN, Calderone D, Morales LJ. Brain entropy and human intelligence: A resting-state fMRI study. PLoS One 2018; 13:e0191582. [PMID: 29432427 PMCID: PMC5809019 DOI: 10.1371/journal.pone.0191582] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.
Collapse
Affiliation(s)
- Glenn N. Saxe
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
| | - Daniel Calderone
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
| | - Leah J. Morales
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
16
|
Froehlich E, Liebig J, Morawetz C, Ziegler JC, Braun M, Heekeren HR, Jacobs AM. Same Same But Different: Processing Words in the Aging Brain. Neuroscience 2017; 371:75-95. [PMID: 29199068 DOI: 10.1016/j.neuroscience.2017.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
Abstract
Reading is not only one of the most appreciated leisure activities of the elderly but it clearly helps older people to maintain functional independence, which has a significant impact on life quality. Yet, very little is known about how aging affects the neural circuits of the processes that underlie skilled reading. Therefore, the aim of the present study was to systematically investigate the neural correlates of sublexical, orthographic, phonological and lexico-semantic processing in the aging brain. Using functional magnetic resonance imaging, we recorded brain activity of younger (N = 20; 22-35 years) and older (N = 38; 65-76 years) adults during letter identification, lexical decision, phonological decision and semantic categorization. Older and younger adults recruited an identical set of reading-related brain regions suggesting that the general architecture of the reading network is preserved across the lifespan. However, we also observed age-related differences in brain activity in the subcomponents of the reading network. Age-related differences were most prominent during phonological and orthographic processing possibly due to a failure of older adults to inhibit non-optimal reading strategies. Neural effects of aging were also observed outside reading-related circuits, especially in frontal midline regions. These regions might be involved because of their important role in memory, attention and executive control functions and their potential role in resting-state networks.
Collapse
Affiliation(s)
- Eva Froehlich
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Center for Cognitive Neuroscience, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| | - Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Center for Cognitive Neuroscience, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| | - Carmen Morawetz
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Center for Cognitive Neuroscience, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| | - Johannes C Ziegler
- Aix-Marseille Université, CNRS, LPC, 3, place Victor Hugo, 13331 Marseille Cedex 1, France.
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Center for Cognitive Neuroscience, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| | - Arthur M Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany; Center for Cognitive Neuroscience, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Weiss Y, Booth JR. Neural correlates of the lexicality effect in children. BRAIN AND LANGUAGE 2017; 175:64-70. [PMID: 29020645 PMCID: PMC5812738 DOI: 10.1016/j.bandl.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The comparison of words and pseudowords has been extensively used in adult neuroimaging studies to inform neurocognitive models of reading but has rarely been used to inform models of reading acquisition. Using a rhyming judgment task, the current study examined age-related differences in the spelling to sound mapping mechanisms involved in word and pseudoword reading. We hypothesized a developmental increase in specialization of the brain mechanisms engaged for word and pseudoword processing. Consistent with adult studies, children in the current study demonstrated a greater activation for words as compared to pseudowords in the anterior left ventral occipito-temporal cortex (vOT). Inconsistent with adult studies, children also showed greater activation for words as compared to pseudowords in the mid-posterior left vOT, indicating a robust semantic influence on orthographic processing in young readers. Furthermore, our results did not indicate a lexicality by age interaction for 8- to 13-year-old children, suggesting that the adult-like specialization in the left vOT only appears later in development.
Collapse
Affiliation(s)
- Yael Weiss
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
18
|
Black JM, Xia Z, Hoeft F. Neurobiological Bases of Reading Disorder Part II: The Importance of Developmental Considerations in Typical and Atypical Reading. LANGUAGE AND LINGUISTICS COMPASS 2017; 11:e12252. [PMID: 29276529 PMCID: PMC5736136 DOI: 10.1111/lnc3.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Decoding-based reading disorder (RD; aka developmental dyslexia) is one of the most common neurodevelopmental disorders, affecting approximately 5-10% of school-aged children across languages. Even though neuroimaging studies suggest an impairment of the left reading network in RD, the onset of this deficit and its developmental course, which may include constancy and change, is largely unknown. There is now growing evidence that the recruitment of brain networks underlying perceptual, cognitive and linguistic processes relevant to reading acquisition varies with age. These age-dependent changes may in turn impact the neurocognitive characteristics of RD observed at specific developmental stages. Here we synthesize findings from functional and structural magnetic resonance imaging (MRI) studies to increase our understanding of the developmental time course of the neural bases underlying (a)typical reading. We first provide an overview of the brain bases of typical and atypical (impaired) reading. Next we describe how the understanding of RD can be deepened through scientific attention to age effects, for example, by integrating findings from cross-sectional studies of RD at various ages. Finally, we accent findings from extant longitudinal studies that directly examine developmental reading trajectories beginning in the preliterate stage at both group and individual levels. Although science is at the very early stage of understanding developmental aspects of neural deficits in RD, evidence to date characterizes RD by atypical brain maturation. We know that reading impairment may adversely impact multiple life domains such as academic achievement and social relationships, and unfortunately, that these negative outcomes can persist and compound into adulthood. We contend that exploring the developmental trajectories of RD will contribute to a greater understanding of how neural systems support reading acquisition. Further, we propose and cite evidence that the etiology of RD can be better investigated by distinguishing primary deficits from secondary impairments unfolding along development. These exciting and modern investigatory efforts can also indirectly contribute to a centered practice of early and accurate identification and optimal intervention to support the development of foundational pre-literacy skills and fluent reading. In sum, integrating a developmental understanding into the science and practice of reading acquisition and intervention is both possible and necessary.
Collapse
Affiliation(s)
| | - Zhichao Xia
- Department of Psychiatry and Weill Institute for Neurosciences,
University of California, San Francisco (UCSF), USA
- State Key Laboratory of Cognitive Neuroscience and Learning
& IDG/McGovern Institute for Brain Research, Beijing Normal University,
China
- Center for Collaboration and Innovation in Brain and Learning
Sciences, Beijing Normal University, China
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences,
University of California, San Francisco (UCSF), USA
- Precision Learning Center (PrecL), UC, USA
- Dyslexia Center, UCSF, USA
- Haskins Laboratories, USA
- Department of Neuropsychiatry, Keio University School of Medicine,
Japan
| |
Collapse
|
19
|
Ostrolenk A, Forgeot d’Arc B, Jelenic P, Samson F, Mottron L. Hyperlexia: Systematic review, neurocognitive modelling, and outcome. Neurosci Biobehav Rev 2017; 79:134-149. [DOI: 10.1016/j.neubiorev.2017.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/04/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
20
|
Risacher SL. Unraveling the Biologic Basis for Domain-Specific Cognitive Decline. Am J Geriatr Psychiatry 2017; 25:741-743. [PMID: 28483435 PMCID: PMC5870749 DOI: 10.1016/j.jagp.2017.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Shannon L Risacher
- Center for Neuroimaging, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
21
|
Graves WW, Boukrina O, Mattheiss SR, Alexander EJ, Baillet S. Reversing the Standard Neural Signature of the Word-Nonword Distinction. J Cogn Neurosci 2016; 29:79-94. [PMID: 27574917 DOI: 10.1162/jocn_a_01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The distinction between letter strings that form words and those that look and sound plausible but are not meaningful is a basic one. Decades of functional neuroimaging experiments have used this distinction to isolate the neural basis of lexical (word level) semantics, associated with areas such as the middle temporal, angular, and posterior cingulate gyri that overlap the default mode network. In two fMRI experiments, a different set of findings emerged when word stimuli were used that were less familiar (measured by word frequency) than those typically used. Instead of activating default mode network areas often associated with semantic processing, words activated task-positive areas such as the inferior pFC and SMA, along with multifunctional ventral occipitotemporal cortices related to reading, whereas nonwords activated default mode areas previously associated with semantics. Effective connectivity analyses of fMRI data on less familiar words showed activation driven by task-positive and multifunctional reading-related areas, whereas highly familiar words showed bottom-up activation flow from occipitotemporal cortex. These findings suggest that functional neuroimaging correlates of semantic processing are less stable than previously assumed, with factors such as word frequency influencing the balance between task-positive, reading-related, and default mode networks. More generally, this suggests that results of contrasts typically interpreted in terms of semantic content may be more influenced by factors related to task difficulty than is widely appreciated.
Collapse
|
22
|
Eyes on words: A fixation-related fMRI study of the left occipito-temporal cortex during self-paced silent reading of words and pseudowords. Sci Rep 2015; 5:12686. [PMID: 26235228 PMCID: PMC4522675 DOI: 10.1038/srep12686] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/06/2015] [Indexed: 12/30/2022] Open
Abstract
The predominant finding of studies assessing the response of the left ventral occipito-temporal cortex (vOT) to familiar words and to unfamiliar, but pronounceable letter strings (pseudowords) is higher activation for pseudowords. One explanation for this finding is that readers automatically generate predictions about a letter string's identity - pseudowords mismatch these predictions and the higher vOT activation is interpreted as reflecting the resultant prediction errors. The majority of studies, however, administered tasks which imposed demands above and beyond the intrinsic requirements of visual word recognition. The present study assessed the response of the left vOT to words and pseudowords by using the onset of the first fixation on a stimulus as time point for modeling the BOLD signal (fixation-related fMRI). This method allowed us to assess the neural correlates of self-paced silent reading with minimal task demands and natural exposure durations. In contrast to the predominantly reported higher vOT activation for pseudowords, we found higher activation for words. This finding is at odds with the expectation of higher vOT activation for pseudowords due to automatically generated predictions and the accompanying elevation of prediction errors. Our finding conforms to an alternative explanation which considers such top-down processing to be non-automatic and task-dependent.
Collapse
|