1
|
ElFessi R, Khamessi O, De Waard M, Srairi-Abid N, Ghedira K, Marrouchi R, Kharrat R. Structure-Function Relationship of a Novel MTX-like Peptide (MTX1) Isolated and Characterized from the Venom of the Scorpion Maurus palmatus. Int J Mol Sci 2024; 25:10472. [PMID: 39408804 PMCID: PMC11477167 DOI: 10.3390/ijms251910472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the β-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Oussema Khamessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Michel De Waard
- l’Institut du Thorax, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médical (INSERM), F-44000 Nantes, France;
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Riadh Marrouchi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Riadh Kharrat
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| |
Collapse
|
2
|
ElFessi R, Khamessi O, Srairi-Abid N, Sabatier JM, Tytgat J, Peigneur S, Kharrat R. Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion. Molecules 2022; 27:molecules27217278. [PMID: 36364113 PMCID: PMC9657394 DOI: 10.3390/molecules27217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Scorpion venom is a rich source of promising therapeutic compounds, such as highly selective ion channel ligands with potent pharmacological effects. Bot33 is a new short polypeptide of 38 amino acid residues with six cysteines purified from the venom of the Buthus occitanus tunetanus scorpion. Bot33 has revealed less than 40% identity with other known alpha-KTx families. This peptide displayed a neutral amino acid (Leucine), in the position equivalent to lysine 27, described as essential for the interaction with Kv channels. Bot33 did not show any toxicity following i.c.v. injection until 2 µg/kg mouse body weight. Due to its very low venom concentration (0.24%), Bot33 was chemically synthesized. Unexpectedly, this peptide has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes, and it was found that Bot33 has no effect on seven Kv channel subtypes. Interestingly, an in silico molecular docking study shows that the Leu27 prevents the interaction of Bot33 with the Kv1.3 channel. All our results indicate that Bot33 may have a different mode of action from other scorpion toxins, which will be interesting to elucidate.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Oussema Khamessi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Najet Srairi-Abid
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Université Aix-Marseille, UMR 7051, 13005 Marseille, France
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (S.P.); (R.K.)
| | - Riadh Kharrat
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
- Correspondence: (S.P.); (R.K.)
| |
Collapse
|
3
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
4
|
BenAissa R, Othman H, Villard C, Peigneur S, Mlayah-Bellalouna S, Abdelkafi-Koubaa Z, Marrakchi N, Essafi-Benkhadir K, Tytgat J, Luis J, Srairi-Abid N. AaHIV a sodium channel scorpion toxin inhibits the proliferation of DU145 prostate cancer cells. Biochem Biophys Res Commun 2020; 521:340-346. [DOI: 10.1016/j.bbrc.2019.10.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
|
5
|
RK, the first scorpion peptide with dual disintegrin activity on α1β1 and αvβ3 integrins. Int J Biol Macromol 2018; 120:1777-1788. [DOI: 10.1016/j.ijbiomac.2018.09.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 01/25/2023]
|
6
|
Khamessi O, Ben Mabrouk H, ElFessi-Magouri R, Kharrat R. RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem Biophys Res Commun 2018; 499:1-7. [DOI: 10.1016/j.bbrc.2018.01.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022]
|
7
|
Maatoug R, Jebali J, Guieu R, De Waard M, Kharrat R. BotAF, a new Buthus occitanus tunetanus scorpion toxin, produces potent analgesia in rodents. Toxicon 2018; 149:72-85. [PMID: 29337220 DOI: 10.1016/j.toxicon.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
This work reports the purification of new potent scorpion neuropeptide, named BotAF, by an activity-guided screening approach. BotAF is a 64-residue long-chain peptide that shares very high similarity with the original β-like scorpion toxin group, in which several peptides have been characterized to be anti-nociceptive in rodents. BotAF administration to rodents does not produce any toxicity or motor impairment, including at high doses. In all models investigated, BotAF turned out to be an efficient peptide in abolishing acute and inflammatory (both somatic and visceral) pain in rodents. It performs with high potency compared to standard analgesics tested in the same conditions. The anti-nociceptive activity of BotAF depends on the route of injection: it is inactive when tested by i.c.v. or i.v. routes but gains in potency when pre-injected locally (in the same compartment than the irritant itself) or by i.t. root 40 to 60 min before pain induction, respectively. BotAF is not an AINS-like compound as it fails to reduce inflammatory edema. Also, it does not activate the opioidergic system as its activity is not affected by naloxone. BotAF does also not bind onto RyR and has low activity towards DRG ion channels (particularly TTX sensitive Na+ channels) and does not bind onto rat brain synaptosome receptors. In somatic and visceral pain models, BotAF dose-dependently inhibited lumbar spinal cord c-fos/c-jun mRNA up regulation. Altogether, our data favor a spinal or peripheral anti-nociceptive mode of action of BotAF.
Collapse
Affiliation(s)
- Riadh Maatoug
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques, 13, Place Pasteur BP-74, Tunis, 1002, Tunisia
| | - Jed Jebali
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques, 13, Place Pasteur BP-74, Tunis, 1002, Tunisia
| | - Régis Guieu
- Biochimie, Hôpital de la Timone, 13005, Marseille, France
| | - Michel De Waard
- Inserm U1087, Institut du Thorax, groupe IIb, Université de Nantes, 8 quai moncousu, 44000, Nantes, France; Smartox Biotechnology, 570 rue de la chimie, bâtiment Nanobio, 38700, Saint Martin d'Hères, France
| | - Riadh Kharrat
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques, 13, Place Pasteur BP-74, Tunis, 1002, Tunisia.
| |
Collapse
|
8
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
9
|
Mlayah-Bellalouna S, Dufour M, Mabrouk K, Mejdoub H, Carlier E, Othman H, Belghazi M, Tarbe M, Goaillard JM, Gigmes D, Seagar M, El Ayeb M, Debanne D, Srairi-Abid N. AaTX1, from Androctonus australis scorpion venom: purification, synthesis and characterization in dopaminergic neurons. Toxicon 2014; 92:14-23. [PMID: 25240295 DOI: 10.1016/j.toxicon.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/21/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
We have purified the AaTX1 peptide from the Androctonus australis (Aa) scorpion venom, previously cloned and sequenced by Legros and collaborators in a venom gland cDNA library from Aa scorpion. AaTX1 belongs to the α-Ktx15 scorpion toxins family (αKTx15-4). Characterized members of this family share high sequence similarity and were found to block preferentially IA-type voltage-dependent K(+) currents in rat cerebellum granular cells in an irreversible way. In the current work, we studied the effects of native AaTX1 (nAaTX1) using whole-cell patch-clamp recordings of IA current in substantia nigra pars compacta dopaminergic neurons. At 250 nM, AaTX1 induces 90% decrease in IA current amplitude. Its activity was found to be comparable to that of rAmmTX3 (αKTx15-3), which differs by only one conserved (R/K) amino acid in the 19th position suggesting that the difference between R19 and K19 in AaTX1 and AmmTX3, respectively, may not be critical for the toxins' effects. Molecular docking of both toxins with Kv4.3 channel is in agreement with experimental data and suggests the implication of the functional dyade K27-Y36 in toxin-channel interactions. Since AaTX1 is not highly abundant in Aa venom, it was synthesized as well as AmmTX3. Synthetic peptides, native AaTX1 and rAmmTX3 peptides showed qualitatively the same pharmacological activity. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on Kv4.3 channel.
Collapse
Affiliation(s)
- Saoussen Mlayah-Bellalouna
- Institut Pasteur de Tunis, Laboratoire des Venins et biomolécules thérapeutiques LR11IPT08, Tunis 1002, Tunisia
| | - Martial Dufour
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), Faculté de Médecine - Secteur Nord, Aix Marseille Université, 51, Bd Pierre Dramard, 13015 Marseille, France
| | - Kamel Mabrouk
- Aix Marseille Université, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe CROPS, Site St Jérôme, Avenue Escadrille Normandie Niémen, Case 542, 13397 Marseille Cedex 20, France
| | - Hafedh Mejdoub
- USCR séquenceur de protéines, faculté des sciences de Sfax, Route de Soukra, Km 3.5, BP 1171, 3000 Sfax, Tunisia
| | - Edmond Carlier
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), Faculté de Médecine - Secteur Nord, Aix Marseille Université, 51, Bd Pierre Dramard, 13015 Marseille, France
| | - Houcemeddine Othman
- Institut Pasteur de Tunis, Laboratoire des Venins et biomolécules thérapeutiques LR11IPT08, Tunis 1002, Tunisia
| | - Maya Belghazi
- CRN2M UMR 7286, Plate Forme de Recherche en Neurosciences - CAPM, Faculté de Médecine-secteur Nord Aix Marseille Université, 51 bd Pierre Dramard, 13015 Marseille, France
| | - Marion Tarbe
- Aix Marseille Université, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe CROPS, Site St Jérôme, Avenue Escadrille Normandie Niémen, Case 542, 13397 Marseille Cedex 20, France
| | - Jean Marc Goaillard
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), Faculté de Médecine - Secteur Nord, Aix Marseille Université, 51, Bd Pierre Dramard, 13015 Marseille, France
| | - Didier Gigmes
- Aix Marseille Université, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe CROPS, Site St Jérôme, Avenue Escadrille Normandie Niémen, Case 542, 13397 Marseille Cedex 20, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), Faculté de Médecine - Secteur Nord, Aix Marseille Université, 51, Bd Pierre Dramard, 13015 Marseille, France
| | - Mohamed El Ayeb
- Institut Pasteur de Tunis, Laboratoire des Venins et biomolécules thérapeutiques LR11IPT08, Tunis 1002, Tunisia
| | - Dominique Debanne
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), Faculté de Médecine - Secteur Nord, Aix Marseille Université, 51, Bd Pierre Dramard, 13015 Marseille, France
| | - Najet Srairi-Abid
- Institut Pasteur de Tunis, Laboratoire des Venins et biomolécules thérapeutiques LR11IPT08, Tunis 1002, Tunisia.
| |
Collapse
|
10
|
Morjen M, Kallech-Ziri O, Bazaa A, Othman H, Mabrouk K, Zouari-Kessentini R, Sanz L, Calvete JJ, Srairi-Abid N, El Ayeb M, Luis J, Marrakchi N. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol 2012; 32:52-62. [PMID: 23262217 DOI: 10.1016/j.matbio.2012.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022]
Abstract
A novel Kunitz-type serine proteinase inhibitor, termed PIVL, was purified to homogeneity from the venom of the Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric polypeptide chain cross-linked by three disulfide linkages with an isotope-averaged molecular mass of 7691.7 Da. The 67-residue full-length PIVL sequence was deduced from a venom gland cDNA clone. Structurally, PIVL is built by a single Kunitz/BPTI-like domain. Functionally, it is able to specifically inhibit trypsin activity. Interestingly, PIVL exhibits an anti-tumor effect and displays integrin inhibitory activity without being cytotoxic. Here we show that PIVL is able to dose-dependently inhibit the adhesion, migration and invasion of human glioblastoma U87 cells. Our results also show that PIVL impairs the function of αvβ3 and to a lesser extent, the activity of αvβ6, αvβ5, α1β1 and α5β1 integrins. Interestingly, we demonstrate that the (41)RGN(43) motif of PIVL is likely responsible for its anti-cancer effect. By using time lapse videomicroscopy, we found that PIVL significantly reduced U87 cells motility and affected cell directionality persistence by 68%. These findings reveal novel pharmacological effects for a Kunitz-type serine proteinase inhibitor.
Collapse
Affiliation(s)
- Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Rjeibi I, Mabrouk K, Mosrati H, Berenguer C, Mejdoub H, Villard C, Laffitte D, Bertin D, Ouafik L, Luis J, Elayeb M, Srairi-Abid N. Purification, synthesis and characterization of AaCtx, the first chlorotoxin-like peptide from Androctonus australis scorpion venom. Peptides 2011; 32:656-63. [PMID: 21262299 DOI: 10.1016/j.peptides.2011.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 01/18/2023]
Abstract
AaCtx is the first chlorotoxin-like peptide isolated from Androctonus australis scorpion venom. Its amino acid sequence shares 70% similarity with chlorotoxin from Leiurus quinquestriatus scorpion venom, from which it differs by twelve amino acids. Due to its very low concentration in venom (0.05%), AaCtx was chemically synthesized. Both native and synthetic AaCtx were active on invasion and migration of human glioma cells. However, their activity was found to be lower than that of chlorotoxin. The molecular model of AaCtx shows that most of amino acids differing between AaCtx and chlorotoxin are localized on the N-terminal loop and the α-helix. Based on known compounds that block chloride channels, we suggest that the absence of negative charged amino acids on AaCtx structure may be responsible for its weak activity on glioma cells migration and invasion. This finding serves as a starting point for structure-function relationship studies leading to design high specific anti-glioma drugs.
Collapse
Affiliation(s)
- Ilhem Rjeibi
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13, Place Pasteur, BP 74, 1002 Belvédère, Universités Tunis-El Manar, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Srairi-Abid N, Shahbazzadeh D, Chatti I, Mlayah-Bellalouna S, Mejdoub H, Borchani L, Benkhalifa R, Akbari A, El Ayeb M. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus. FEBS J 2008; 275:4641-50. [DOI: 10.1111/j.1742-4658.2008.06607.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Galeotti N, Quattrone A, Vivoli E, Norcini M, Bartolini A, Ghelardini C. Different involvement of type 1, 2, and 3 ryanodine receptors in memory processes. Learn Mem 2008; 15:315-23. [PMID: 18441289 DOI: 10.1101/lm.929008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was then evaluated by inhibiting the expression of the three RyR proteins in the mouse brain. A selective knockdown of the RyR isoforms was obtained by the i.c.v. administration of antisense oligonucleotides (aODNs) complementary to the sequence of RyR1, RyR2 and RyR3 proteins, as demonstrated by immunoblotting experiments. RyR1 (5-9 nmol per mouse i.c.v.) knockdown mice did not show any memory dysfunction. Conversely, RyR2 (1-7 nmol per mouse i.c.v.) and RyR3 (1-7 nmol per mouse i.c.v.) knockdown animals showed an impairment of memory processes. This detrimental effect was temporary and reversible, disappearing 7 d after the end of the aODN treatment. At the highest effective doses, none of the compounds used impaired motor coordination, as revealed by the rota rod test, nor modified spontaneous mobility and inspection activity, as revealed by the hole-board test. In conclusion, the lack of any involvement of cerebral RyR1 was demonstrated. These findings also showed the involvement of type 2 and type 3 RyR in the modulation of memory functions identifying these cerebral RyR isoforms as critical targets underlying memory processes.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, I-50139 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Immunological characterization of a non-toxic peptide conferring protection against the toxic fraction (AahG50) of the Androctonus australis hector venom. Toxicon 2008; 51:353-62. [PMID: 18054371 DOI: 10.1016/j.toxicon.2007.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/01/2007] [Accepted: 10/16/2007] [Indexed: 11/20/2022]
Abstract
KAaH1 and KAaH2 are non-toxic peptides, isolated from the venom of the Androctonus australis hector (Aah) scorpion. In a previous study, we showed these peptides to be the most abundant (approximately 10% each) in the toxic fraction (AahG50) of the Aah venom. KAaH1 and KAaH2 showed high sequence identities (approximately 60%) with birtoxin-like peptides, which likewise are the major peptidic components of Parabuthus transvaalicus scorpion venom. Here, we report the immunological characterization of KAaH1 and KAaH2. These peptides were found to be specifically recognized by polyclonal antibodies raised against AahII, the most toxic peptide of Aah venom, and represents the second antigenic group, including toxins from different scorpion species in the world. Moreover, KAaH1 partially inhibits AahII binding to its specific antibody, suggesting some common epitopes between these two peptides. The identification of possible key antigenic residues in KAaH1 was deduced from comparison of its 3-D model with the experimental structure of AahII. Two clusters of putative antigenically important residues were found at the exposed surface; one could be constituted of V3 and D53, the other of D10, T15 and Y16. Polyclonal antibodies raised against KAaH1 in mice were found to cross-react with both AahII and AahG50, and neutralizing 5LD(50)/ml of the toxic fraction. Mice vaccinated with KAaH1 were protected against a challenge of 2LD(50) of AahG50 fraction. All these data suggest that KAaH1 has clear advantages over the use of the whole or part of the venom. KAaH1 is not toxic and could produce sera-neutralizing scorpion toxins, not only from Aah venom, but also toxins of other venoms from Buthus, Leiurus, or Parabuthus scorpion species presenting antigenically related toxins.
Collapse
|
16
|
Shahbazzadeh D, Srairi-Abid N, Feng W, Ram N, Borchani L, Ronjat M, Akbari A, Pessah I, De Waard M, El Ayeb M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem J 2007; 404:89-96. [PMID: 17291197 PMCID: PMC1868827 DOI: 10.1042/bj20061404] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present work, we purified and characterized a novel toxin named hemicalcin from the venom of the Iranian chactoid scorpion Hemiscorpius lepturus where it represents 0.6% of the total protein content. It is a 33-mer basic peptide reticulated by three disulfide bridges, and that shares between 85 and 91% sequence identity with four other toxins, all known or supposed to be active on ryanodine-sensitive calcium channels. Hemicalcin differs from these other toxins by seven amino acids at positions 9 (leucine/arginine), 12 (alanine/glutamic acid), 13 (aspartic acid/asparagine), 14 (lysine/asparagine), 18 (serine/glycine), 26 (threonine/alanine) and 28 (proline/isoleucine/alanine). In spite of these differences, hemicalcin remains active on ryanodine-sensitive Ca2+ channels, since it increases [3H]ryanodine binding on RyR1 (ryanodine receptor type 1) and triggers Ca2+ release from sarcoplasmic vesicles. Bilayer lipid membrane experiments, in which the RyR1 channel is reconstituted and its gating properties are analysed, indicate that hemicalcin promotes an increase in the opening probability at intermediate concentration and induces a long-lasting subconductance level of 38% of the original amplitude at higher concentrations. Mice intracerebroventricular inoculation of 300 ng of hemicalcin induces neurotoxic symptoms in vivo, followed by death. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on the ryanodine-sensitive channel.
Collapse
Affiliation(s)
- Delavar Shahbazzadeh
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
- †Biotechnology Department, Institute Pasteur of Iran, P.O. Box 13164, Tehran, Iran
| | - Najet Srairi-Abid
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
- To whom correspondence should be addressed (email )
| | - Wei Feng
- ‡Department of Veterinary Medicine-Molecular Biosciences and Center for Children's Environmental Health, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A
| | - Narendra Ram
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Lamia Borchani
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
| | - Michel Ronjat
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Abolfazl Akbari
- ∥Razi Vaccine & Serum Research Institute, 31975/148 Karaj, Iran
| | - Isaac N. Pessah
- ‡Department of Veterinary Medicine-Molecular Biosciences and Center for Children's Environmental Health, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A
| | - Michel De Waard
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Mohamed El Ayeb
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
| |
Collapse
|