1
|
Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Barkley V, Mirnajafi-Zadeh J. Group I metabotropic glutamate receptors contribute to the antiepileptic effect of electrical stimulation in hippocampal CA1 pyramidal neurons. Epilepsy Res 2021; 178:106821. [PMID: 34839145 DOI: 10.1016/j.eplepsyres.2021.106821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Low-frequency deep brain stimulation (LFS) inhibits neuronal hyperexcitability during epilepsy. Accordingly, the use of LFS as a treatment method for patients with drug-resistant epilepsy has been proposed. However, the LFS antiepileptic mechanisms are not fully understood. Here, the role of metabotropic glutamate receptors group I (mGluR I) in LFS inhibitory action on epileptiform activity (EA) was investigated. EA was induced by increasing the K+ concentration in artificial cerebrospinal fluid (ACSF) up to 12 mM in hippocampal slices of male Wistar rats. LFS (1 Hz, 900 pulses) was delivered to the bundles of Schaffer collaterals at the beginning of EA. The excitability of CA1 pyramidal neurons was assayed by intracellular whole-cell recording. Applying LFS reduced the firing frequency during EA and substantially moved the membrane potential toward repolarization after a high-K+ ACSF washout. In addition, LFS attenuated the EA-generated neuronal hyperexcitability. A blockade of both mGluR 1 and mGluR 5 prevented the inhibitory action of LFS on EA-generated neuronal hyperexcitability. Activation of mGluR I mimicked the LFS effects and had similar inhibitory action on excitability of CA1 pyramidal neurons following EA. However, mGluR I agonist's antiepileptic action was not as strong as LFS. The observed LFS effects were significantly attenuated in the presence of a PKC inhibitor. Altogether, the LFS' inhibitory action on neuronal hyperexcitability following EA relies, in part, on the activity of mGluR I and a PKC-related signaling pathway.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Hegemann RU, Abraham WC. Electrophysiological Investigation of Metabotropic Glutamate Receptor-Dependent Metaplasticity in the Hippocampus. Methods Mol Biol 2019; 1941:79-91. [PMID: 30707429 DOI: 10.1007/978-1-4939-9077-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are one of the major types of glutamatergic receptors contributing to synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression. Interestingly, activation of mGluRs alone can engage metaplastic mechanisms that create a new neuronal state, facilitating the induction and maintenance of future LTP. Here we describe typical methods used to investigate mGluR-induced metaplasticity in acute hippocampal slices. While this chapter focuses on in vitro field electrophysiological investigations, many of the principles can be applied to single-cell recordings as well as in vivo electrophysiology and indeed many types of metaplasticity phenomena.
Collapse
Affiliation(s)
- Regina U Hegemann
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Role of postsynaptic inositol 1, 4, 5-trisphosphate receptors in depotentiation in guinea pig hippocampal CA1 neurons. Brain Res 2016; 1642:154-162. [DOI: 10.1016/j.brainres.2016.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
|
4
|
Liu MG, Zhuo M. Loss of long-term depression in the insular cortex after tail amputation in adult mice. Mol Pain 2014; 10:1. [PMID: 24398034 PMCID: PMC3912895 DOI: 10.1186/1744-8069-10-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023] Open
Abstract
The insular cortex (IC) is an important forebrain structure involved in pain perception and taste memory formation. Using a 64-channel multi-electrode array system, we recently identified and characterized two major forms of synaptic plasticity in the adult mouse IC: long-term potentiation (LTP) and long-term depression (LTD). In this study, we investigate injury-related metaplastic changes in insular synaptic plasticity after distal tail amputation. We found that tail amputation in adult mice produced a selective loss of low frequency stimulation-induced LTD in the IC, without affecting (RS)-3,5-dihydroxyphenylglycine (DHPG)-evoked LTD. The impaired insular LTD could be pharmacologically rescued by priming the IC slices with a lower dose of DHPG application, a form of metaplasticity which involves activation of protein kinase C but not protein kinase A or calcium/calmodulin-dependent protein kinase II. These findings provide important insights into the synaptic mechanisms of cortical changes after peripheral amputation and suggest that restoration of insular LTD may represent a novel therapeutic strategy against the synaptic dysfunctions underlying the pathophysiology of phantom pain.
Collapse
Affiliation(s)
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49:1309-26. [PMID: 24385256 DOI: 10.1007/s12035-013-8603-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Atlântica 420, 09060-000, Santo André, SP, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Mukherjee S, Manahan-Vaughan D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 2013; 66:65-81. [DOI: 10.1016/j.neuropharm.2012.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/27/2022]
|
7
|
Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. J Neurosci 2012; 32:11318-29. [PMID: 22895715 DOI: 10.1523/jneurosci.0146-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) is a key form of synaptic plasticity important in learning and information storage in the brain. It has been studied in various cortical regions, including the anterior cingulate cortex (ACC). ACC is a crucial cortical region involved in such emotion-related physiological and pathological conditions as fear memory and chronic pain. In the present study, we used a multielectrode array system to map cingulate LTD in a spatiotemporal manner within the ACC. We found that low-frequency stimulation (1 Hz, 15 min) applied onto deep layer V induced LTD in layers II/III and layers V/VI. Cingulate LTD requires activation of metabotropic glutamate receptors (mGluRs), while L-type voltage-gated calcium channels and NMDA receptors also contribute to its induction. Peripheral amputation of the distal tail impaired ACC LTD, an effect that persisted for at least 2 weeks. The loss of LTD was rescued by priming ACC slices with activation of mGluR1 receptors by coapplying (RS)-3,5-dihydroxyphenylglycine and MPEP, a form of metaplasticity that involved the activation of protein kinase C. Our results provide in vitro evidence of the spatiotemporal properties of ACC LTD in adult mice. We demonstrate that tail amputation causes LTD impairment within the ACC circuit and that this can be rescued by activation of mGluR1.
Collapse
|
8
|
Yamazaki Y, Fujii S, Aihara T, Mikoshiba K. Activation of inositol 1, 4, 5-trisphosphate receptors during preconditioning low-frequency stimulation leads to reversal of long-term potentiation in hippocampal CA1 neurons. Neuroscience 2012; 207:1-11. [DOI: 10.1016/j.neuroscience.2012.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
9
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
10
|
Greget R, Pernot F, Bouteiller JMC, Ghaderi V, Allam S, Keller AF, Ambert N, Legendre A, Sarmis M, Haeberle O, Faupel M, Bischoff S, Berger TW, Baudry M. Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission. PLoS One 2011; 6:e28380. [PMID: 22194830 PMCID: PMC3240618 DOI: 10.1371/journal.pone.0028380] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/07/2011] [Indexed: 02/04/2023] Open
Abstract
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Renaud Greget
- Rhenovia Pharma, Mulhouse, France
- MIPS, Université de Haute Alsace, Mulhouse, France
| | | | - Jean-Marie C. Bouteiller
- Rhenovia Pharma, Mulhouse, France
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Viviane Ghaderi
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Sushmita Allam
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | - Merdan Sarmis
- Rhenovia Pharma, Mulhouse, France
- MIPS, Université de Haute Alsace, Mulhouse, France
| | | | | | | | - Theodore W. Berger
- Rhenovia Pharma, Mulhouse, France
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Michel Baudry
- Rhenovia Pharma, Mulhouse, France
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (MB); (SB)
| |
Collapse
|
11
|
Manahan-Vaughan D. MicroRNAs contribute to LTP in the hippocampus in vivo (Commentary on Wibrand et al.). Eur J Neurosci 2010; 31:634-5. [PMID: 20384809 DOI: 10.1111/j.1460-9568.2010.07140.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Denise Manahan-Vaughan
- Ruhr University Bochum, Medical Faculty, Department of Experimental Neurophysiology, Universitaetsstrasse 150, MABF 01/551, 44801 Bochum, Germany
| |
Collapse
|
12
|
Dölen G, Carpenter RL, Ocain TD, Bear MF. Mechanism-based approaches to treating fragile X. Pharmacol Ther 2010; 127:78-93. [DOI: 10.1016/j.pharmthera.2010.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 11/17/2022]
|
13
|
Xiao MY, Gustafsson B, Niu YP. Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA(A) receptors at central synapses. Curr Neuropharmacol 2010; 4:77-86. [PMID: 18615134 DOI: 10.2174/157015906775202986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/23/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023] Open
Abstract
The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.
Collapse
Affiliation(s)
- Min-Yi Xiao
- Institute of Physiology and Pharmacology, Göteborg University, Box 432, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
14
|
Wibrand K, Panja D, Tiron A, Ofte ML, Skaftnesmo KO, Lee CS, Pena JTG, Tuschl T, Bramham CR. Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci 2010; 31:636-45. [PMID: 20384810 PMCID: PMC3791877 DOI: 10.1111/j.1460-9568.2010.07112.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway. Real-time polymerase chain reaction analysis confirmed modest upregulation of miR-132 and miR-212, and downregulation of miR-219, while no changes occurred at 10 min post-HFS. Surprisingly, pharmacological blockade of N-methyl-d-aspartate receptor (NMDAR)-dependent LTP enhanced expression of these mature miRNAs. This HFS-evoked expression was abolished by local infusion of the group 1 metabotropic glutamate receptor (mGluR) antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). AIDA had no effect on LTP induction or maintenance, but blocked activity-dependent depotentiation of LTP. Turning to the analysis of miRNA precursors, we show that HFS elicits 50-fold elevations of primary (pri) and precursor (pre) miR-132/212 that is transcription dependent and mGluR dependent, but insensitive to NMDAR blockade. Primary miR-219 expression was unchanged during LTP. In situ hybridization showed upregulation of the pri-miR-132/212 cluster restricted to dentate granule cell somata. Thus, HFS induces transcription miR-132/212 that is mGluR dependent and functionally correlated with depotentiation rather than LTP. In contrast, NMDAR activation selectively downregulates mature miR-132, -212 and -219 levels, indicating accelerated decay of these mature miRNAs. This study demonstrates differential regulation of primary and mature miRNA expression by mGluR and NMDAR signaling following LTP induction, the function of which remains to be defined.
Collapse
Affiliation(s)
- Karin Wibrand
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Presynaptic m1 muscarinic receptors are necessary for mGluR long-term depression in the hippocampus. Proc Natl Acad Sci U S A 2010; 107:1618-23. [PMID: 20080609 DOI: 10.1073/pnas.0912540107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of M1 muscarininc acetylcholine receptors (m1 receptors) in metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), we produced mouse lines in which deletion of the m1 gene is restricted to the forebrain (FB-m1KO) or hippocampal CA3 pyramidal neurons (CA3-m1KO). Stimulation in FB-m1KO hippocampal slices resulted in excitatory postsynaptic potentials and long-term synaptic plasticity (long-term potentiation and LTD) similar to controls. The mice were deficient in (S)-3,5-dihydroxyphenylglycine hydrate (DHPG)-induced mGluR LTD, which correlated with a presynaptic increase in the release of neurotransmitters. Protein kinase C (PKC) activity, which is downstream from both mGluRs and m1 receptors, was reduced in CA3 but not in CA1. The presynaptic requirement of m1 receptors was confirmed by the lack of DHPG-induced mGluR LTD in the CA1 of slices from CA3-m1KO mice. mGluR LTD was rescued by stimulating PKC activity pharmacologically in CA3-m1KO mice. These data confirm a role for PKC activation in presynaptic induction of mGluR LTD and distinguish between the roles of mGluRs and m1 receptors.
Collapse
|
16
|
Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, Bramham CR. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem 2009; 284:31498-511. [PMID: 19755425 DOI: 10.1074/jbc.m109.056077] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of translation factor activity plays a major role in protein synthesis-dependent forms of synaptic plasticity. We examined translational control across the critical period of Arc synthesis underlying consolidation of long term potentiation (LTP) in the dentate gyrus of intact, anesthetized rats. LTP induction by high frequency stimulation (HFS) evoked phosphorylation of the cap-binding protein eukaryotic initiation factor 4E (eIF4E) and dephosphorylation of eIF2alpha on a protracted time course matching the time-window of Arc translation. Local infusion of the ERK inhibitor U0126 inhibited LTP maintenance and Arc protein expression, blocked changes in eIF4E and eIF2alpha phosphorylation state, and prevented initiation complex (eIF4F) formation. Surprisingly, inhibition of the mTOR protein complex 1 (mTORC1) with rapamycin did not impair LTP maintenance or Arc synthesis nor did it inhibit eIF4F formation or phosphorylation of eIF4E. Rapamycin nonetheless blocked mTOR signaling to p70 S6 kinase and ribosomal protein S6 and inhibited synthesis of components of the translational machinery. Using immunohistochemistry and in situ hybridization, we show that Arc protein expression depends on dual, ERK-dependent transcription and translation. Arc translation is selectively blocked by pharmacological inhibition of mitogen-activated protein kinase-interacting kinase (MNK), the kinase coupling ERK to eIF4E phosphorylation. Furthermore, MNK signaling was required for eIF4F formation. These results support a dominant role for ERK-MNK signaling in control of translational initiation and Arc synthesis during LTP consolidation in the dentate gyrus. In contrast, mTORC1 signaling is activated but nonessential for Arc synthesis and LTP. The work, thus, identifies translational control mechanisms uniquely tuned to Arc-dependent LTP consolidation in live rats.
Collapse
Affiliation(s)
- Debabrata Panja
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
17
|
Mockett BG, Hulme SR. Metaplasticity: new insights through electrophysiological investigations. J Integr Neurosci 2008; 7:315-36. [PMID: 18763726 DOI: 10.1142/s0219635208001782] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 11/18/2022] Open
Abstract
The term synaptic plasticity describes the ability of excitatory synapses to undergo activity-driven long-lasting changes in the efficacy of basal synaptic transmission. This change may be expressed as a long-term potentiation (LTP) or as a long-term depression (LTD). Metaplasticity is a higher-order form of synaptic plasticity that regulates the expression of both LTP and LTD through processes that are initiated by cellular activity that precedes a later bout of plasticity-inducing synaptic activity. Activation by prior synaptic activity and later expression as a facilitation or inhibition of activity-dependent synaptic plasticity are fundamental properties of metaplasticity. The intracellular mechanisms which support metaplasticity appear to be closely linked to those of synaptic plasticity, hence there are significant technical challenges to overcome in order to elucidate those mechanisms specific to metaplasticity. This review will examine the progress in the characterization of metaplasticity over the last decade or so with a focus on findings gained using electrophysiological techniques. It will look at the techniques applied, the brain regions investigated and the knowledge gained from the application of a wide range of protocols designed to examine the influence of varied forms of prior synaptic activity on later, activity-induced, synaptic plasticity.
Collapse
Affiliation(s)
- Bruce G Mockett
- Department of Psychology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
18
|
Bortolotto ZA, Collett VJ, Conquet F, Jia Z, Collingridge GL. An analysis of the stimulus requirements for setting the molecular switch reveals a lower threshold for metaplasticity than synaptic plasticity. Neuropharmacology 2008; 55:454-8. [PMID: 18606173 DOI: 10.1016/j.neuropharm.2008.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/04/2008] [Accepted: 06/12/2008] [Indexed: 11/16/2022]
Abstract
The requirements for the synaptic activation of metabotropic glutamate (mGlu) receptors and for the induction of metaplasticity in the hippocampus are not known. In the present study, we have investigated the synaptic activation of mGlu5 receptors and the setting of the molecular switch, a form of metaplasticity, at CA1 synapses in the mouse hippocampus. We find that as few as eight stimuli (delivered at 100Hz) are sufficient to set the molecular switch, since a subsequent tetanus delivered to the same input is able to induce long-term potentiation (LTP) in the presence of the mGlu receptor antagonist MCPG ((S)-alpha-methyl-4-carboxyphenylglycine). In addition, we find that the molecular switch can be activated over a wide frequency range. When 10 shocks were delivered the threshold frequency was 4Hz. The ability of 10 shocks (delivered at 100Hz) to set the molecular switch was lost in the mGlu5 knockout. These data show that mGlu5 receptors can be activated synaptically and metaplasticity can be induced by relatively few stimuli. Indeed, metaplasticity was induced by stimuli that were subthreshold for the induction of LTP per se. Thus, metaplasticity has a lower threshold than the synaptic plasticity that it regulates.
Collapse
Affiliation(s)
- Zuner A Bortolotto
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Kulla A, Manahan-Vaughan D. Modulation by group 1 metabotropic glutamate receptors of depotentiation in the dentate gyrus of freely moving rats. Hippocampus 2008; 18:48-54. [PMID: 17924526 DOI: 10.1002/hipo.20366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the hippocampus, synaptic depression of potentiated synapses in the form of depotentiation, or of naive synapses in the form of long-term depression (LTD) is mediated by distinct molecular mechanisms. Activation of group 1 metabotropic glutamate receptors (mGluRs) is critically required for both hippocampal long-term potentiation (LTP) and LTD in vivo, but their involvement in depotentiation is unclear. In this study, we investigated whether this class of mGluRs contributes to depotentiation in freely moving rats. Male adult Wistar rats underwent chronic implantation of stimulating and recording electrodes in the perforant path and dentate gyrus granule cell layer, respectively, as well as an injection cannula in the ipsilateral cerebral ventricle. Robust LTP which endured for over 24 h, was induced by high frequency tetanization (HFT, 200 Hz). Depotentiation was induced with LFS (5 Hz, 600 pulses) given 5 min after the LTP-inducing tetanus was applied. The selective group 1 mGluR antagonists, (S)-4-carboxyphenylglycine and (R,S)-1-aminoindan-1,5-dicarboxylic acid significantly inhibited both depotentiation and LTP. Activation of group I mGluRs leads to changes in postsynaptic intracellular calcium levels. These findings suggest that activation of group I mGluRs mediate thresholds for depotentiation and for persistent LTP. Effects may be linked to the intensity and duration of the calcium signal elicited by LFS and HFT.
Collapse
Affiliation(s)
- Alexander Kulla
- Institute for Physiology of the Charite, Synaptic Plasticity Research Group, Humboldt University, Berlin, Germany
| | | |
Collapse
|
20
|
Kirschstein T, Bauer M, Müller L, Rüschenschmidt C, Reitze M, Becker AJ, Schoch S, Beck H. Loss of metabotropic glutamate receptor-dependent long-term depression via downregulation of mGluR5 after status epilepticus. J Neurosci 2007; 27:7696-704. [PMID: 17634364 PMCID: PMC6672893 DOI: 10.1523/jneurosci.4572-06.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity is thought to be a key mechanism of information storage in the CNS. Different forms of synaptic long-term potentiation have been shown to be impaired in neurological disorders. Here, we show that metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), but not NMDA receptor-dependent LTD at Schaffer collateral-CA1 synapses, is profoundly impaired after status epilepticus. Brief application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM; 5 min) induced mGluR LTD in control, but not in pilocarpine-treated rats. Experiments in the presence of selective inhibitors of either mGluR5 [2-methyl-6-(phenylethynyl)-pyridine] or mGluR1 [7-(hydroxyimino)cyclopropachromen-carboxylate ethyl ester and (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid] demonstrate that loss of mGluR LTD is most likely attributable to a loss of mGluR5 function. Quantitative real-time reverse transcription PCR revealed a specific downregulation of mGluR5 mRNA, but not of mGluR1 mRNA in the CA1 region. Furthermore, we detected a strong reduction in mGluR5 protein expression by immunofluorescence and quantitative immunoblotting. Additionally, the scaffolding protein Homer that mediates coupling of mGluR5 to downstream signaling cascades was downregulated. Thus, we conclude that the reduction of mGluR LTD after pilocarpine-induced status epilepticus is the result of the subtype-specific downregulation of mGluR5 and associated downstream signaling components.
Collapse
Affiliation(s)
- Timo Kirschstein
- Department of Epileptology, University of Bonn, D-53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Craig S, Commins S. Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex. Brain Res 2007; 1147:124-39. [PMID: 17368431 DOI: 10.1016/j.brainres.2007.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 01/30/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
The hippocampal formation (HF) is a brain structure critically involved in memory formation. Two major pathways have been identified in the rat; one projection targets the hippocampus via perirhinal cortex and lateral entorhinal cortex (LEC) while another targets the hippocampus via postrhinal cortex and medial entorhinal cortex (MEC). Areas CA1 and subiculum constitute major output structures of HF and target many cortical structures including EC. These return projections are also anatomically segregated with distinct regions of CA1 and subiculum projecting to either the LEC or MEC. We have previously demonstrated that the projections from CA1 and subiculum to the EC are capable of sustaining short- and long-term plastic changes. Here we detail a physiological topography that exists along the hippocampal output projections, equating well with the known anatomy. Specifically, field excitatory postsynaptic potential (fEPSP) responses in LEC are stronger following distal CA1 and proximal subiculum stimulation, compared to either proximal CA1 or distal subiculum stimulation. In addition, fEPSP responses in MEC are stronger following proximal CA1 stimulation compared to distal CA1. We also demonstrate that the distal CA1-LEC, proximal CA1-MEC and proximal subiculum-LEC projections are all capable of frequency-dependent plastic effects that shift the response from LTD to LTP. In addition, responses in distal CA1-LEC projection seem to show metaplastic capabilities. We discuss the possibility of dissociation between LEC and MEC projections, which may suggest two functional circuits from the HF to the cortex and may have implications in information processing, memory research and hippocampal seizure spread to the cortex.
Collapse
Affiliation(s)
- Sarah Craig
- Department of Psychology, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
22
|
Mellentin C, Jahnsen H, Abraham WC. Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices. Neuropharmacology 2007; 52:118-25. [PMID: 16905161 DOI: 10.1016/j.neuropharm.2006.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 11/19/2022]
Abstract
Administration of the Group 1 metabotropic glutamate receptor (mGluR) agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) facilitates ("primes") subsequent long-term potentiation (LTP) through a phospholipase C signaling cascade that may involve release of Ca2+ from the endoplasmic reticulum (ER). We investigated the intracellular calcium pathways involved in this priming effect, recording field potentials from area CA1 of rat hippocampal slices before and after high-frequency stimulation. The priming of LTP by DHPG was prevented by co-administration of cyclopiazonic acid, which depletes ER Ca2+ stores. The priming effect was also blocked by the ryanodine receptor (RYR) antagonist ryanodine (RYA, 100 microM). In contrast, a low dose of RYA (10 microM) which opens the RYR channel, by itself primed LTP. In addition to RYR activation, entry of extracellular calcium through store-operated channels appears necessary for priming, since diverse treatments known to impede store-operated channel activity completely blocked both RYA and DHPG priming effects. Thus, RYR activation plays a critical role in the priming of LTP by Group 1 mGluRs, and this effect is coupled to the entry of extracellular calcium, probably through store-operated calcium channels.
Collapse
Affiliation(s)
- C Mellentin
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark; Department of Psychology, University of Otago, Otago, New Zealand.
| | | | | |
Collapse
|
23
|
Derrick BE. Plastic processes in the dentate gyrus: a computational perspective. PROGRESS IN BRAIN RESEARCH 2007; 163:417-51. [PMID: 17765732 DOI: 10.1016/s0079-6123(07)63024-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dentate gyrus has the capacity for numerous types of synaptic plasticity that use diverse mechanisms and are thought essential for the storage of information in the hippocampus. Here we review the various forms of synaptic plasticity that involve afferents and efferents of the dentate gyrus, and, from a computational perspective, relate how these plastic processes might contribute to sparse, orthogonal encoding, and the selective recall of information within the hippocampus.
Collapse
Affiliation(s)
- Brian E Derrick
- Department of Biology, The Cajal Neuroscience Research Institute, The University of Texas at San Antonio, TX 78249-0662, USA.
| |
Collapse
|
24
|
Pöschel B, Stanton PK. Comparison of cellular mechanisms of long-term depression of synaptic strength at perforant path-granule cell and Schaffer collateral-CA1 synapses. PROGRESS IN BRAIN RESEARCH 2007; 163:473-500. [PMID: 17765734 DOI: 10.1016/s0079-6123(07)63026-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter compares the cellular mechanisms that have been implicated in the induction and expression of long-term depression (LTD) at Schaffer collateral-CA1 synapses to perforant path-dentate gyrus (DG) synapses. In general, Schaffer collateral LTD and long-term potentiation (LTP) both appear to be a complex combination of many alterations in synaptic transmission that occur at both presynaptic and postsynaptic sites, while at perforant path synapses, most evidence has focused on postsynaptic long-term alterations. Within the DG, the medial perforant path is far more studied than lateral perforant path synapses, where most evidence relates to the induction of heterosynaptic LTD at lateral perforant path synapses when LTP is induced in the medial perforant path. Of course, there remain many other classes of synapses in the DG where synaptic plasticity, including LTD, have been largely neglected. It is clear that a better understanding of the range of DG loci where long-lasting activity-dependent plasticity, both LTD and LTP, are expressed will be essential to improve our understanding of the cognitive roles of such DG plasticity.
Collapse
Affiliation(s)
- Beatrice Pöschel
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
25
|
Wang Q, Chang L, Rowan MJ, Anwyl R. Developmental dependence, the role of the kinases p38 MAPK and PKC, and the involvement of tumor necrosis factor-R1 in the induction of mGlu-5 LTD in the dentate gyrus. Neuroscience 2006; 144:110-8. [PMID: 17055173 DOI: 10.1016/j.neuroscience.2006.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/10/2006] [Indexed: 10/24/2022]
Abstract
The mechanisms of mGluR-LTD were studied in the dentate gyrus in vitro. The most effective protocol for inducing mGluR-LTD in 6-8 week animals was brief high frequency stimulation (HFS) applied in the presence of the NMDAR antagonist AP5. Evidence for HFS inducing LTD via activation of perisynaptically located mGluRs was established, as an inhibitor of glutamate transporter potentiated HFS-LTD. HFS-LTD was mainly mediated by activation of mGluR5, although a partial involvement of mGluR1 was found. (RS)-3,5-Dihydroxyphenylglycine (DHPG) also induced LTD, but in an age dependent manner, being large in 2 week animals but absent in 6-8 week animals. DHPG-LTD in the dentate gyrus also had a much slower rise time than that in CA1, and unlike CA1, the expression/maintenance of mGluR-LTD was not inhibited by mGluR antagonists. The use of pharmacological inhibitors showed that the induction of HFS-LTD was partially dependent upon activation of L-type Ca channels, release of Ca from ryanodine receptor-sensitive intracellular Ca stores, and the kinases p38 mitogen-activated protein kinase (MAPK), protein kinase C (PKC), but not c-Jun N-terminal kinase or COX-2. Evidence for the involvement of tumor necrosis factor-receptor 1 (TNF-R1) in the induction of mGluR-LTD was presented in the present study, with both HFS-mGluR-LTD and DHPG-LTD being absent in mutant mice null for TNF-R1.
Collapse
Affiliation(s)
- Q Wang
- Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
26
|
Behrens UD, Borde J, Mack AF, Wagner HJ. Distribution of phosphorylated protein kinase C alpha in goldfish retinal bipolar synaptic terminals: control by state of adaptation and pharmacological treatment. Cell Tissue Res 2006; 327:209-20. [PMID: 17043793 DOI: 10.1007/s00441-006-0302-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
Protein kinase C (PKC) is a signalling enzyme critically involved in many aspects of synaptic plasticity. In cyprinid retinae, the PKC alpha isoform is localized in a subpopulation of depolarizing bipolar cells that show adaptation-related morphological changes of their axon terminals. We have studied the subcellular localization of phosphorylated PKC alpha (pPKC alpha) in retinae under various conditions by immunohistochemistry with a phosphospecific antibody. In dark-adapted retinae, pPKC alpha immunoreactivity is weak in the cytoplasm of synaptic terminals, labelling being predominantly associated with the membrane compartment. In light-adapted cells, immunoreactivity is diffusely distributed throughout the terminal. Western blot analysis has revealed a reduction of pPKC alpha immunoreactivity in cytosolic fractions of homogenized dark-adapted retinae compared with light-adapted retinae. Pharmacological experiments with the isoform-specific PKC blocker Goe6976 have shown that inhibition of the enzyme influences immunolabelling for pPKC alpha, mimicking the effects of light on the subcellular distribution of immunoreactivity. Our findings suggest that the state of adaptation modifies the subcellular localization of a signalling molecule (PKC alpha) at the ribbon-type synaptic complex. We propose that changes in the subcellular distribution of PKC alpha immunoreactivity might be one component regulating the strength of the signal transfer of the bipolar cell terminal.
Collapse
Affiliation(s)
- Uwe D Behrens
- Anatomisches Institut, Oesterbergstrasse 3, 72074, Tübingen, Germany.
| | | | | | | |
Collapse
|
27
|
McCutchen E, Scheiderer CL, Dobrunz LE, McMahon LL. Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses. J Neurophysiol 2006; 96:3114-21. [PMID: 17005622 DOI: 10.1152/jn.00144.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory recently characterized a form of long-term depression (LTD) at CA3-CA1 synapses mediated by M1 muscarinic receptors (mAChRs), termed muscarinic LTD (mLTD). mLTD is both activity and NMDAR dependent, characteristics shared by forms of synaptic plasticity thought to be relevant to learning and memory, including long-term potentiation (LTP) induced by high-frequency stimulation (HFS-LTP) and long-term depression induced by low-frequency stimulation (LFS-LTD). However, it remains unclear whether mLTD can occur sequentially with these electrically induced forms of hippocampal plasticity or whether mLTD might interact with them. The first goal of this study was to examine the interplay of mLTD and HFS-LTP. We report that mLTD expression does not alter subsequent induction of HFS-LTP and, further, at synapses expressing HFS-LTP, mLTD can mediate a novel form of depotentiation. The second goal was to determine whether mLTD would alter LFS-LTD induction and/or expression. Although we show that mLTD is occluded by saturation of LFS-LTD, suggesting mechanistic similarity between these two plasticities, saturation of mLTD does not occlude LFS-LTD. Surprisingly, however, the LFS-LTD that follows cholinergic receptor activation is NMDAR independent, indicating that application of muscarinic agonist induces a change in the induction mechanism required for LFS-LTD. These data demonstrate that mLTD can coexist with electrically induced forms of synaptic plasticity and support the hypothesis that mLTD is one of the mechanisms by which the cholinergic system modulates hippocampal function.
Collapse
Affiliation(s)
- Eve McCutchen
- The University of Alabama at Birmingham, 1918 University Blvd, MCLM 964, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
28
|
Anwyl R. Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog Neurobiol 2006; 78:17-37. [PMID: 16423442 DOI: 10.1016/j.pneurobio.2005.12.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/21/2005] [Accepted: 12/01/2005] [Indexed: 12/20/2022]
Abstract
The induction of long-term depression (LTD) can be divided into two main forms, one dependent upon activation of postsynaptic NMDAR, and another independent of postsynaptic NMDAR. Non-postsynaptic NMDAR-LTD (non-NMDAR-LTD) occurs in many regions of the brain, and encompasses a wide variety of induction and expression mechanisms. In this article, the induction and expression mechanisms of such LTD in over 10 brain regions are described, with a number of common mechanisms compared across a large range of types of LTD. The article describes the involvement of different presynaptic or postsynaptic receptors in the induction of non-NMDAR-LTD, especially metabotropic glutamate receptors, cannabinoid receptors and dopamine receptors. An increase in presynaptic or postsynaptic intracellular Ca concentration is a key event in induction, commonly followed by activation of certain kinases, especially PKC, p38 MAPK and ERK. Expression mechanisms are either presynaptic via a reduction in release probability, or postsynaptic involving a decrease in AMPAR via phosphorylation of a glutamate receptor subunit, especially GluR2, followed by clathrin-mediated endocytosis. Retrograde signalling from postsynaptic to presynaptic occurs when induction is postsynaptic and expression is presynaptic.
Collapse
Affiliation(s)
- Roger Anwyl
- Department of Physiology, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
29
|
Bortolotto ZA, Collett VJ, Conquet F, Jia Z, van der Putten H, Collingridge GL. The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors. Neuropharmacology 2005; 49 Suppl 1:13-25. [PMID: 16024054 DOI: 10.1016/j.neuropharm.2005.05.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/20/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
The role of metabotropic glutamate (mGlu) receptors in long-term potentiation (LTP) in the hippocampus is controversial. In the present study, we have used mice in which the mGlu1, mGlu5 or mGlu7 receptor has been deleted, by homologous recombination, to study the role of these receptor subtypes in LTP at CA1 synapses. We investigated the effects of the knockouts on both LTP and the molecular switch, a form of metaplasticity that renders LTP insensitive to the actions of the mGlu receptor antagonist MCPG ((S)-alpha-methyl-4-carboxyphenylglycine). We find that LTP is readily induced in the three knockouts and in an mGlu1 and mGlu5 double knockout. In addition, the molecular switch operates normally in either the mGlu1 or mGlu7 knockout. In contrast, the molecular switch is completely non-functional in the mGlu5 knockout, such that MCPG invariably blocks the induction of additional LTP in an input where LTP has already been induced. The effect of the mGlu5 receptor knockout was replicated in wildtype mouse slices perfused with the specific mGlu5 receptor antagonist MPEP (2-methyl-6-(phenylethynyl)-pyridine). In addition, the mGlu5 selective agonist CHPG ((RS)-2-chloro-5-hydroxyphenylglycine) sets the molecular switch. These data demonstrate that the operation of the molecular switch requires activation of mGlu5 receptors.
Collapse
Affiliation(s)
- Zuner A Bortolotto
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
30
|
Calabrese B, Halpain S. Essential Role for the PKC Target MARCKS in Maintaining Dendritic Spine Morphology. Neuron 2005; 48:77-90. [PMID: 16202710 DOI: 10.1016/j.neuron.2005.08.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/20/2005] [Accepted: 08/19/2005] [Indexed: 01/21/2023]
Abstract
Spine morphology is regulated by intracellular signals, like PKC, that affect cytoskeletal and membrane dynamics. We investigated the role of MARCKS (myristoylated, alanine-rich C-kinase substrate) in dendrites of 3-week-old hippocampal cultures. MARCKS associates with membranes via the combined action of myristoylation and a polybasic effector domain, which binds phospholipids and/or F-actin, unless phosphorylated by PKC. Knockdown of endogenous MARCKS using RNAi reduced spine density and size. PKC activation induced similar effects, which were prevented by expression of a nonphosphorylatable mutant. Moreover, expression of pseudophosphorylated MARCKS was, by itself, sufficient to induce spine loss and shrinkage, accompanied by reduced F-actin content. Nonphosphorylatable MARCKS caused spine elongation and increased the mobility of spine actin clusters. Surprisingly, it also decreased spine density via a novel mechanism of spine fusion, an effect that required the myristoylation sequence. Thus, MARCKS is a key factor in the maintenance of dendritic spines and contributes to PKC-dependent morphological plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
31
|
Abstract
LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.
Collapse
Affiliation(s)
- Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|