1
|
Bembrick AL, Boorman DC, Keay KA. Disability-specific genes GRIN1, GRIN2 and CNR1 show injury-dependent protein expression in the lumbar spinal cord of CCI rats. Neurosci Lett 2020; 728:134982. [PMID: 32320718 DOI: 10.1016/j.neulet.2020.134982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/28/2022]
Abstract
The sensory changes triggered by peripheral nerve injury result from functional changes in both neurons and glia in the dorsal horn of the spinal cord. Whether the disrupted affective-motivational states often comorbid with injury-evoked changes in sensation are driven directly by these functional changes is a question only recently investigated. Using a combination of GeneChip microarrays and RT-PCR techniques we identified differences in mRNA expression unique to rats with sustained changes to their social behaviour following sciatic nerve chronic constriction injury (CCI). Amongst these changes were the mRNAs encoding several of the NMDA subunits and the CB1 receptor. However, as protein translation is not a necessary consequence of the upregulation or downregulation of genes we decided to evaluate the functional significance of our initial observations using immunohistochemical detection of their translated protein products to determine their location and abundance in the lumbar spinal cord. Spinal cord tissue from rats with ('Affected'), and without ('Unaffected') changes in social behaviour after CCI was compared with tissue from uninjured controls. The expression of NMDA-1 (NR1) subunit, NMDA-2D subunit, Cannabinoid Receptor 1 (CB1), Glucocorticoid Receptor (GR) and Glial Fibrillary Acidic Protein (GFAP) immunoreactivities was quantified for these rats and revealed that nerve injury increased the expression of NMDA-2D, CB1 and GFAP immunoreactivity compared to uninjured controls. However, these changes were not specific to rats whose social behaviours were 'Affected' or 'Unaffected' by the nerve injury. Our data thus suggest that the development and expression of changes in social behaviour seen in a proportion of rats following CCI are unlikely to be directly related to the spinal changes in NMDA-2D, CB1 and GFAP expression induced by the nerve injury.
Collapse
Affiliation(s)
- Alison L Bembrick
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia
| | - Damien C Boorman
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Lin W, Zhao Y, Cheng B, Zhao H, Miao L, Li Q, Chen Y, Zhang M. NMDAR and JNK Activation in the Spinal Trigeminal Nucleus Caudalis Contributes to Masseter Hyperalgesia Induced by Stress. Front Cell Neurosci 2019; 13:495. [PMID: 31798413 PMCID: PMC6868050 DOI: 10.3389/fncel.2019.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023] Open
Abstract
It is commonly accepted that psychological stress is closely associated with the occurrence and development of chronic orofacial pain. However, the pathogenesis underlying this process has not been fully elucidated. In the present study, we explored the role of N-methyl-D-aspartate receptors (NMDARs) and Jun N-terminal kinase (JNK) mediated intercellular communication between neurons and astrocytes in the spinal trigeminal nucleus caudalis (Vc) in the induction of masseter hyperalgesia by psychological stress in rats. We found that subjecting rats to 14 days of restraint stress (8 h/d) caused a significant decrease in body weight gain, behavioral changes and marked masseter hyperalgesia in the rats. We also found that exposure to restraint stress for 14 days caused the expression of pJNK in astrocytes in the Vc to significantly increase, and intrathecally infusing a JNK inhibitor significantly prevented restraint stress-induced masseter hyperalgesia in the rats. In addition, after exposure to restraint stress for 14 days, the stressed group exhibited a noticeably increased expression level of pNR2B in neurons in the Vc. Then, we intrathecally injected MK-801 (an NMDAR inhibitor) and ifenprodil (a selective NR2B subunit antagonist) and observed that the two types of inhibitors not only alleviated masseter hyperalgesia but also significantly inhibited the phosphorylation of JNK in the Vc after restraint stress; this indicates that the effect of NMDAR antagonists may influence the activation of astrocytic JNK. Furthermore, inhibitors of neuronal nitric oxide synthase (nNOS) activation and guanylate cyclase (GC) inhibitor could not only inhibit the expression of pJNK in the Vc, but also effectively alleviate masseter hyperalgesia induced by restraint stress. Taken together, our results suggest that NMDAR activation could increase JNK phosphorylation in astrocytes after restraint stress, which may depend on the nNOS-GC pathway. The intercellular communication between neurons and astrocytes in the Vc may play a key role in the induction of masseter muscle hyperalgesia by psychological stress in rats.
Collapse
Affiliation(s)
- Wenqing Lin
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yajuan Zhao
- Department of Stomatology, Air Force Medical Center, Beijing, China
| | - Baixiang Cheng
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Haidan Zhao
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Li Miao
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Min Zhang
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Deng C, Gu YJ, Zhang H, Zhang J. Estrogen affects neuropathic pain through upregulating N-methyl-D-aspartate acid receptor 1 expression in the dorsal root ganglion of rats. Neural Regen Res 2017; 12:464-469. [PMID: 28469663 PMCID: PMC5399726 DOI: 10.4103/1673-5374.202925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Estrogen affects the generation and transmission of neuropathic pain, but the specific regulatory mechanism is still unclear. Activation of the N-methyl-D-aspartate acid receptor 1 (NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia. The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain. A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats. These rats were then subcutaneously injected with 17β-estradiol, the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP-5), or both once daily for 15 days. Compared with injured drug naïve rats, rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency, indicating increased sensitivity to mechanical and thermal pain. Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity (as assessed by immunohistochemistry) and protein (as determined by western blot assay) in spinal dorsal root ganglia. This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5, whereas AP-5 alone did not affect NMDAR1 expression. These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve, and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
Collapse
Affiliation(s)
- Chao Deng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ya-Juan Gu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun Zhang
- Department of Genetics, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
4
|
Deumens R, Steyaert A, Forget P, Schubert M, Lavand’homme P, Hermans E, De Kock M. Prevention of chronic postoperative pain: Cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog Neurobiol 2013; 104:1-37. [DOI: 10.1016/j.pneurobio.2013.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 01/13/2023]
|
5
|
Wang S, Song L, Tan Y, Ma Y, Tian Y, Jin X, Lim G, Zhang S, Chen L, Mao J. A functional relationship between trigeminal astroglial activation and NR1 expression in a rat model of temporomandibular joint inflammation. PAIN MEDICINE 2012; 13:1590-600. [PMID: 23110394 DOI: 10.1111/j.1526-4637.2012.01511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the hypothesis that glial activation would regulate the expression of the N-methyl-D-aspartate receptor subunit 1 (NR1) in the trigeminal subnucleus caudalis (Sp5C) after temporomandibular joint (TMJ) inflammation. METHODS Inflammation of TMJ was produced in rats by injecting 50 μL complete Freund's adjuvant (CFA) into unilateral TMJ space. Sham control rats received incomplete Freund's adjuvant injection. Mechanical nociception in the affected and non-affected TMJ site was tested by using a digital algometer. Fractalkine, fluorocitrate, and/or MK801 were intracisternally administrated to examine the relationship between astroglial activation and NR1 upregulation. RESULTS CFA TMJ injection resulted in persistent ipsilateral mechanical hyperalgesia 1, 3, and 5 days after CFA injection. The inflammation also induced significant upregulation of CX3C chemokine receptor 1 and glial fibrillary acidic protein (GFAP) beginning on day 1 and of NR1 beginning on day 3 within the ipsilateral Sp5C. Intracisternal administration of fluorocitrate for 5 days blocked the development of mechanical hyperalgesia as well as the upregulation of GFAP and NR1 in the Sp5C. Conversely, intracisternal injection of fractalkine for 5 days exacerbated the expression of NR1 in Sp5C and mechanical hyperalgesia induced by TMJ inflammation. Moreover, once daily intracisternal fractalkine administration for 5 days in naïve rats induced the upregulation of NR1 and mechanical hyperalgesia. CONCLUSIONS These results suggest that astroglial activation contributes to the mechanism of TMJ pain through the regulation of NR1 expression in Sp5C.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE. Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 2012; 10:435-52. [PMID: 22591368 PMCID: PMC3431547 DOI: 10.2174/157016212802138779] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 11/22/2022]
Abstract
Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be latently infected. Thus, neuronal dysfunction and injury result from cellular and viral toxins originating from HIV-1 infected/exposed glia. Importantly, subsets of glial cells including oligodendrocytes, as well as neurons, express µ-opioid receptors and therefore can be direct targets for heroin and morphine (the major metabolite of heroin in the CNS), which preferentially activate µ-opioid receptors. This review highlights findings that neuroAIDS is a glially driven disease, and that opiate abuse may act at multiple glial-cell types to further compromise neuron function and survival. The ongoing, reactive cross-talk between opiate drug and HIV-1 co-exposed microglia and astroglia appears to exacerbate critical proinflammatory and excitotoxic events leading to neuron dysfunction, injury, and potentially death. Opiates enhance synaptodendritic damage and a loss of synaptic connectivity, which is viewed as the substrate of cognitive deficits. We especially emphasize that opioid signaling and interactions with HIV-1 are contextual, differing among cell types, and even within subsets of the same cell type. For example, astroglia even within a single brain region are heterogeneous in their expression of µ-, δ-, and κ-opioid receptors, as well as CXCR4 and CCR5, and Toll-like receptors. Thus, defining the distinct targets engaged by opiates in each cell type, and among brain regions, is critical to an understanding of how opiate abuse exacerbates neuroAIDS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, 1217 East Marshall Street, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|
7
|
Sun YE, Peng L, Sun X, Bo J, Yang D, Zheng Y, Liu C, Zhu B, Ma Z, Gu X. Intrathecal injection of spironolactone attenuates radicular pain by inhibition of spinal microglia activation in a rat model. PLoS One 2012; 7:e39897. [PMID: 22768159 PMCID: PMC3387194 DOI: 10.1371/journal.pone.0039897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/28/2012] [Indexed: 01/28/2023] Open
Abstract
Background Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation. Results Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), NR1 subunit of the NMDA receptor (t-NR1), and NR1 subunit phosphorylated at Ser896 (p-NR1) were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn’t affected. Conclusion These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects.
Collapse
Affiliation(s)
- Yu-e Sun
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Liangyu Peng
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Xiaofeng Sun
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Jinhua Bo
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Dong Yang
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Yaguo Zheng
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Chenglong Liu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Beibei Zhu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
- * E-mail: (ZLM); (XPG)
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
- * E-mail: (ZLM); (XPG)
| |
Collapse
|
8
|
Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun 2011; 25:1355-66. [PMID: 21496481 DOI: 10.1016/j.bbi.2011.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/22/2011] [Accepted: 04/02/2011] [Indexed: 12/19/2022] Open
Abstract
Spinal N-methyl d-aspartate receptor (NMDAR) plays a pivotal role in nerve injury-induced central sensitization. Recent studies suggest that NMDAR also contributes to neuron-astrocyte signaling. c-Jun N-terminal kinase (JNK) is persistently and specifically activated (indicated by phosphorylation) in spinal cord astrocytes after nerve injury and thus it is considered as a dependable indicator of pain-related astrocytic activation. NMDAR-mediated JNK activation in spinal dorsal horn might be an important form of neuron-astrocyte signaling in neuropathic pain. In the present study, we observed that intrathecal injection of MK-801, a noncompetitive NMDA receptor antagonist, or Ro25-6981 and ifenprodil, which are selective antagonists of NR2B-containing NMDAR each significantly reduced nerve injury-induced JNK activation. Double immunostaining showed that NR2B was highly expressed in neurons, indicating the effect of NMDAR antagonists on JNK activation was indirect. We further observed that intrathecal injection of NMDA (twice a day for 3 days) significantly increased spinal JNK phosphorylation. Besides, NMDAR-related JNK activation could be blocked by a neuronal nitric oxide synthase (nNOS) selective inhibitor (7-nitroindazole sodium salt) but not by a nNOS sensitive guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Finally, real-time RT-PCR and immunostaining showed that nerve injury-induced interleukin-1beta expression was dependent on astrocytic JNK activation. Treatments targeting NMDAR-nNOS pathway also influenced interleukin-1beta expression, which further confirmed our hypothesis. Taken together, our results suggest that neuronal NMDAR-nNOS pathway could activate astrocytic JNK pathway. Excitatory neuronal transmission initiates astrocytic activation-induced neuroinflammation in this way, which contributes to nerve injury-induced neuropathic pain.
Collapse
|
9
|
Luo R, Guo Y, Cao DY, Pickar JG, Li L, Wang J, Zhao Y. Local effects of octreotide on glutamate-evoked activation of Aδ and C afferent fibers in rat hairy skin. Brain Res 2010; 1322:50-8. [DOI: 10.1016/j.brainres.2010.01.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
|
10
|
Mei X, Wang W, Wang W, Li Y, Zhang H, Wu S, Li Y, Xu L. Inhibiting astrocytic activation: a novel analgesic mechanism of ketamine at the spinal level? J Neurochem 2009; 109:1691-700. [DOI: 10.1111/j.1471-4159.2009.06087.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009; 136:1339-48, e1-2. [PMID: 19249394 PMCID: PMC2812027 DOI: 10.1053/j.gastro.2008.12.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Chronic psychological stress is associated with visceral hyperalgesia and increased expression of spinal NK1 receptors (NK1Rs). We aimed to identify the role of spinal microglia in this process. METHODS Male Wistar rats were exposed to water avoidance (WA) or sham stress 1 hour each day for 10 days and given daily injections of minocycline, the p38 inhibitor SB203580, or saline. Phosphorylation levels of the kinase p38 (P-p38), the microglia marker OX42, NK1R, and IkappaBalpha were assessed by immunoblotting and/or immunostaining of spinal samples collected at day 11. The visceromotor response to colorectal distention at baseline and following WA were also assayed in rats given injections of minocycline, SB203580, or vehicle. The effects of fractalkine were assessed on the visceromotor response in rats exposed to minocycline or vehicle. RESULTS P-p38 protein levels and immunoreactivity were increased in stressed rats and colocalized with OX42-positive cells and neurons in the dorsal horn. This increase was reversed by minocycline or SB203580 exposure. Stress-induced increased NK1R expression was blocked by minocycline but not SB203580. WA-induced decreased IkappaBalpha expression was blocked by minocycline and SB203580. WA-induced hyperalgesia was blocked by minocycline and SB203580 intrathecally. Fractalkine-induced hyperalgesia was blocked by minocycline. CONCLUSIONS This is the first demonstration that stress-induced activation of spinal microglia has a key role in visceral hyperalgesia and associated spinal NK1R up-regulation.
Collapse
Affiliation(s)
- Sylvie Bradesi
- Center for Neurobiology of Stress, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90073, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.
Collapse
Affiliation(s)
- Richard J Miller
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
13
|
(-)-Linalool attenuates allodynia in neuropathic pain induced by spinal nerve ligation in c57/bl6 mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:221-35. [PMID: 19607973 DOI: 10.1016/s0074-7742(09)85017-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
(-)-Linalool is a natural compound with anti-inflammatory and antinociceptive properties. The antinociceptive action of linalool has been reported in several models of inflammatory pain. However, its effects in neuropathic pain have not been investigated. Here, we used the spinal nerve ligation (SNL) model of neuropathic pain and studied the effects of acute and chronic administration of an established antinociceptive dose of linalool on mechanical and thermal sensitivity induced by the nerve injury in mice. Linalool did not affect pain behavior triggered by mechanical or thermal stimuli when administered as a single dose before SNL. However, mechanical allodynia was reduced transiently in neuropathic animals when linalool was administered for 7 consecutive days, while no changes were seen in the sensitivity to noxious radiant heat. We investigated the possible involvement of the PI3K/Akt pathway in linalool antinociceptive effect by western blot analysis. Linalool did not induce significant changes in Akt expression and phopshorylation though a trend toward an increased ratio of phosphorylated versus total Akt was observed in SNL animals treated with linalool, in comparison to SNL alone or sham. We then wondered whether linalool could modulate inflammatory processes and investigated spinal glia activation and IL-1beta contents following linalool treatment in SNL animals. The data suggest that mechanisms other than an action on inflammatory processes may mediate linalool ability to reduce mechanical allodynia in this model of neuropathic pain.
Collapse
|
14
|
Maeda S, Kawamoto A, Yatani Y, Shirakawa H, Nakagawa T, Kaneko S. Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain 2008; 4:65. [PMID: 19108711 PMCID: PMC2628654 DOI: 10.1186/1744-8069-4-65] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/24/2008] [Indexed: 01/16/2023] Open
Abstract
Background The glial glutamate transporter GLT-1 is abundantly expressed in astrocytes and is crucial for glutamate removal from the synaptic cleft. Decreases in glutamate uptake activity and expression of spinal glutamate transporters are reported in animal models of pathological pain. However, the lack of available specific inhibitors and/or activators for GLT-1 makes it difficult to determine the roles of spinal GLT-1 in inflammatory and neuropathic pain. In this study, we examined the effect of gene transfer of GLT-1 into the spinal cord with recombinant adenoviruses on the inflammatory and neuropathic pain in rats. Results Intraspinal infusion of adenoviral vectors expressing the GLT-1 gene increased GLT-1 expression in the spinal cord 2–21 days after the infusion. Transgene expression was primarily localized to astrocytes. The spinal GLT-1 gene transfer had no effect on acute mechanical and thermal nociceptive responses in naive rats, whereas it significantly reduced the inflammatory mechanical hyperalgesia induced by hindlimb intraplantar injection of carrageenan/kaolin. Spinal GLT-1 gene transfer 7 days before partial sciatic nerve ligation recovered the extent of the spinal GLT-1 expression in the membrane fraction that was decreased following the nerve ligation, and prevented the induction of tactile allodynia. However, the partial sciatic nerve ligation-induced allodynia was not reversed when the adenoviruses were infused 7 or 14 days after the nerve ligation. Conclusion These results suggest that overexpression of GLT-1 on astrocytes in the spinal cord by recombinant adenoviruses attenuates the induction, but not maintenance, of inflammatory and neuropathic pain, probably by preventing the induction of central sensitization, without affecting acute pain sensation. Upregulation or functional enhancement of spinal GLT-1 could be a novel strategy for the prevention of pathological pain.
Collapse
Affiliation(s)
- Sanae Maeda
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Labombarda F, Coronel MF, Villar MJ, Nicola AFD, González SL. Neuropathic pain and temporal expression of preprodynorphin, protein kinase C and N-methyl-d-aspartate receptor subunits after spinal cord injury. Neurosci Lett 2008; 447:115-9. [DOI: 10.1016/j.neulet.2008.09.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
|
16
|
Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 2008; 28:10482-95. [PMID: 18923025 PMCID: PMC2660868 DOI: 10.1523/jneurosci.3593-08.2008] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/02/2008] [Indexed: 01/13/2023] Open
Abstract
Spinal glial reaction and proinflammatory cytokine induction play an important role in the development of chronic pain states after tissue and nerve injury. The present study investigated the cellular and molecular mechanisms underlying descending facilitation of neuropathic pain with an emphasis on supraspinal glial-neuronal relationships. An early and transient reaction of microglia and prolonged reaction of astrocytes were found after chronic constriction injury (CCI) of the rat infraorbital nerve in the rostral ventromedial medulla (RVM), a major component of brainstem descending pain modulatory circuitry. There were prolonged elevations of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) after CCI, and they were expressed in RVM astrocytes at 14 d after injury. Intra-RVM injection of microglial and astrocytic inhibitors attenuated mechanical hyperalgesia and allodynia at 3 and 14 d after CCI, respectively. Moreover, TNFR1 and IL-1R, receptors for TNF-alpha and IL-1beta, respectively, were expressed primarily in RVM neurons exhibiting immunoreactivity to the NMDA receptor (NMDAR) subunit NR1. CCI increased TNFR1 and IL-1R levels and NR1 phosphorylation in the RVM. Neutralization of endogenous TNF-alpha and IL-1beta in the RVM significantly reduced CCI-induced behavioral hypersensitivity and attenuated NR1 phosphorylation. Finally, intra-RVM administration of recombinant TNF-alpha or IL-1beta upregulated NR1 phosphorylation and caused a reversible and NMDAR-dependent allodynia in normal rats, further suggesting that TNF-alpha and IL-1beta couple glial hyperactivation with NMDAR function. These studies have addressed a novel contribution of supraspinal astrocytes and associated cytokines as well as central glial-neuronal interactions to the enhancement of descending facilitation of neuropathic pain.
Collapse
Affiliation(s)
- Feng Wei
- Department of Neural and Pain Sciences, Dental School, Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
17
|
White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 2007; 104:20151-8. [PMID: 18083844 PMCID: PMC2154400 DOI: 10.1073/pnas.0709250104] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Chemokines and chemokine receptors are widely expressed by cells of the immune and nervous systems. This review focuses on our current knowledge concerning the role of chemokines in the pathophysiology of chronic pain syndromes. Injury- or disease-induced changes in the expression of diverse chemokines and their receptors have been demonstrated in the neural and nonneural elements of pain pathways. Under these circumstances, chemokines have been shown to modulate the electrical activity of neurons by multiple regulatory pathways including increases in neurotransmitter release through Ca-dependent mechanisms and transactivation of transient receptor channels. Either of these mechanisms alone, or in combination, may contribute to sustained excitability of primary afferent and secondary neurons within spinal pain pathways. Another manner in which chemokines may influence sustained neuronal excitability may be their ability to function as excitatory neurotransmitters within the peripheral and central nervous system. As is the case for traditional neurotransmitters, injury-induced up-regulated chemokines are found within synaptic vesicles. Chemokines released after depolarization of the cell membrane can then act on other chemokine receptor-bearing neurons, glia, or immune cells. Because up-regulation of chemokines and their receptors may be one of the mechanisms that directly or indirectly contribute to the development and maintenance of chronic pain, these molecules may then represent novel targets for therapeutic intervention in chronic pain states.
Collapse
Affiliation(s)
- Fletcher A. White
- *Departments of Cell Biology, Neurobiology and Anatomy, and Anesthesiology, Loyola University Chicago, Maywood, IL 60626; and
| | - Hosung Jung
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL 60611
| | - Richard J. Miller
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL 60611
| |
Collapse
|
18
|
Bursztajn S, Falls WA, Berman SA, Friedman MJ. Cell proliferation in the brains of NMDAR NR1 transgenic mice. Brain Res 2007; 1172:10-20. [PMID: 17803978 DOI: 10.1016/j.brainres.2007.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 01/18/2023]
Abstract
We have used genetically engineered NMDA receptor NR1+/- mice in which the gene for the NR1 subunit was modified in such a way that these mice express only 50% of the NR1 subunit. The NR1 subunit is necessary for NMDA receptor channel function. We investigated the effects of reduced NMDA receptor function on cell proliferation in the hippocampus and the amygdala of the adult mouse brain. Transgenic (NR1+/-) and wild-type (NR1+/+) mice were injected with BrdU. We collected brain sections cutting through the rostro-caudal extension of the entire hippocampus of the NR1+/- and NR1+/+ (wild-type) mice. The phenotype of BrdU-positive cells was identified by double labeling with antibodies to neuronal or glial markers. Our results show that the NR1+/- mice, which express the NMDAR NR1 subunit at a low level, have a significant (p<0.01) increase in the number of BrdU-positive cells in the dentate gyrus and the amygdala compared to NR1+/+ mice. Some of these dividing cells express the neuronal marker NeuN. Our results indicate that low expression of the NR1 subunit significantly increases cell proliferation and neurogenesis, suggesting that low NMDARs activity contributes to the increase in cell proliferation in the adult brain.
Collapse
|
19
|
Lee SE, Kim JH. Involvement of substance P and calcitonin gene-related peptide in development and maintenance of neuropathic pain from spinal nerve injury model of rat. Neurosci Res 2007; 58:245-9. [PMID: 17428562 DOI: 10.1016/j.neures.2007.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 01/23/2023]
Abstract
Recently, it has been suggested that uninjured primary sensory neurons contribute to neuropathic pain induced by peripheral nerve injury. However, there is lack of evidences of roles of normal pain transmitting substances such as substance P and calcitonin gene-related peptide (CGRP) in neuropathic pain. Whether substance P and CGRP have a role in spinal nerve-injured neuropathic pain model was tested. Male rats were subjected to L5 and L6 spinal nerve transection (SNT), and mechanical hyperalgesia was evaluated by measuring paw withdrawal threshold (PWT). SNT induced a persistent PWT decrease, a sign of neuropathic pain. Lidocaine was soaked on spinal nerves or intrathecally injected 10 min before SNT to block neuronal discharges caused by the injury, and L703,606 (NK1 receptor antagonist) and CGRP8-37 (CGRP receptor antagonist) were intrathecally injected into the rats to block actions of substance P and CGRP released from central nerve terminals in the spinal cord by injury discharges. The treatments with lidocaine, L703,606 and CGRP8-37 delayed the onset of neuropathic pain by 1-4 days, compared with the saline-treated rats. After neuropathic pain was established, intrathecal injections of L703,606 and CGRP8-37 significantly mitigated mechanical hyperalgesia for 20 min. These results suggest that substance P and CGRP are involved in the development and maintenance of neuropathic pain and that these peptides from the central terminals of intact sensory neurons contribute to the maintenance of peripheral nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Seo Eun Lee
- Department of Physiology, College of Medicine, Hanyang University, 17 Haengdang-Dong, Sungdong-Gu, Seoul 133-791, South Korea.
| | | |
Collapse
|
20
|
Zhang Q, Zhao Y, Guo Y, Cao DY, Tian YL, Yao FR, Wang HS. Electrophysiological evidence for the interaction of substance P and glutamate on Adelta and C afferent fibre activity in rat hairy skin. Clin Exp Pharmacol Physiol 2007; 33:1128-33. [PMID: 17184490 DOI: 10.1111/j.1440-1681.2006.04504.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The purpose of the present study was to investigate whether there was a cooperative interaction between substance P (SP) and glutamate (GLU) administered subcutaneously on Adelta and C primary afferent fibre activity in dorsal hairy skin of the rat in vivo. The single unit activities of Adelta and C afferent fibres were recorded by isolation of fibre filaments from the dorsal cutaneous nerve branches and the effects of subcutaneous injections of low doses of SP, GLU and SP + GLU on activity were determined. 2. Sub-threshold doses of SP (1 micro mol/L, 10 microL) administered subcutaneously into the dorsal hairy skin had no effect on the afferent discharges of either Adelta or C units. 3. The afferent discharges of 35% (11/31) of Adelta fibres and 33% (6/18) of C fibres were increased by local injection of the submaximal doses of GLU (10 micro mol/L, 10 microL) into the receptive fields. 4. The GLU-induced excitatory response was significantly enhanced by coinjection of subthreshold doses of SP. The mean discharge rates of Adelta fibres and C fibres were increased from 5.84 +/- 1.54 and 5.02 +/- 2.65 impulses/min to 19.91 +/- 4.35 and 17.58 +/- 5.59 impulses/min, respectively, whereas the excitatory proportions of Adelta and C fibres were increased from 35 and 33% to 84 and 83%, respectively. The duration of the excitation for Adelta fibres and C fibres was also significantly increased after coinjection of SP + GLU compared with that observed when either substance was given alone. 5. The present study provides electrophysiological evidence for an interaction between receptors for SP and GLU on the fine fibres activities in rat hairy skin, which may be involved in the mechanisms of hyperalgesia.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education and Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Cao DY, You HJ, Zhao Y, Guo Y, Wang HS, Arendt-Nielsen L, Wang HL, Zhang Q. Involvement of peripheral ionotropic glutamate receptors in activation of cutaneous branches of spinal dorsal rami following antidromic electrical stimulation of adjacent afferent nerves in rats. Brain Res Bull 2007; 72:10-7. [PMID: 17303502 DOI: 10.1016/j.brainresbull.2006.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/11/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the role of peripheral ionotropic glutamate receptors in the process of signal transmission between adjacent different peripheral sensory nerves. The T9 and T10 cutaneous branches of spinal dorsal rami were dissociated and cut proximally in pentobarbital anesthetized rats. Eighty-seven single afferents from T10 nerve filaments were recorded and characterized by assessing their spontaneous activities. Following 30 s antidromic electrical stimulation (intensity: 1 mA; duration: 0.5 ms; frequency: 20 Hz) of T9 cutaneous branches, the spontaneous activities of Abeta, Adelta and C fibers of T10 nerve were significantly enhanced from 2.00+/-0.34, 2.42+/-0.33, and 2.19+/-0.32 impulses/min to 4.31+/-0.58, 5.22+/-0.55, and 5.27+/-0.69 impulses/min, respectively (n=29 for each type, P<0.05). These enhanced spontaneous discharges of T10 nerve were significantly blocked by local treatment of its receptive field with either N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 or non-NMDA receptor antagonist DNQX (0.1 mM, 10 microl for each drug) (P<0.05). These results suggest that peripheral ionotropic glutamate receptors are involved in the activation of peripheral nerves following the antidromic stimulation of adjacent afferents from different spinal segments. We further provide the direct evidence that neurotransmitters released from adjacent peripheral nerves may also contribute to the occurrence of allodynia as well as secondary hyperalgesia during the pathological nociception.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fu D, Guo Q, Ai Y, Cai H, Yan J, Dai R. Glial activation and segmental upregulation of interleukin-1beta (IL-1beta) in the rat spinal cord after surgical incision. Neurochem Res 2006; 31:333-40. [PMID: 16733810 DOI: 10.1007/s11064-005-9032-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2005] [Indexed: 10/24/2022]
Abstract
The present study investigated the expression patterns of glial cells and interleukin-1beta (IL-1beta) in the rat spinal cord after a surgical incision, which is closely related with clinical postoperative pain. Microglia and astrocytes became activated in the spinal cord following incision. Real-time polymerase chain reaction (PCR) and immunohistochemisty showed that IL-1beta mRNA and protein level in the spinal cord was transiently upregulated after surgical incision. The increased IL-1beta-immunoreactivity (IR) was mainly localized in neurons but not the activated microglia or astrocytes. Although obvious increase in IL-1beta-IR could be observed in the lumbar segments of the spinal cord ipsilateral to a hind paw incision, significant upregulation of IL-1beta was not detected in the lumbar segments following thoracic incision. The present study indicated that surgical incision could induce glial activation and segmental upregulation of IL-1beta in the spinal cord. The activated glial cells and upregulated IL-1beta, in turn, may be involved in the incision-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Di Fu
- Department of Anesthesiology, Xiang-Ya Hospital, Xiang-Ya College of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
23
|
Piao ZG, Cho IH, Park CK, Hong JP, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 2006; 121:219-231. [PMID: 16495005 DOI: 10.1016/j.pain.2005.12.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 12/01/2005] [Accepted: 12/19/2005] [Indexed: 01/23/2023]
Abstract
Glial activation is known to contribute to pain hypersensitivity following spinal sensory nerve injury. In this study, we investigated mechanisms by which glial cell activation in medullary dorsal horn (MDH) would contribute to tactile hypersensitivity following inferior alveolar nerve and mental nerve transection (IAMNT). Activation of microglia and astrocytes was monitored at 2 h, 1, 3, 7, 14, 28, and 60 days using immunohistochemical analysis with OX-42 and GFAP antibodies, respectively. Tactile hypersensitivity was significantly increased at 1 day, and this lasted for 28 days after IAMNT. Microglial activation, primarily observed in the superficial laminae of MDH, was initiated at 1 day, maximal at 3 days, and maintained until 14 days after IAMNT. Astrocytic activation was delayed compared to that of microglia, being more profound at 7 and 14 days than at 3 days after IAMNT. Both tactile hypersensitivity and glial activation appeared to gradually reduce and then return to the basal level by 60 days after IAMNT. There was no significant loss of trigeminal ganglion neurons by 28 days following IAMNT, suggesting that degenerative changes in central terminals of primary afferents might not contribute to glial activation. Minocycline, an inhibitor of microglial activation, reduced microglial activation, inhibited p38 mitogen-activated protein kinase (MAPK) activation in microglia, and significantly attenuated the development of pain hypersensitivity in this model. These results suggest that glial activation in MDH plays an important role in the development of neuropathic pain and activation of p38 MAPK in hyperactive microglia contributes to pain hypersensitivity in IAMNT model.
Collapse
Affiliation(s)
- Zheng Gen Piao
- Department of Physiology, College of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea Program in Molecular and Cellular Neuroscience, College of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tian YL, Guo Y, Cao DY, Zhang Q, Wang HS, Zhao Y. Local application of morphine suppresses glutamate-evoked activities of C and Aδ afferent fibers in rat hairy skin. Brain Res 2005; 1059:28-34. [PMID: 16168967 DOI: 10.1016/j.brainres.2005.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 08/04/2005] [Accepted: 08/07/2005] [Indexed: 11/29/2022]
Abstract
Behavior studies have demonstrated that local application of morphine in peripheral tissues resulted in a significant antinociceptive effect, but there has been no electrophysiological evidence to support the peripheral mechanism of opioid antinociception. The purpose of the present study was to investigate whether local application of morphine suppressed the glutamate-evoked activities of C and Adelta primary afferent fibers in dorsal hairy skin of rat in vivo. The single unit activities of the C and Adelta afferent fibers were recorded by means of isolation of the fiber filaments from the dorsal cutaneous nerve branches, and the effects of glutamate and glutamate plus morphine injected into the receptive field on these activities were determined. The results revealed that most of the C and Adelta fibers were excited significantly by local injection of glutamate (0.3 mM), with the percentage being 81% (22/27, for C fibers) and 73% (36/49, for Adelta fibers), respectively. The glutamate-induced excitatory response was significantly suppressed by co-injection of morphine (1.0 mM). The mean discharge rates of C fibers and Adelta fibers decreased from 28.96 +/- 6.85, 28.99 +/- 3.79 impulses/min to 4.40 +/- 1.76, 2.72 +/- 0.71 impulses/min, respectively. The suppressing effect of morphine was reversed by pretreatment with opioid receptor antagonist naloxone (1.0 mM). These findings suggest that local application of morphine can suppress the glutamate-evoked activities of the fine fibers in rat hairy skin and thus provide an electrophysiological evidence for peripheral antinociception of opioids.
Collapse
Affiliation(s)
- Yu-Ling Tian
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Cunningham MG, Donalds RA, Scouten CW, Tresch MC. A versatile, low-cost adaptor for stereotaxic and electrophysiologic spinal preparations in juvenile and adult rodents. Brain Res Bull 2005; 68:157-62. [PMID: 16325015 DOI: 10.1016/j.brainresbull.2005.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/19/2005] [Accepted: 08/08/2005] [Indexed: 11/23/2022]
Abstract
Rats and mice provide excellent models for normal spinal cord physiology, traumatic spinal cord injury, and various disease states. Alternative and improved methodologies for experimental spinal preparations are desirable, particularly in the wake of expanding neuroscience technology, such as the diverse array of transgenic mice now available, and exciting new therapeutic approaches, including transplantation and gene therapy. This report describes a simple, low-cost instrument for spinal preparations in rodents of different sizes, including rat pups. The device adapts to standard small animal stereotaxic instruments, precluding the need for additional stereotaxic apparatus. Surgical methods utilizing the device are presented demonstrating the instrument's capacity for precise alignment and stabilization of the spinal column that is reproducible from animal to animal. Proof of concept is demonstrated with results from spinal cord injections and electrophysiologic recordings.
Collapse
Affiliation(s)
- Miles G Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Program in Neuroscience and Department of Psychiatry, Harvard Medical School, Boston, MA 02478, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Cancer pain is one of the most frequent symptoms in malignant disease, severely impairing the patients' quality of life. The recommendations of the World Health Organization will provide adequate pain relief for the vast majority of cancer patients. However, some patients will suffer from inadequate analgesia or intolerable side effects. Cyclooxygenase-2 (COX-2)-selective non-steroidal anti-inflammatory drugs (NSAIDs), new anticonvulsants, cannabinoids and NMDA receptor antagonists are being developed for these patients. NSAIDs with nitric oxide-releasing moieties are an interesting addition, as this new class of analgesics combines improved analgesic efficacy with higher tolerability. Conotoxins and other drugs such as nicotinic acetylcholinergic receptor agonists will be advantageous only for a few patients in the near future, as side-effect profile and risk of complications, as well as the burden on the patient, often are not worth the additional analgesic benefit.
Collapse
Affiliation(s)
- Lukas Radbruch
- University of Aachen, Department of Palliative Medicine, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
27
|
Brack A, Rittner HL, Machelska H, Leder K, Mousa SA, Schäfer M, Stein C. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain 2004; 112:229-238. [PMID: 15561377 DOI: 10.1016/j.pain.2004.08.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/12/2004] [Accepted: 08/23/2004] [Indexed: 01/22/2023]
Abstract
Opioid-containing leukocytes can counteract inflammatory hyperalgesia. Under stress or after local injection of corticotropin releasing factor (CRF), opioid peptides are released from leukocytes, bind to opioid receptors on peripheral sensory neurons and mediate antinociception. Since polymorphonuclear cells (PMN) are the predominant opioid-containing leukocyte subpopulation in early inflammation, we hypothesized that PMN and their recruitment by chemokines are important for peripheral opioid-mediated antinociception at this stage. Rats were intraplantarly injected with complete Freund's adjuvant (CFA). Using flow cytometry, immunohistochemistry, and ELISA, leukocyte subpopulations, chemokine receptor (CXCR2) expression on opioid-containing leukocytes and the CXCR2 ligands keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant-2 (CINC-2) were quantified. Paw pressure threshold (PPT) was determined before and after intraplantar and subcutaneous injection of CRF with or without naloxone. PMN depletion was achieved by intravenous injection of an antiserum. Chemokines were blocked by intraplantar injection of anti-MIP-2 and/or anti-KC antiserum. We found that at 2 h post CFA (i) intraplantar but not subcutaneous injection of CRF produced dose-dependent and naloxone-reversible antinociception (P<0.05, ANOVA). (ii) Opioid-containing leukocytes in the paw and CRF-induced antinociception were reduced after PMN depletion (P<0.05, t-test). (iii) Opioid-containing leukocytes mostly expressed CXCR2. MIP-2 and KC, but not CINC-2 were detectable in inflamed but not in noninflamed tissue (P<0.05, ANOVA). (iv) Combined but not single blockade of MIP-2 and KC reduced the number of opioid-containing leukocytes and peripheral opioid-mediated antinociception (P<0.05, t-test; P>0.05, ANOVA). In summary, in early inflammation peripheral opioid-mediated antinociception is critically dependent on PMN and their recruitment by CXCR2 chemokines.
Collapse
Affiliation(s)
- Alexander Brack
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|