1
|
Gamble MC, Miracle S, Williams BR, Logan RW. Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice. Pharmacol Biochem Behav 2024; 240:173791. [PMID: 38761993 PMCID: PMC11166043 DOI: 10.1016/j.pbb.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Gamble MC, Miracle S, Williams BR, Logan RW. Sex-specific Effects of the Endocannabinoid Agonist 2-Arachidonoylglycerol on Sleep and Circadian Disruptions during Fentanyl Withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572466. [PMID: 38187736 PMCID: PMC10769247 DOI: 10.1101/2023.12.19.572466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigate the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. Female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24 hrs of withdrawal. On withdrawal day 2, only female showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
|
4
|
Freeman-Striegel L, Hamilton J, Kannappan R, Bell T, Robison L, Thanos PK. Chronic Δ9-tetrahydrocannabinol treatment has dose-dependent effects on open field exploratory behavior and [ 3H] SR141716A receptor binding in the rat brain. Life Sci 2023; 327:121825. [PMID: 37270168 PMCID: PMC12006982 DOI: 10.1016/j.lfs.2023.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
AIMS Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33% increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.
Collapse
Affiliation(s)
- Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Renuka Kannappan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Tyler Bell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Lisa Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America.
| |
Collapse
|
5
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
7
|
Schwerdtfeger J, Krause A, Kalbe C, Mazzuoli-Weber G, Eggert A, Puppe B, Kuhla B, Röttgen V. Endocannabinoid administration affects taste preference and the expression of cannabinoid and opioid receptors in the amygdala of early lactating cows. Sci Rep 2023; 13:4967. [PMID: 36973308 PMCID: PMC10042870 DOI: 10.1038/s41598-023-31724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of the study was to investigate the influence of intraperitoneal N-arachidonoylethanolamide (AEA) on taste preference for feed and water, tongue taste receptor signalling (TAS1R2, GNAT3), and endocannabinoid (CNR1, CNR2, GPR55) and opioid (OPRD1, OPRK1, OPRM1, OPRL1) receptors in the amygdala and nucleus accumbens in periparturient cows. We conducted taste preference tests using unaltered, umami-tasting, and sweet-tasting water and feed, before and after calving. After calving, eight cows received AEA injections (3 µg/(kg bodyweight × day), 25 days), whereas eight control (CON) cows received saline injections. Tissue was sampled 30 days after calving. Before calving, both cow groups preferred sweet-tasting feed and umami-tasting water. After calving, only the AEA-treated group preferred sweet-tasting feed, whereas the CON group showed no clear taste preference. In the amygdala, the mRNA expression of CNR1, OPRD1 (left hemisphere) and OPRK1 (right hemisphere) was lower in AEA animals than in CON animals, whereas no differences were found in the nucleus accumbens and tongue taste receptor expression. In conclusion, AEA administration enhanced existing taste preferences and reduced the expression of specific endocannabinoid and opioid receptors in the amygdala. The results support endocannabinoid-opioid interactions in the control of taste-dependent feed preference in early lactating cows.
Collapse
Affiliation(s)
- Jessica Schwerdtfeger
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Annika Krause
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Anja Eggert
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-Von-Liebig-Weg 6B, 18059, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Volker Röttgen
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
8
|
Sadaka AH, Canuel J, Febo M, Johnson CT, Bradshaw HB, Ortiz R, Ciumo F, Kulkarni P, Gitcho MA, Ferris CF. Effects of inhaled cannabis high in Δ9-THC or CBD on the aging brain: A translational MRI and behavioral study. Front Aging Neurosci 2023; 15:1055433. [PMID: 36819730 PMCID: PMC9930474 DOI: 10.3389/fnagi.2023.1055433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19-20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Δ9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Δ9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Δ9-THC without tolerance while the anxiolytic and cognitive effects of Δ9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Δ9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Δ9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Δ9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Δ9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Δ9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.
Collapse
Affiliation(s)
- Aymen H. Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Justin Canuel
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Marcelo Febo
- Department of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clare T. Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Heather B. Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Federica Ciumo
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Michael A. Gitcho
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
9
|
De Aquino JP, Bahji A, Gómez O, Sofuoglu M. Alleviation of opioid withdrawal by cannabis and delta-9-tetrahydrocannabinol: A systematic review of observational and experimental human studies. Drug Alcohol Depend 2022; 241:109702. [PMID: 36434879 PMCID: PMC9772106 DOI: 10.1016/j.drugalcdep.2022.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND While six U.S. states have already officially authorized cannabinoids to substitute opioids and treat opioid use disorder, the therapeutic benefits of cannabinoids remain unclear, especially when weighted against their adverse effects. METHODS We conducted a systematic review of studies examining the association between opioid withdrawal and cannabis use or delta-9-tetrahydrocannabinol (THC) administration. We searched multiple databases from inception to July 30, 2022, and assessed study quality. RESULTS Eleven studies were identified, with a total of 5330 participants, of whom 64 % were male. Nine observational studies examined the association between cannabis use and opioid withdrawal. Two randomized, placebo-controlled clinical trials (RCTs) investigated the withdrawal-alleviating effects of dronabinol, a synthetic form of THC. Four observational studies found an association between cannabis use and the alleviation of opioid withdrawal; one reported exacerbation of opioid withdrawal symptoms; and four reported no association. RCTs reported that THC alleviated opioid withdrawal, albeit with dose-dependent increases in measures of abuse liability, dysphoria, and tachycardia. There was high heterogeneity in measurements of opioid withdrawal and the type and dose of opioid at baseline. CONCLUSIONS Although there is preliminary evidence that cannabis and its main psychoactive constituent, THC, may alleviate opioid withdrawal, these effects are likely to have a narrow therapeutic window. Further, the potential of cannabinoids to alleviate opioid withdrawal is determined by complex interactions between patient characteristics and pharmacological factors. Collectively, these findings have clinical, methodological, and mechanistic implications for treating opioid withdrawal during cannabinoid use, and for efforts to alleviate opioid withdrawal using non-opioid therapeutics.
Collapse
Affiliation(s)
- Joao P De Aquino
- Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA; VA Connecticut Healthcare System, 950 Campbell Avenue (151D), West Haven, CT 06516, USA; Clinical Neuroscience Research Unit (CNRU), Conneticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, 06519.
| | - Anees Bahji
- Cumming School of Medicine, University of Calgary, Department of Psychiatry, 2500 University Drive NW, Calgary, Alb., Canada
| | - Oscar Gómez
- Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Javeriana, 7th Street, 40-02, Bogotá, Colombia
| | - Mehmet Sofuoglu
- Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA; VA Connecticut Healthcare System, 950 Campbell Avenue (151D), West Haven, CT 06516, USA
| |
Collapse
|
10
|
Iyer V, Rangel-Barajas C, Woodward TJ, Kulkarni A, Cantwell L, Crystal JD, Mackie K, Rebec GV, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated reward. Pharmacol Res 2022; 185:106474. [PMID: 36179954 PMCID: PMC9948526 DOI: 10.1016/j.phrs.2022.106474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Blockade of cannabinoid type 1 (CB1)-receptor signaling decreases the rewarding properties of many drugs of abuse and has been proposed as an anti-addiction strategy. However, psychiatric side-effects limit the clinical potential of orthosteric CB1 antagonists. Negative allosteric modulators (NAMs) represent a novel and indirect approach to attenuate CB1 signaling by decreasing affinity and/or efficacy of CB1 ligands. We hypothesized that a CB1-NAM would block opioid reward while avoiding the unwanted effects of orthosteric CB1 antagonists. GAT358, a CB1-NAM, failed to elicit cardinal signs of direct CB1 activation or inactivation when administered by itself. GAT358 decreased catalepsy and hypothermia but not antinociception produced by the orthosteric CB1 agonist CP55,940, suggesting that a CB1-NAM blocked cardinal signs of CB1 activation. Next, GAT358 was evaluated using in vivo assays of opioid-induced dopamine release and reward in male rodents. In the nucleus accumbens shell, a key component of the mesocorticolimbic reward pathway, morphine increased electrically-evoked dopamine efflux and this effect was blocked by a dose of GAT358 that lacked intrinsic effects on evoked dopamine efflux. Moreover, GAT358 blocked morphine-induced reward in a conditioned place preference (CPP) assay without producing reward or aversion alone. GAT358-induced blockade of morphine CPP was also occluded by GAT229, a CB1 positive allosteric modulator (CB1-PAM), and absent in CB1-knockout mice. Finally, GAT358 also reduced oral oxycodone (but not water) consumption in a two-bottle choice paradigm. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preventing opioid reward and treating opioid abuse while avoiding unwanted side-effects.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Taylor J. Woodward
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jonathon D. Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - George V. Rebec
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA,Corresponding Author: Andrea G. Hohmann, Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-7007,
| |
Collapse
|
11
|
Braunscheidel KM, Okas MP, Floresco SB, Woodward JJ. Cannabinoid receptor type 1 antagonists alter aspects of risk/reward decision making independent of toluene-mediated effects. Psychopharmacology (Berl) 2022; 239:1337-1347. [PMID: 34291308 PMCID: PMC9885490 DOI: 10.1007/s00213-021-05914-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 02/02/2023]
Abstract
Drugs of abuse including cannabis and inhalants impair risk/reward decision making. Cannabis use is often concurrent with inhalant intoxication; yet, preclinical studies investigating the role of endocannabinoids in inhalant misuse are limited. To address this gap in the literature, we used the well-validated probabilistic discounting task to assess risk/reward decision making in rodents following combinations of toluene vapor (a common inhalant) and manipulations of cannabinoid receptor type 1 (CB1R) signaling. As reported previously, acute exposure to toluene vapor disrupted behavioral flexibility during probabilistic discounting. Systemic administration of the CB1R inverse agonist AM281 did not prevent toluene-induced alterations in risky choices, but did independently reduce win-stay behavior, increase choice latency, and increase omissions. Toluene-induced deficits in probabilistic discounting are thought to involve impaired medial prefrontal cortex (mPFC) activity. As we previously reported that some of toluene's inhibitory effects on glutamatergic signaling in the mPFC are endocannabinoid-dependent, we tested the hypothesis that mPFC CB1R activity mediates toluene-induced deficits in discounting. However, bilateral injection of the CB1R inverse agonist AM251 prior to toluene vapor exposure had no effect on toluene-induced changes in risk behavior. In a final set of experiments, we injected the CB1R inverse agonist AM251 (5 and 50 ng), the CB1R agonist WIN55,212-2 (50 ng and 500 ng), or vehicle into the mPFC prior to testing. While mPFC CB1R stimulation did not affect any of the measures tested, the CB1R inverse agonist caused a dose-dependent reduction in win-stay behavior without altering any other measures. Together, these studies indicate that toluene-induced deficits in probabilistic discounting are largely distinct from CB1R-dependent effects that include decreased effectiveness of positive reinforcement (mPFC CB1Rs), decision making speed, and task engagement (non-mPFC CB1Rs).
Collapse
Affiliation(s)
- Kevin M Braunscheidel
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA
| | - Michael P Okas
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Colombia, V6T 1Z4, Canada
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA.
| |
Collapse
|
12
|
Coleman JR, Madularu D, Ortiz RJ, Athanassiou M, Knudsen A, Alkislar I, Cai X, Kulkarni PP, Cushing BS, Ferris CF. Changes in brain structure and function following chronic exposure to inhaled vaporised cannabis during periadolescence in female and male mice: A multimodal MRI study. Addict Biol 2022; 27:e13169. [PMID: 35470553 DOI: 10.1111/adb.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Social norms and legality surrounding the use of medical and recreational cannabis are changing rapidly. The prevalence of cannabis use in adolescence is increasing. The aim of this study was to assess any sex-based neurobiological effects of chronically inhaled, vaporised cannabis on adolescent female and male mice. METHODS Female and male mice were exposed daily to vaporised cannabis (10.3% Δ-9-tetrahydrocannabinol [THC] and 0.05% cannabidiol [CBD]) or placebo from postnatal day 23 to day 51. Following cessation of treatment, mice were examined for changes in brain structure and function using noninvasive multimodal magnetic resonance imaging (MRI). Data from voxel-based morphometry, diffusion weighted imaging and rest state functional connectivity were registered to and analysed with a 3D mouse atlas with 139 brain areas. Following imaging, mice were tested for their preference for a novel object. RESULTS The effects were sexually dimorphic with females showing a unique distribution and inverse correlation between measures of fractional anisotropy and apparent diffusion coefficient localised to the forebrain and hindbrain. In contrast males displayed significant increased functional coupling with the thalamus, hypothalamus and brainstem reticular activating system as compared with controls. Cannabis males also presented with altered hippocampal coupling and deficits in cognitive function. CONCLUSION Chronic exposure to inhaled vaporised cannabis had significant effects on brain structure and function in early adulthood corroborating much of the literature. Females presented with changes in grey matter microarchitecture, while males showed altered functional connectivity in hippocampal circuitry and deficits in object recognition.
Collapse
Affiliation(s)
- James R. Coleman
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Dan Madularu
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Richard J. Ortiz
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Maria Athanassiou
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal Montreal Québec Canada
| | - Alexa Knudsen
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Ilayda Alkislar
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Xuezhu Cai
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Bruce S. Cushing
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Craig F. Ferris
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| |
Collapse
|
13
|
Iman IN, Ahmad NAZ, Mohd Yusof NA, Talib UN, Norazit A, Kumar J, Mehat MZ, Hassan Z, Müller CP, Muzaimi M. Mitragynine (Kratom)-Induced Cognitive Impairments in Mice Resemble Δ9-THC and Morphine Effects: Reversal by Cannabinoid CB 1 Receptor Antagonism. Front Pharmacol 2021; 12:708055. [PMID: 34603022 PMCID: PMC8481666 DOI: 10.3389/fphar.2021.708055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Kratom is a widely abused plant-based drug preparation with a global interest in recent years, well beyond its native grounds in Southeast Asia. Mitragynine, its major psychoactive constituent is known to exhibit opioid-like behavioral effects with resultant neuroplasticity in the brain reward system. Its chronic administration is associated with cognitive impairments in animal studies. However, the underlying molecular mechanism for such a deficit remains elusive. In this study, the involvement of cannabinoid type-1 (CB1) receptors in cognitive deficits after chronic mitragynine exposures was investigated for 28 days (with incremental dose sensitization from 1 to 25 mg/kg) in adult male Swiss albino mice using the IntelliCage® system. Chronic high-dose mitragynine exposure (5–25 mg/kg, intraperitoneal [i.p.]), but not low-dose exposure (1–4 mg/kg, i.p.), induced hyperlocomotion, potentiated the preference for sucrose reward, increased resistance to punishment, and impaired place learning and its reversal. Comparable deficits were also observed after chronic treatments with Δ-9-tetrahydrocannabinol (THC, 2 mg/kg, i.p.) or morphine (5 mg/kg, subcutaneous). Mitragynine-, morphine-, and THC-induced learning and memory deficits were reversed by co-treatment with the CB1 receptor antagonist, NIDA-41020 (10 mg/kg, i.p.). A significant upregulation of CB1 receptor expression was found in the hippocampal CA1 region and ventral tegmental area after chronic high-dose mitragynine and morphine, whereas a downregulation was observed after chronic THC. In conclusion, the present study suggests a plausible role of the CB1 receptor in mediating the dose-dependent cognitive deficits after chronic high-dose mitragynine exposure. This also highlights the potential of CB1 receptor antagonism in ameliorating the cognitive deficits associated with long-term kratom/mitragynine consumption in humans.
Collapse
Affiliation(s)
- Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Nur Aimi Zawami Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Nurul Aiman Mohd Yusof
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Ummi Nasrah Talib
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
14
|
Mitra S, Gobira PH, Werner CT, Martin JA, Iida M, Thomas SA, Erias K, Miracle S, Lafargue C, An C, Dietz DM. A role for the endocannabinoid enzymes monoacylglycerol and diacylglycerol lipases in cue-induced cocaine craving following prolonged abstinence. Addict Biol 2021; 26:e13007. [PMID: 33496035 PMCID: PMC11000690 DOI: 10.1111/adb.13007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Following exposure to drugs of abuse, long-term neuroadaptations underlie persistent risk to relapse. Endocannabinoid signaling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate endocannabinoid biosynthesis and metabolism in regulating relapse behaviors following prolonged periods of drug abstinence has not been examined. Here, we investigated how pharmacological manipulation of lipases involved in regulating the expression of the endocannabinoid 2-AG in the nucleus accumbens (NAc) influence cocaine relapse via discrete neuroadaptations. At prolonged abstinence (30 days) from cocaine self-administration, there is an increase in the NAc levels of diacylglycerol lipase (DAGL), the enzyme responsible for the synthesis of the endocannabinoid 2-AG, along with decreased levels of monoacylglycerol lipase (MAGL), which hydrolyzes 2-AG. Since endocannabinoid-mediated behavioral plasticity involves phosphatase dysregulation, we examined the phosphatase calcineurin after 30 days of abstinence and found decreased expression in the NAc, which we demonstrate is regulated through the transcription factor EGR1. Intra-NAc pharmacological manipulation of DAGL and MAGL with inhibitors DO-34 and URB-602, respectively, bidirectionally regulated cue-induced cocaine seeking and altered the phosphostatus of translational initiation factor, eIF2α. Finally, we found that cocaine seeking 30 days after abstinence leads to decreased phosphorylation of eIF2α and reduced expression of its downstream target NPAS4, a protein involved in experience-dependent neuronal plasticity. Together, our findings demonstrate that lipases that regulate 2-AG expression influence transcriptional and translational changes in the NAc related to drug relapse vulnerability.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Pedro H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- These authors contributed equally to this work
| | - Craig T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Madoka Iida
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shruthi A. Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sophia Miracle
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles Lafargue
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Guzman AS, Avalos MP, De Giovanni LN, Euliarte PV, Sanchez MA, Mongi-Bragato B, Rigoni D, Bollati FA, Virgolini MB, Cancela LM. CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Sci Rep 2021; 11:12964. [PMID: 34155271 PMCID: PMC8217548 DOI: 10.1038/s41598-021-92389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 μl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 μl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.
Collapse
Affiliation(s)
- Andrea S Guzman
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Laura N De Giovanni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Pia V Euliarte
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Marianela A Sanchez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Miriam B Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina. .,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
16
|
Critical interactions between opioid and cannabinoid receptors during tolerance and physical dependence development to opioids in the murine gastrointestinal tract: proof of concept. Pharmacol Rep 2021; 73:1147-1154. [PMID: 34133018 PMCID: PMC8413198 DOI: 10.1007/s43440-021-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/05/2022]
Abstract
Introduction Tolerance (TOL) and physical dependence (PD) constitute important limitations of opioid therapy. The aim of our study was to validate research tools to investigate TOL and PD and to characterize the interactions between opioid (OR) and cannabinoid (CB) receptors in these processes in the GI tract. Methods TOL was assessed through the comparison of morphine ability to inhibit electrically evoked smooth muscles contractility in the mouse ileum that was previously incubated with/without morphine for 1 h. To evaluate the PD, the ileum was incubated with morphine for 10 min, then challenged with naloxone to induce withdrawal response (WR). The OR/CB interactions were evaluated using mixed agonist (PR-38) and AM-251 (CB1 antagonist). Results The inhibitory effect of morphine on ileal contractions was weaker in tissue incubated with this opioid than in tissue incubated without opioid. The opposite was noted for PR-38. In tissues exposed to morphine, but not to PR-38, naloxone induced a WR. The blockage of CB1 receptors with AM-251 before the addition of PR-38 resulted in a naloxone-induced WR. Conclusion The co-activation of OR and CB reduced development of TOL and PD to opioids in the mouse GI tract and mixed OR/CB agonists are promising alternative to currently used opioid drugs.
Collapse
|
17
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
18
|
Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021; 41:2360-2372. [PMID: 33514676 PMCID: PMC7984597 DOI: 10.1523/jneurosci.3216-18.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission. SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.
Collapse
|
19
|
Kim TE, Townsend RK, Branch CL, Romero-Sandoval EA, Hsu W. Cannabinoids in the Treatment of Back Pain. Neurosurgery 2021; 87:166-175. [PMID: 32097466 DOI: 10.1093/neuros/nyz573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/30/2019] [Indexed: 01/17/2023] Open
Abstract
Marijuana is increasingly utilized for the treatment of multiple medical problems, including back pain, in the United States. Although there is strong preclinical evidence supporting the promise of cannabinoids in the treatment of back pain, there is a paucity of clinical data supporting their use in clinical practice. Opioids are an important medication for the treatment of acute and chronic back pain, but utilization of opioid-based regimens have likely contributed to the growing opioid epidemic. The significant risk of morbidity, mortality, and dependence secondary to opioid medications have increased the interest in nonopioid medications, including cannabinoid-based pain regimens, in treating back pain. This review will provide an overview on the pharmacology, drug delivery methods, clinical evidence, and safety considerations critical to understanding the potential role of cannabinoids in the treatment of back pain.
Collapse
Affiliation(s)
- Teddy E Kim
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Robert K Townsend
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Charles L Branch
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Edgar A Romero-Sandoval
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
20
|
Salmanzadeh H, Ahmadi-Soleimani SM, Azadi M, Halliwell RF, Azizi H. Adolescent Substance Abuse, Transgenerational Consequences and Epigenetics. Curr Neuropharmacol 2021; 19:1560-1569. [PMID: 33655865 PMCID: PMC8762180 DOI: 10.2174/1570159x19666210303121519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control. Determining how substance abuse during this critical period might cause longterm neurobiological changes in cognition and behavior is therefore critically important. The present work aims to provide an evaluation of the transgenerational and multi-generational phenotypes derived from parent animals exposed to drugs of abuse only during their adolescence. Specifically, we will consider changes found following the administration of cannabinoids, nicotine, alcohol and opiates. In addition, epigenetic modifications of the genome following drug exposure will be discussed as emerging evidence of the underlying adverse transgenerational effects. Notwithstanding, much of the new data discussed here is from animal models, indicating that future clinical studies are much needed to better understand the neurobiological consequences and mechanisms of drug actions on the human brains' development and maturation.
Collapse
Affiliation(s)
| | | | | | - Robert F. Halliwell
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| | - Hossein Azizi
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| |
Collapse
|
21
|
Mohammadkhani A, Borgland SL. Cellular and behavioral basis of cannabinioid and opioid interactions: Implications for opioid dependence and withdrawal. J Neurosci Res 2020; 100:278-296. [PMID: 33352618 DOI: 10.1002/jnr.24770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The brain's endogenous opioid and endocannabinoid systems are neuromodulatory of synaptic transmission, and play key roles in pain, memory, reward, and addiction. Recent clinical and pre-clinical evidence suggests that opioid use may be reduced with cannabinoid intake. This suggests the presence of a functional interaction between these two systems. Emerging research indicates that cannabinoids and opioids can functionally interact at different levels. At the cellular level, opioid and cannabinoids can have direct receptor associations, alterations in endogenous opioid peptide or cannabinoid release, or post-receptor activation interactions via shared signal transduction pathways. At the systems level, the nature of cannabinoid and opioid interaction might differ in brain circuits underlying different behavioral phenomenon, including reward-seeking or antinociception. Given the rising use of opioid and cannabinoid drugs, a better understanding of how these endogenous signaling systems interact in the brain is of significant interest. This review focuses on the potential relationship of these neural systems in addiction-related processes.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Khaleghzadeh‐Ahangar H, Haghparast A. Cannabinoid receptor modulation changes the accumbal neuronal responses to morphine in the reinstatement of morphine-induced conditioned place preference. Addict Biol 2020; 25:e12817. [PMID: 31436887 DOI: 10.1111/adb.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/25/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
The nucleus accumbens (NAc) is a central component of the brain reward system. It has been known that most of the drugs of abuse such as opioids and cannabinoids affect the NAc. Although cannabinoids can modulate different stages of morphine encounter such as the reinstatement of morphine-induced conditioned place preference (CPP), there is no evidence for the NAc neurons' response to prove it. That is why the present study was designed. The procedure was as follows: The rats were entered to CPP by sc 5 mg/kg morphine in three consecutive days. During the extinction period or in the reinstatement phase, icv WIN 55,212-2 (10mM/5 μL dimethyl sulfoxide [DMSO] 10%) or AM251 (0.5mM/5-μL DMSO 10%) was infused in separate groups. Also, the NAc neurons' response to cannabinoid modulation in reinstatement to morphine was investigated by extracellular single unit recording. As a result, the cannabinoid in the reinstatement phase decreased the NAc neuronal activity. The CB1 receptor inhibition during the extinction period increased the NAc firing rate after ip 1 mg/kg morphine. Also, the inhibition of this receptor in the reinstatement phase increased the NAc neurons' firing rate. The inhibitory effect of cannabinoid on the NAc neuronal activity in the reinstatement has indicated the possible potency of cannabinoid to induce reinstatement of morphine-induced CPP alone and in the absence of a priming dose of morphine. Also, the different effects of the CB1 agonist during the extinction period in the reinstatement phase suggest different mechanisms underlying these two parts.
Collapse
Affiliation(s)
- Hossein Khaleghzadeh‐Ahangar
- Department of Physiology, School of Medicine Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
The role of cannabinoid 1 receptor in the nucleus accumbens on tramadol induced conditioning and reinstatement. Life Sci 2020; 260:118430. [PMID: 32931800 DOI: 10.1016/j.lfs.2020.118430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
AIMS Previous investigations demonstrated that tramadol, as a painkiller, similar to morphine induces tolerance and dependence. Furthermore, the cannabinoid receptor 1 (CB1R) located in the nucleus accumbens (NAc) plays a critical role in morphine-induced conditioning. Therefore, the main objective of this study was to evaluate the role of NAc CB1R in tramadol induced conditioning and reinstatement. MAIN METHODS In the present experiment, the effect of NAc CB1 receptors on tramadol induced conditioning was tested by microinjecting of arachidonylcyclopropylamide (ACPA, CB1R agonist) and AM 251 (CB1R inverse agonist) in the NAc during tramadol-induced conditioning in the adult male Wistar rats. In addition, the role of NAc CB1R in the reinstatement was also evaluated by injecting ACPA and AM 251 after a 10-days extinction period. KEY FINDINGS The obtained data revealed that the administration of tramadol (1,2, and 4 mg/kg, ip) dose-dependently produced conditioned place preference (CPP). Moreover, intra-NAc administration of ACPA (0.25, 0.5, and 1 μg/rat) dose-dependently induced conditioning, while the administration of AM-251 (30, 60, and 120 ng/rat) induced a significant aversion. In addition, the administration of a non-effective dose of AM251 during tramadol conditioning inhibited conditioning induced by tramadol. On the other hand, the administration of ACPA after extinction induced a significant reinstatement. Notably, the locomotor activity did not change among groups. SIGNIFICANCE Previous studies have shown that tramadol-induced CPP occurs through μ-opioid receptors. The data obtained in the current study indicated that CB1R located in the NAc is involved in mediating conditioning induced by tramadol. Besides, CB1R also plays a vital role in the reinstatement of tramadol-conditioned animals. It might be due to the effect of opioids on enhancing the level of CB1R.
Collapse
|
24
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
25
|
Distinctive Evidence Involved in the Role of Endocannabinoid Signalling in Parkinson's Disease: A Perspective on Associated Therapeutic Interventions. Int J Mol Sci 2020; 21:ijms21176235. [PMID: 32872273 PMCID: PMC7504186 DOI: 10.3390/ijms21176235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Current pharmacotherapy of Parkinson's disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient's life-quality by regressing this diseased state. Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD. These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression. Published papers to date were searched via MEDLINE, PubMed, etc., using specific key words in the topic of our manuscript. Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD. Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD). More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.
Collapse
|
26
|
Babalonis S, Walsh SL. Therapeutic potential of opioid/cannabinoid combinations in humans: Review of the evidence. Eur Neuropsychopharmacol 2020; 36:206-216. [PMID: 32273144 PMCID: PMC7338254 DOI: 10.1016/j.euroneuro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/05/2023]
Abstract
The endogenous opioid and cannabinoid receptor systems are widely distributed and co-localized throughout central and peripheral nervous system regions. A large body of preclinical evidence suggests that there are functional interactions between these two systems that may be leveraged to address various health conditions. Numerous animal studies have shown that cannabinoid agonists (e.g., delta-9-tetrahydrocannabinol [Δ9-THC]) enhance the analgesic effects of µ-opioid analgesics as evidenced by decreasing the opioid dose required for analgesia (i.e., opioid sparing) and extending the duration of the opioid analgesia. In contrast, controlled human laboratory studies and clinical trials have not demonstrated robust analgesic or opioid-sparing effects from opioid-cannabinoid combinations. Meta-analyses of the literature (clinical trials, controlled laboratory studies; some non-controlled studies/case reports) have examined the effects of cannabis/cannabinoids for pain relief in those taking a wide variety of analgesics, including prescription opioid medications. These data do not strongly support the use of cannabinoids for chronic pain nor do prospective studies demonstrate significant cannabinoid-mediated opioid-sparing effects. Preclinical studies have also suggested a role for cannabinoids for the treatment of opioid withdrawal. Controlled laboratory and clinical studies suggest that there may be a modest signal for Δ9-THC to suppress some opioid signs and symptoms but they are not completely ameliorated and there may also be concerns around safety of Δ9-THC administration in a state of heightened autonomic arousal as occurs with opioid withdrawal. Despite anecdotal and correlational reports suggesting a benefit of cannabis on reducing opioid overdose, there is no strong data supporting this contention and emerging reports have conflicting results. In summary, there is a groundswell of public advocacy supporting the use of cannabis and cannabinoids to replace opioid analgesics or to reduce opioid use; however, the extant controlled clinical data do not support the role of cannabinoids for opioid replacement or opioid-sparing effects when treating opioid use disorder or chronic pain.
Collapse
Affiliation(s)
- Shanna Babalonis
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States
| | - Sharon L Walsh
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of Pharmacology, University of Kentucky, Lexington, KY 40508, United States; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, United States; Department of Psychiatry, University of Kentucky, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States.
| |
Collapse
|
27
|
Ozdemir E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev Med Chem 2020; 20:875-885. [DOI: 10.2174/1389557520666200313120835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
Opioid receptor agonist drugs, such as morphine, are very effective for treating chronic and severe pain; but, tolerance can develop with long-term use. Although there is a lot of information about the pathophysiological mechanisms of opioid tolerance, it is still not fully clarified. Suggested mechanisms for opioid tolerance include opioid receptor desensitisation, reduction of sensitivity G-proteins, activation of Mitogen-Activated Protein Kinase (MAPK), altered intracellular signaling pathway including nitric oxide, and activation of mammalian Target of Rapamycin (mTOR). One way to reduce opioid tolerance and increase the analgesic potential is to use low doses. Combination of cannabinoids with opioids has been shown to manifest the reduction of the opioid dose. Experimental studies revealed an interaction of the endocannabinoid system and opioid antinociception. Cannabinoid and opioid receptor systems use common pathways in the formation of analgesic effect and demonstrate their activity via G Protein Coupled Receptors (GPCR). Cannabinoid drugs modulate opioid analgesic activity at a number of distinct levels within the cell, ranging from direct receptor associations to post-receptor interactions through shared signal transduction pathways. This review summarizes the data indicating that with combining cannabinoids and opioids drugs may be able to produce long-term analgesic effects, while preventing the opioid analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, School of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
28
|
Pardo-García TR, Yusif-Rodriguez N, Yudowski G, Maldonado-Vlaar CS. Blockade of the endovanilloid receptor, TRPV1, and of the endocannabinoid enzyme, FAAH, within the nucleus accumbens shell elicits anxiolytic-like effects in male rats. Neurosci Lett 2020; 732:135023. [PMID: 32422166 DOI: 10.1016/j.neulet.2020.135023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
RATIONALE The functional role of the endocannabinoid system (ECS) and Transient Receptor Potential Vanilloid type-1 (TRPV1) within the Nucleus Accumbens shell (NAc shell) remains unknown. Preclinical studies in rodents have reported that the ECS modulates emotional responses such as anxiety. The NAc shell has a high density of synaptically co-localized cannabinoid receptor type-1 (CB1R) and TRPV1, suggesting a potential involvement in the modulation of anxiety. OBJECTIVES The present study aims to establish the role of ECS-TRPV1 interactions within the NAc shell and its effects on anxiety. It is hypothesized that the neurochemical regulation elicited by ECS within the NAc shell mediates anxiety-like behaviors in rodents. METHODS In this study, male Sprague Dawley rats were implanted with bilateral brain cannula targeting the NAc shell. Following recovery from surgery, animals received microinfusion pretreatments (0, 0.125, 0.5 nmol/0.4 μl) of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH) and a TRPV1 antagonist in the NAc shell. Following treatment, animals were tested in an elevated plus maze (EPM) paradigm for a period of 5 minutes. At the end of the experiment, animals were sacrificed and their brains collected for histological and biochemical analysis. RESULTS Results showed that animals treated with AA-5-HT in a dose dependent manner spent significantly more time in the open arms than vehicle-treated animals. In addition, AA-5-HT administration induced a significant downregulation of CB1R expression in the NAc shell. CONCLUSIONS The present findings suggest that the ECS within the NAc shell modulates anxiety-like behaviors via FAAH and CB1R activity.
Collapse
Affiliation(s)
- Thibaut R Pardo-García
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Nadira Yusif-Rodriguez
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Guillermo Yudowski
- University of Puerto Rico-Medical School, Institute of Neurobiology, San Juan, 00936, Puerto Rico
| | - Carmen S Maldonado-Vlaar
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| |
Collapse
|
29
|
Hasbi A, Madras BK, Bergman J, Kohut S, Lin Z, Withey SL, George SR. Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. iScience 2020; 23:100794. [PMID: 31972514 PMCID: PMC6971351 DOI: 10.1016/j.isci.2019.100794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ9-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum. Importantly, chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum. The majority of these neurons displayed a phenotype co-expressing the characteristic markers of both striatonigral and striatopallidal neurons. Furthermore, THC increased D1-D2-linked calcium signaling markers (pCaMKIIα, pThr75-DARPP-32, BDNF/pTrkB) and inhibited cyclic AMP signaling (pThr34-DARPP-32, pERK1/2, pS845-GluA1, pGSK3). Cannabidiol attenuated most but not all of these THC-induced neuroadaptations. Targeted pathway analyses linked these changes to neurological and psychological disorders. These data underline the importance of the D1-D2 receptor heteromer in cannabis use-related disorders, with THC-induced changes likely responsible for the reported adverse effects observed in heavy long-term users.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Stephen Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Sarah L Withey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
31
|
Norris C, Szkudlarek HJ, Pereira B, Rushlow W, Laviolette SR. The Bivalent Rewarding and Aversive properties of Δ 9-tetrahydrocannabinol are Mediated Through Dissociable Opioid Receptor Substrates and Neuronal Modulation Mechanisms in Distinct Striatal Sub-Regions. Sci Rep 2019; 9:9760. [PMID: 31278333 PMCID: PMC6611878 DOI: 10.1038/s41598-019-46215-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 11/09/2022] Open
Abstract
The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), is capable of producing bivalent rewarding and aversive affective states through interactions with the mesolimbic system. However, the precise mechanisms underlying the dissociable effects of THC are not currently understood. In the present study, we identify anatomically dissociable effects of THC within the rat nucleus accumbens (NAc), using an integrative combination of behavioral pharmacology and in vivo neuronal electrophysiology. We report that the rewarding vs. aversive stimulus properties of THC are both anatomically and pharmacologically dissociable within distinct anterior vs. posterior sub-regions of the NAc. While the rewarding effects of THC were dependent upon local μ-opioid receptor signaling, the aversive effects of THC were processed via a κ-opioid receptor substrate. Behaviorally, THC in the posterior NASh induced deficits in social reward and cognition whereas THC in the anterior NAc, potentiated opioid-related reward salience. In vivo neuronal recordings demonstrated that THC decreased medium spiny neuron (MSN) activity in the anterior NAc and increased the power of gamma (γ) oscillations. In contrast, THC increased MSN activity states in the posterior NASh and decreased γ-oscillation power. These findings reveal critical new insights into the bi-directional neuronal and pharmacological mechanisms controlling the dissociable effects of THC in mesolimbic-mediated affective processing.
Collapse
Affiliation(s)
- Christopher Norris
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian Pereira
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
32
|
Fitzgerald ML, Mackie K, Pickel VM. Ultrastructural localization of cannabinoid CB1 and mGluR5 receptors in the prefrontal cortex and amygdala. J Comp Neurol 2019; 527:2730-2741. [PMID: 31008528 DOI: 10.1002/cne.24704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
Abstract
Stimulation of the postsynaptic metabotropic glutamate receptor mGluR5 triggers retrograde signaling of endocannabinoids that activate presynaptic cannabinoid CB1 receptors on juxtaposing axon terminals. To better understand the synaptic structure that supports mGluR5 mediation of CB1 activation in the prefrontal cortex (PFC) and basolateral amygdala (BLA), we examined electron microscopic dual immunolabeling of these receptors in the prelimbic PFC (prPFC) and BLA of adult male rats. CB1 immunoreactivity was detected in axon terminals that were typically large, complex, and contained dense-core and clear synaptic vesicles. Of terminals forming discernible synaptic specializations, 95% were symmetric inhibitory-type in the prPFC and 90% were inhibitory in the BLA. CB1-immunoreactive terminals frequently contacted dendrites containing mGluR5 adjacent to unlabeled terminals forming excitatory-type synapses. Because most CB1-containing terminals form inhibitory-type synapses, the unlabeled axon terminals forming asymmetric synapses are the likely source of the mGluR5 ligand glutamate. In the prPFC, serial section analysis revealed that GABAergic CB1-containing axon terminals targeted dendrites adjacent to glutamatergic axon terminals, often near dendritic bifurcations. These observations provide ultrastructural evidence that cortical CB1 receptors are strategically positioned for integration of synaptic signaling in response to stimulation of postsynaptic mGluR5 receptors and facilitation of heterosynaptic communication between multiple neurons.
Collapse
Affiliation(s)
- Megan L Fitzgerald
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Virginia M Pickel
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| |
Collapse
|
33
|
Chye Y, Christensen E, Solowij N, Yücel M. The Endocannabinoid System and Cannabidiol's Promise for the Treatment of Substance Use Disorder. Front Psychiatry 2019; 10:63. [PMID: 30837904 PMCID: PMC6390812 DOI: 10.3389/fpsyt.2019.00063] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022] Open
Abstract
Substance use disorder is characterized by repeated use of a substance, leading to clinically significant distress, making it a serious public health concern. The endocannabinoid system plays an important role in common neurobiological processes underlying substance use disorder, in particular by mediating the rewarding and motivational effects of substances and substance-related cues. In turn, a number of cannabinoid drugs (e.g., rimonabant, nabiximols) have been suggested for potential pharmacological treatment for substance dependence. Recently, cannabidiol (CBD), a non-psychoactive phytocannabinoid found in the cannabis plant, has also been proposed as a potentially effective treatment for the management of substance use disorder. Animal and human studies suggest that these cannabinoids have the potential to reduce craving and relapse in abstinent substance users, by impairing reconsolidation of drug-reward memory, salience of drug cues, and inhibiting the reward-facilitating effect of drugs. Such functions likely arise through the targeting of the endocannabinoid and serotonergic systems, although the exact mechanism is yet to be elucidated. This article seeks to review the role of the endocannabinoid system in substance use disorder and the proposed pharmacological action supporting cannabinoid drugs' therapeutic potential in addictions, with a focus on CBD. Subsequently, this article will evaluate the underlying evidence for CBD as a potential treatment for substance use disorder, across a range of substances including nicotine, alcohol, psychostimulants, opioids, and cannabis. While early research supports CBD's promise, further investigation and validation of CBD's efficacy, across preclinical and clinical trials will be necessary.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Erynn Christensen
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Khaleghzadeh-Ahangar H, Khodagholi F, Shaerzadeh F, Haghparast A. Modulatory role of the intra-accumbal CB1 receptor in protein level of the c-fos and pCREB/CREB ratio in the nucleus accumbens and ventral tegmental area in extinction and morphine seeking in the rats. Brain Res Bull 2018; 142:320-327. [PMID: 30170186 DOI: 10.1016/j.brainresbull.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/26/2018] [Accepted: 08/25/2018] [Indexed: 11/30/2022]
Abstract
Brain reward and motivation circuit begin from the ventral tegmental area (VTA) that its dopaminergic terminals project to various regions of the brain including the nucleus accumbens (NAc). This reward circuit is influenced by drugs of abuse such as morphine and cannabinoid. The present study tried to investigate the role of the intra-accumbal CB1 receptor in the c-fos level and pCREB/CREB ratio in the NAc and the VTA during reinstatement phase of morphine-induced conditioned place preference (CPP) by western blotting. The present data reveals that intra-accumbal administration of CB1 agonist, WIN55,212-2 (0.5, 1 and 2 mM/0.5 μl DMSO) before/during extinction period of morphine-induced CPP, significantly decreased the NAc and the VTA c-fos protein level in the reinstatement phase; whereas the pre-reinstatement administration of the CB1 agonist, increased the c-fos protein level. Intra-accumbal administration of the CB1 agonist during the extinction period of morphine-induced CPP reduced the pCREB/CREB ratio in the NAc. Also, the present data show that intra-accumbal administration of CB1 antagonist, AM251 (15, 45 and 90 μM/0.5 μl DMSO) during/after extinction period of morphine-induced CPP affects the NAc and the VTA c-fos protein level in the reinstatement phase. Also, intra-NAc microinjection of AM251 during the extinction period reduced pCREB/CREB ratio in these regions. In conclusion, the results presented here provide compelling evidence of the modulation and involvement of the c-fos and the CREB molecules in the cannabinoid-opioid interaction of the brain reward system in the CPP paradigm.
Collapse
MESH Headings
- Animals
- Benzoxazines/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Drug-Seeking Behavior/drug effects
- Drug-Seeking Behavior/physiology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Male
- Morphine/pharmacology
- Morphine Dependence/metabolism
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Narcotics/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Phosphorylation
- Piperidines/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Pyrazoles/pharmacology
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
35
|
Mitchell MR, Berridge KC, Mahler SV. Endocannabinoid-Enhanced "Liking" in Nucleus Accumbens Shell Hedonic Hotspot Requires Endogenous Opioid Signals. Cannabis Cannabinoid Res 2018; 3:166-170. [PMID: 30069500 PMCID: PMC6069591 DOI: 10.1089/can.2018.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction: Stimulating either endogenous cannabinoids or opioids within a restricted dorsomedial “hedonic hotspot” in nucleus accumbens (NAc) shell enhances hedonic impact, or “liking” reactions to sweet tastes. In this study, we probed within this hotspot the relationship between endocannabinoid and opioid signals in hedonic enhancement. Materials and Methods: Specifically, we asked whether enhancement of sucrose “liking” by intra-NAc microinjections of the endocannabinoid anandamide requires concurrent endogenous opioid signaling. Results: Co-administration of the opioid antagonist naloxone in the same NAc microinjections with anandamide prevented the endocannabinoid from enhancing orofacial “liking” reactions to sucrose. Since intra-NAc hotspot naloxone injection alone failed to affect hedonics, reversal of anandamide-induced “liking” by opioid blockade reveals an interdependence of opioid and cannabinoid signaling in enhancing taste hedonic impact. Conclusions: These results elaborate our understanding of the mechanisms of hedonic processing of food rewards, and may also carry implications more generally for how opioid and cannabinoid drugs interact to generate natural pleasures, or drug-induced euphoria.
Collapse
Affiliation(s)
- Marci R Mitchell
- Department of Psychology, The University of Michigan, Ann Arbor, Michigan
| | - Kent C Berridge
- Department of Psychology, The University of Michigan, Ann Arbor, Michigan
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, The University of California, Irvine, Irvine, California
| |
Collapse
|
36
|
Expression and localization of CB1R, NAPE-PLD, and FAAH in the vervet monkey nucleus accumbens. Sci Rep 2018; 8:8689. [PMID: 29875385 PMCID: PMC5989267 DOI: 10.1038/s41598-018-26826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/15/2018] [Indexed: 11/14/2022] Open
Abstract
Extensive rodent literature suggests that the endocannabinoid (eCB) system present in the nucleus accumbens (NAc) modulates dopamine (DA) release in this area. However, expression patterns of the cannabinoid receptor type 1 (CB1R), the synthesizing enzyme N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and the degradation enzyme fatty acid amide hydrolase (FAAH) in the NAc have not yet been described in non-human primates. The goal of this study is therefore to characterize the expression and localization of the eCB system within the NAc of vervet monkeys (Chlorocebus sabaeus) using Western blots and immunohistochemistry. Results show that CB1R, NAPE-PLD, and FAAH are expressed across the NAc rostrocaudal axis, both in the core and shell. CB1R, NAPE-PLD, and FAAH are localized in medium spiny neurons (MSNs) and fast-spiking GABAergic interneurons (FSIs). Dopaminergic projections and astrocytes did not express CB1R, NAPE-PLD, or FAAH. These data show that the eCB system is present in the vervet monkey NAc and supports its role in the primate brain reward circuit.
Collapse
|
37
|
Lin X, Dhopeshwarkar AS, Huibregtse M, Mackie K, Hohmann AG. Slowly Signaling G Protein-Biased CB 2 Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence. Mol Pharmacol 2018; 93:49-62. [PMID: 29192123 PMCID: PMC5749492 DOI: 10.1124/mol.117.109355] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023] Open
Abstract
The CB2 cannabinoid agonist LY2828360 lacked both toxicity and efficacy in a clinical trial for osteoarthritis. Whether LY2828360 suppresses neuropathic pain has not been reported, and its signaling profile is unknown. In vitro, LY2828360 was a slowly acting but efficacious G protein-biased CB2 agonist, inhibiting cAMP accumulation and activating extracellular signal-regulated kinase 1/2 signaling while failing to recruit arrestin, activate inositol phosphate signaling, or internalize CB2 receptors. In wild-type (WT) mice, LY2828360 (3 mg/kg per day i.p. × 12 days) suppressed chemotherapy-induced neuropathic pain produced by paclitaxel without producing tolerance. Antiallodynic efficacy of LY2828360 was absent in CB2 knockout (KO) mice. Morphine (10 mg/kg per day i.p. × 12 days) tolerance developed in CB2KO mice but not in WT mice with a history of LY2828360 treatment (3 mg/kg per day i.p. × 12 days). LY2828360-induced antiallodynic efficacy was preserved in WT mice previously rendered tolerant to morphine (10 mg/kg per day i.p. × 12 days), but it was absent in morphine-tolerant CB2KO mice. Coadministration of LY2828360 (0.1 mg/kg per day i.p. × 12 days) with morphine (10 mg/kg per day × 12 days) blocked morphine tolerance in WT but not in CB2KO mice. WT mice that received LY2828360 coadministered with morphine exhibited a trend (P = 0.055) toward fewer naloxone-precipitated jumps compared with CB2KO mice. In conclusion, LY2828360 is a slowly signaling, G protein-biased CB2 agonist that attenuates chemotherapy-induced neuropathic pain without producing tolerance and may prolong effective opioid analgesia while reducing opioid dependence. LY2828360 may be useful as a first-line treatment in chemotherapy-induced neuropathic pain and may be highly efficacious in neuropathic pain states that are refractive to opioid analgesics.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Amey S Dhopeshwarkar
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Megan Huibregtse
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
38
|
Wenzel JM, Cheer JF. Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology 2018; 43:103-115. [PMID: 28653666 PMCID: PMC5719091 DOI: 10.1038/npp.2017.126] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system (eCB) is implicated in the mediation of both reward and reinforcement. This is evidenced by the ability of exogenous cannabinoid drugs to produce hedonia and maintain self-administration in both human and animal subjects. eCBs similarly facilitate behaviors motivated by reward through interaction with the mesolimbic dopamine (DA) and endogenous opioid systems. Indeed, eCB signaling in the ventral tegmental area stimulates activation of midbrain DA cells and promotes DA release in terminal regions such as the nucleus accumbens (NAc). DA transmission mediates several aspects of reinforced behavior, such as motivation, incentive salience, and cost-benefit calculations. However, much research suggests that endogenous opioid signaling underlies the hedonic aspects of reward. eCBs and their receptors functionally interact with opioid systems within the NAc to support reward, most likely through augmenting DA release. This review explores the interaction of these systems as it relates to reward and reinforcement and examines current literature regarding their role in food reward.
Collapse
Affiliation(s)
- J M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, Department of Psychiatry, Graduate Program in Neuroscience, University of Maryland School of Medicine, HSF I, Room 280J, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 7060112, Fax: +1 410 7062512, E-mail:
| |
Collapse
|
39
|
Sustkova-Fiserova M, Charalambous C, Havlickova T, Lapka M, Jerabek P, Puskina N, Syslova K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int J Mol Sci 2017; 18:E2486. [PMID: 29165386 PMCID: PMC5713452 DOI: 10.3390/ijms18112486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
The opioid-induced rise of extracellular dopamine, endocannabinoid anandamide and γ-aminobutyric acid (GABA) concentrations triggered by opioids in the nucleus accumbens shell (NACSh) most likely participate in opioid reward. We have previously demonstrated that systemic administration of ghrelin antagonist (JMV2959) significantly decreased morphine-induced dopamine and anandamide (N-arachidonoylethanolamine, AEA) increase in the NACSh. Fentanyl is considered as a µ-receptor-selective agonist. The aim of this study was to test whether JMV2959, a growth hormone secretagogue receptor (GHS-R1A) antagonist, can influence the fentanyl-induced effects on anandamide, 2-arachidonoylglycerol (2-AG) and GABA in the NACSh and specify the involvement of GHS-R1A located in the ventral tegmental area (VTA) and nucleus accumbens (NAC). Using in vivo microdialysis in rats, we have found that pre-treatment with JMV2959 reversed dose dependently fentanyl-induced anandamide increases in the NACSh, resulting in a significant AEA decrease and intensified fentanyl-induced decreases in accumbens 2-AG levels, with both JMV2959 effects more expressed when administered into the NACSh in comparison to the VTA. JMV2959 pre-treatment significantly decreased the fentanyl-evoked accumbens GABA efflux and reduced concurrently monitored fentanyl-induced behavioural stimulation. Our current data encourage further investigation to assess if substances affecting GABA or endocannabinoid concentrations and action, such as GHS-R1A antagonists, can be used to prevent opioid-seeking behaviour.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Pavel Jerabek
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Nina Puskina
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT, Technicka 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
40
|
Madularu D, Yee JR, Kulkarni P, Ferris CF. System-specific activity in response to Δ 9 -tetrahydrocannabinol: a functional magnetic resonance imaging study in awake male rats. Eur J Neurosci 2017; 46:2893-2900. [PMID: 29057576 DOI: 10.1111/ejn.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023]
Abstract
The aim of this study was to assess the effects of two doses of Δ9 -tetrahydrocannabinol (THC, cannabis' main psychoactive agent) and vehicle on blood-oxygen-level dependent (BOLD) activity in drug-naïve, awake rats, in an effort to obtain a THC-specific map of activation in clinically-relevant regions and systems. Intraperitoneal injections of low dose of THC resulted in increased positive and negative BOLD signals compared to vehicle and high dose in areas rich in cannabinoid receptor 1, as well as throughout the pain and hippocampal neural systems. These results offer unique maps of activity, or 'fingerprints', associated with systemic THC administration, allowing for further comparisons with either additional doses or compounds, or between THC administration modalities (i.e. systemic vs. ingested vs. inhaled), which ultimately adds to the translatability assessment of THC-induced BOLD between animal and human studies.
Collapse
Affiliation(s)
- Dan Madularu
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, 6875 Lasalle Blvd., Montreal, QC, H4H 1R3, Canada.,Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Jason R Yee
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| |
Collapse
|
41
|
Richards JR, Schandera V, Elder JW. Treatment of acute cannabinoid overdose with naloxone infusion. TOXICOLOGY COMMUNICATIONS 2017. [DOI: 10.1080/24734306.2017.1392715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- John R. Richards
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA
| | - Verena Schandera
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA
| | - Joshua W. Elder
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA
| |
Collapse
|
42
|
Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal Cannabinoid Agonist Attenuated Reinstatement but not Extinction Period of Morphine-Induced Conditioned Place Preference; Evidence for Different Characteristics of Extinction Period and Reinstatement. Neurochem Res 2017; 42:3321-3330. [DOI: 10.1007/s11064-017-2374-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
43
|
Freundt-Revilla J, Kegler K, Baumgärtner W, Tipold A. Spatial distribution of cannabinoid receptor type 1 (CB1) in normal canine central and peripheral nervous system. PLoS One 2017; 12:e0181064. [PMID: 28700706 PMCID: PMC5507289 DOI: 10.1371/journal.pone.0181064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid system is a regulatory pathway consisting of two main types of cannabinoid receptors (CB1 and CB2) and their endogenous ligands, the endocannabinoids. The CB1 receptor is highly expressed in the central and peripheral nervous systems (PNS) in mammalians and is involved in neuromodulatory functions. Since endocannabinoids were shown to be elevated in cerebrospinal fluid of epileptic dogs, knowledge about the species specific CB receptor expression in the nervous system is required. Therefore, we assessed the spatial distribution of CB1 receptors in the normal canine CNS and PNS. Immunohistochemistry of several regions of the brain, spinal cord and peripheral nerves from a healthy four-week-old puppy, three six-month-old dogs, and one ten-year-old dog revealed strong dot-like immunoreactivity in the neuropil of the cerebral cortex, Cornu Ammonis (CA) and dentate gyrus of the hippocampus, midbrain, cerebellum, medulla oblongata and grey matter of the spinal cord. Dense CB1 expression was found in fibres of the globus pallidus and substantia nigra surrounding immunonegative neurons. Astrocytes were constantly positive in all examined regions. CB1 labelled neurons and satellite cells of the dorsal root ganglia, and myelinating Schwann cells in the PNS. These results demonstrate for the first time the spatial distribution of CB1 receptors in the healthy canine CNS and PNS. These results can be used as a basis for further studies aiming to elucidate the physiological consequences of this particular anatomical and cellular distribution.
Collapse
Affiliation(s)
- Jessica Freundt-Revilla
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Kristel Kegler
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
44
|
Manduca A, Lassalle O, Sepers M, Campolongo P, Cuomo V, Marsicano G, Kieffer B, Vanderschuren LJMJ, Trezza V, Manzoni OJJ. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play. Front Behav Neurosci 2016; 10:211. [PMID: 27899885 PMCID: PMC5110529 DOI: 10.3389/fnbeh.2016.00211] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.
Collapse
Affiliation(s)
- Antonia Manduca
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Olivier Lassalle
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Marja Sepers
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Giovanni Marsicano
- NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Institut National De La Santé Et De La Recherche Médicale U862Bordeaux, France; NeuroCentre Magendie U862, University of BordeauxBordeaux, France
| | - Brigitte Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg Illkirch, France
| | - Louk J M J Vanderschuren
- Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre Rome, Italy
| | - Olivier J J Manzoni
- Institut National De La Santé Et De La Recherche Médicale U901Marseille, France; Université de la Méditerranée UMR S901 Aix-Marseille 2Marseille, France; INMEDMarseille, France
| |
Collapse
|
45
|
Kim J, Ham S, Hong H, Moon C, Im HI. Brain Reward Circuits in Morphine Addiction. Mol Cells 2016; 39:645-53. [PMID: 27506251 PMCID: PMC5050528 DOI: 10.14348/molcells.2016.0137] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022] Open
Abstract
Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.
Collapse
Affiliation(s)
- Juhwan Kim
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Suji Ham
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| | - Heeok Hong
- Department of Medical Science, Konkuk University School of Medicine, Seoul 05029,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186,
Korea
| | - Heh-In Im
- Center for Neuroscience, Brain Science Institute, Seoul 02792,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113,
Korea
| |
Collapse
|
46
|
Zhang M, Wang K, Ma M, Tian S, Wei N, Wang G. Low-Dose Cannabinoid Type 2 Receptor Agonist Attenuates Tolerance to Repeated Morphine Administration via Regulating μ-Opioid Receptor Expression in Walker 256 Tumor-Bearing Rats. Anesth Analg 2016; 122:1031-7. [PMID: 26720619 DOI: 10.1213/ane.0000000000001129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Morphine is widely used in patients with moderate and severe cancer pain, whereas the development of drug tolerance remains a major problem associated with opioid use. Previous studies have shown that cannabinoid type 2 (CB2) receptor agonists induce morphine analgesia, attenuate morphine tolerance in normal and neuropathic pain animals, induce transcription of the μ-opioid receptor (MOR) gene in Jurkat T cells, and increase morphine analgesia in cancer pain animals. However, no studies of the effects of CB2 receptor agonists on morphine tolerance in cancer pain have been performed. Therefore, we investigated the effect of repeated intrathecal (IT) injection of the low-dose CB2 receptor agonist AM1241 on the development of morphine tolerance in walker 256 tumor-bearing rats. We also tested the influence of the CB2 receptor agonist AM1241 on MOR protein and messenger ribonucleic acid (mRNA) expression in the rat spinal cord and dorsal root ganglia (DRG). METHODS Walker 256 cells were implanted into the plantar region of each rat's right hindpaw. Tumor-bearing rats received IT injection of the CB2 receptor agonist AM1241 or antagonist AM630 with or without morphine subcutaneously twice daily for 8 days. Rats receiving drug vehicle only served as the control group. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were assessed by a von Frey test and hot plate test 30 minutes after drug administration every day. MOR protein and mRNA expression in the spinal cord and DRG were detected after the last day (day 8) of drug administration via Western blot and real-time reverse transcription polymerase chain reaction. The data were analyzed via analysis of variance followed by Student t test with Bonferroni correction for multiple comparisons. RESULTS Repeated morphine treatments reduced the mechanical withdrawal threshold and thermal latency. Coadministration of a nonanalgetic dose of the CB2 receptor agonist AM1241 with morphine significantly inhibited the development of morphine tolerance and increased the MOR protein expression in the spinal cord and DRG and mRNA expression in the spinal cord in tumor-bearing rats. CONCLUSIONS Our findings indicate that IT injection of a nonanalgetic dose of a CB2 receptor agonist increased the analgesia effect and alleviated tolerance to morphine in tumor-bearing rats, potentially by regulating MOR expression in the spinal cord and DRG. This receptor may be a new target for prevention of the development of opioid tolerance in cancer pain.
Collapse
Affiliation(s)
- Mingyue Zhang
- From the *Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, China; †Department of Gynecology, Cancer Hospital of Harbin Medical University, Harbin, China; and ‡Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
| | | | | | | | | | | |
Collapse
|
47
|
Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress. Cell Rep 2016; 16:1237-1242. [PMID: 27452462 DOI: 10.1016/j.celrep.2016.06.082] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/18/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023] Open
Abstract
Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress.
Collapse
|
48
|
Lofwall MR, Babalonis S, Nuzzo PA, Elayi SC, Walsh SL. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans. Drug Alcohol Depend 2016; 164:143-150. [PMID: 27234658 PMCID: PMC4910823 DOI: 10.1016/j.drugalcdep.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. METHODS Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21h before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. RESULTS Oxycodone produced prototypic opioid agonist effects (i.e. suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. CONCLUSION CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal.
Collapse
Affiliation(s)
- Michelle R. Lofwall
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536,UK COM, Department of Psychiatry, Lexington, KY, United States 40509
| | - Shanna Babalonis
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536
| | - Paul A. Nuzzo
- UK COM, Department of Behavioral Science, Lexington, KY, United States 40536
| | - Samy Claude Elayi
- UK COM, Department of Cardiology, Gill Heart Institute, Lexington, KY, United States 40536
| | - Sharon L. Walsh
- University of Kentucky College of Medicine (UK COM), Center on Drug and Alcohol Research, 845 Angliana Ave., Lexington, KY, United States 40508,UK COM, Department of Behavioral Science, Lexington, KY, United States 40536,UK COM, Department of Psychiatry, Lexington, KY, United States 40509
| |
Collapse
|
49
|
Wills KL, Parker LA. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature. Front Pharmacol 2016; 7:187. [PMID: 27445822 PMCID: PMC4923145 DOI: 10.3389/fphar.2016.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.
Collapse
Affiliation(s)
- Kiri L Wills
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| |
Collapse
|
50
|
Bruijnzeel AW, Qi X, Guzhva LV, Wall S, Deng JV, Gold MS, Febo M, Setlow B. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats. PLoS One 2016; 11:e0153327. [PMID: 27065006 PMCID: PMC4827836 DOI: 10.1371/journal.pone.0153327] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
Abstract
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- Center for Addiction Research and Education, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Xiaoli Qi
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Lidia V. Guzhva
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Shannon Wall
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Jie V. Deng
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
- Center for Addiction Research and Education, University of Florida, Gainesville, Florida, United States of America
| | - Mark S. Gold
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- Center for Addiction Research and Education, University of Florida, Gainesville, Florida, United States of America
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- Center for Addiction Research and Education, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|