1
|
Rycerz K, Krawczyk A, Jaworska-Adamu J, Arciszewski MB. Monosodium Glutamate Treatment Elevates the Immunoreactivity of GFAP and S100β in Caudate Nucleus of the Striatum in Rats. Biomedicines 2024; 12:2763. [PMID: 39767670 PMCID: PMC11672967 DOI: 10.3390/biomedicines12122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Monosodium glutamate (MSG) in its anionic form, glutamate, is one of the main excitatory amino acids. Excess of this neurotransmitter may lead to excitotoxicity affecting neurons and astrocytes responsible for glutamate metabolism in different brain areas of animals. The aim of the study was to investigate the immunoreactivity of glial fibrillary acidic protein (GFAP) and S100β protein in the caudate nucleus of rats under the condition of elevated glutamate levels. METHODS Fifteen rats were divided into a control group receiving saline and MSG2 and MSG4 groups receiving 2 g/kg b.w. MSG and 4 g/kg b.w. MSG, respectively, for 3 days. An immunohistochemical reaction was conducted on frontal sections containing the caudate nucleus with use of antibodies against GFAP and S100β. RESULTS Analyses indicated elevated density of astrocytes immunoreactive for the studied proteins in the caudate nucleus in animals receiving MSG. The studied glial cells also demonstrated increased immunostaining intensity for both GFAP and S100β immunoreactive cells especially in the MSG4 group. The number of GFAP-positive processes in astrocytes was similar in all studied groups. CONCLUSIONS The studies demonstrate a potential response of astrocytes to the effect of MSG administration in the caudate nucleus. It was shown that GFAP- and S100β-positive astrocytes in the caudate nucleus may act differently, suggesting distinct roles of these proteins against glutamate excitotoxicity.
Collapse
Affiliation(s)
| | - Aleksandra Krawczyk
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (K.R.); (J.J.-A.); (M.B.A.)
| | | | | |
Collapse
|
2
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
4
|
Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep 2021; 11:932. [PMID: 33441619 PMCID: PMC7806765 DOI: 10.1038/s41598-020-79656-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
Inborn errors of metabolism are often associated with neurodevelopmental disorders and brain injury. A deficiency of aminopeptidase P1, a proline-specific endopeptidase encoded by the Xpnpep1 gene, causes neurological complications in both humans and mice. In addition, aminopeptidase P1-deficient mice exhibit hippocampal neurodegeneration and impaired hippocampus-dependent learning and memory. However, the molecular and cellular changes associated with hippocampal pathology in aminopeptidase P1 deficiency are unclear. We show here that a deficiency of aminopeptidase P1 modifies the glial population and neuronal excitability in the hippocampus. Microarray and real-time quantitative reverse transcription-polymerase chain reaction analyses identified 14 differentially expressed genes (Casp1, Ccnd1, Myoc, Opalin, Aldh1a2, Aspa, Spp1, Gstm6, Serpinb1a, Pdlim1, Dsp, Tnfaip6, Slc6a20a, Slc22a2) in the Xpnpep1−/− hippocampus. In the hippocampus, aminopeptidase P1-expression signals were mainly detected in neurons. However, deficiency of aminopeptidase P1 resulted in fewer hippocampal astrocytes and increased density of microglia in the hippocampal CA3 area. In addition, Xpnpep1−/− CA3b pyramidal neurons were more excitable than wild-type neurons. These results indicate that insufficient astrocytic neuroprotection and enhanced neuronal excitability may underlie neurodegeneration and hippocampal dysfunction in aminopeptidase P1 deficiency.
Collapse
|
5
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
6
|
Yang F, Wang H, Chen H, Ran D, Tang Q, Weng P, Sun Y, Jiang W. RAGE Signaling pathway in hippocampus dentate gyrus involved in GLT-1 decrease induced by chronic unpredictable stress in rats. Brain Res Bull 2020; 163:49-56. [PMID: 32621862 DOI: 10.1016/j.brainresbull.2020.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
A pivotal role of glutamatergic neurotransmission in the pathophysiology of major depressive disorder (MDD) has been supported in preclinical and clinical studies. Glutamate transporters are responsible for rapid uptake of glutamate to maintain glutamate homeostasis. Down-regulation of glutamate transporters has been reported in MDD patients and animal models. However, the mechanism for stress-induced modulation of glutamate transporter expression is poorly understood. Receptor for advanced glycosylation end products (RAGE), a member of immunoglobulin family, is found expressed widely in brain and play important roles in neuronal development, neurite growth, neurogenesis and neuroinflammation. Our study showed chronic unpredictable stress (CUS) induced depressive-like behaviors and reduced RAGE expression in hippocampus DG, CA1 and CA3 areas. The protein levels of GLT-1, p-CREB and p-p65 decreased in hippocampus DG as well. Knockdown of RAGE expression in hippocampus DG with RAGE shRNA lentivirus particles induced depressive-like behaviors. Meanwhile, the protein and mRNA levels of GLT-1 were significantly decreased as well as phosphorylation of CREB and p65. Neither CUS nor RAGE knockdown altered GLAST protein and mRNA levels. These findings suggested that RAGE/CREB-NF-κB signaling pathway in hippocampus DG involved in modulation of GLT-1 expression, which possibly contributed to the depressive-like behavior induced by CUS.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dongzhi Ran
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiang Tang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Weng
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuzhuo Sun
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020; 12:68. [PMID: 32265684 PMCID: PMC7105602 DOI: 10.3389/fnagi.2020.00068] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Levels of serum S100B are associated with cognitive dysfunction in patients with type 2 diabetes. Aging (Albany NY) 2020; 12:4193-4203. [PMID: 32112645 PMCID: PMC7093188 DOI: 10.18632/aging.102873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
Objective: Previous studies have provided robust evidence that cognitive impairment exists in patients with type 2 diabetes. The predictive role of S100B in a variety of neurodegenerative diseases such as Alzheimer’s disease, has been shown to be closely related to cognitive function. The purpose of this study was to investigate the correlation between serum S100B levels and cognitive function in type 2 diabetes patients. Results: The type 2 diabetes group scored lower than the healthy control group in all domains of cognitive function except language and attention, and the former group also had lower serum levels of S100B. Besides, serum S100B levels were lower in the type 2 diabetes patients with impaired cognition than in those with normal cognition. In addition, the moderate to severe cognitive impairment group had significantly lower levels than that in mild cognitive impairment group. After adjusting for confounding factors, serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients. Conclusions: Serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients with cognitive impairment. It is suggested that S100B may be involved in the occurrence and development of cognitive dysfunction in type 2 diabetes patients and play a protective role. Methods: The clinical data and biochemical indexes of ninety-six patients with type 2 diabetes and sixty-eight healthy subjects were collected. The levels of serum S100B were detected by enzyme-linked immunosorbent assay. Ninety-six type 2 diabetes patients were divided into a cognitive dysfunction group and a normal cognition group according to Mini-mental State Examination scores. To better understand the differences in various aspects of cognition, we used the Repeatable Battery for the Assessment of Neuropsychological Status scale for further evaluation. To study the relationship between serum S100B levels and cognitive impairment, the cognitive dysfunction group was divided into a mild cognitive impairment group and a moderate to severe cognitive impairment group for further study.
Collapse
|
9
|
Destructive Effect of Intravitreal Heat Shock Protein 27 Application on Retinal Ganglion Cells and Neurofilament. Int J Mol Sci 2020; 21:ijms21020549. [PMID: 31952234 PMCID: PMC7014083 DOI: 10.3390/ijms21020549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 27 (HSP27) is commonly involved in cellular stress. Increased levels of HSP27 as well as autoantibodies against this protein were previously detected in glaucoma patients. Moreover, systemic immunization with HSP27 induced glaucoma-like damage in rodents. Now, for the first time, the direct effects of an intravitreal HSP27 application were investigated. For this reason, HSP27 or phosphate buffered saline (PBS, controls) was applied intravitreally in rats (n = 12/group). The intraocular pressure (IOP) as well as the electroretinogram recordings were comparable in HSP27 and control eyes 21 days after the injection. However, significantly fewer retinal ganglion cells (RGCs) and amacrine cells were observed in the HSP27 group via immunohistochemistry and western blot analysis. The number of bipolar cells, on the other hand, was similar in both groups. Interestingly, a stronger neurofilament degeneration was observed in HSP27 optic nerves, while no differences were noted regarding the myelination state. In summary, intravitreal HSP27 injection led to an IOP-independent glaucoma-like damage. A degeneration of RGCs as well as their axons and amacrine cells was noted. This suggests that high levels of extracellular HSP27 could have a direct damaging effect on RGCs.
Collapse
|
10
|
Chen H, Lin W, Lin P, Zheng M, Lai Y, Chen M, Zhang Y, Chen J, Lin X, Lin L, Lan Q, Yuan Q, Chen R, Jiang X, Xiao Y, Liu N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY) 2019; 11:10796-10813. [PMID: 31801113 PMCID: PMC6932931 DOI: 10.18632/aging.102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
As a classic immunoregulatory cytokine, interleukin-10 (IL-10) can provide in vivo and in vitro neuroprotection respectively during cerebral ischemia and after the oxygen-glucose deprivation (OGD)-induced injury. However, its role in cortical neuronal survival at different post-ischemic phases remains unclear. The current study found that IL-10 had distinct effects on the neuronal apoptosis at different OGD stages: at an early stage after OGD, IL-10 promoted the OGD-induced neuronal apoptosis in the cultured primary cortical neurons by activating p65 subunit, which up-regulated Bax expression and down-regulated Bcl-xL expression; at a late OGD stage, however, it attenuated the OGD-induced neuronal apoptosis by activating c-Rel, which up-regulated Bcl-xL expression and down-regulated Bax expression. The early-stage pro-apoptosis and late-stage anti-apoptosis were both partly abolished by PDTC, an NF-κB inhibitor, and promoted by PMA, an NF-κB activator. The optimal anti-apoptotic effect appeared when the cultured neurons were treated with IL-10 at 9-24 h after OGD. Taken together, our findings suggest that IL-10 exerts a dual effect on the survival of the cultured neurons by activating the NF-κB pathway at different stages after OGD injury and that PMA treatment at a late stage can facilitate the IL-10-conferred neuroprotection against OGD-induced neuronal injury.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Longzai Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Abdel-Salam OME, Sleem AA, Youness ER, Omara EA. Identification of biomarkers for the detection of subtle brain injury after cannabis and/or tramadol administration. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2019. [DOI: 10.1186/s41935-019-0165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There is a need to identify biomarkers which could indicate the occurrence of brain injury in drug abuse.
Objectives
We aimed to investigate ubiquitin-C-terminal hydrolase-1 (UCH-L1), a neuronal cell body injury marker, the glial protein S-100 beta (S100β), and the glial fibrillary acidic protein (GFAP) as putative markers for neuronal injury due to cannabis, tramadol, or their combined use.
Materials and methods
Rats were treated with cannabis and/or tramadol subcutaneously daily for 6 weeks and UCH-L1, S100β, and GFAP were immunoassayed in the brain and serum.
Results
The results are as follows: (i) either cannabis or tramadol increased UCH-L1 and GFAP in the brain, (ii) serum UCH-L1 and GFAP increased by the highest dose of cannabis or tramadol, (iii) there was no additive effect for cannabis and tramadol on UCH-L1 or GFAP level in the brain or serum, (iv) S100β decreased in the brain by 5–20 mg/kg of cannabis and in the serum following 20 mg/kg of cannabis, and (v) S100β levels increased in the brain after 20 mg/kg of tramadol but decreased the brain and serum after both cannabis and tramadol. Cytoplasmic vacuolations, apoptotic cells, and gliosis were observed in the brain tissue of cannabis and/or tramadol-treated rats.
Conclusions
These results suggest that changes in UCH-L1, GFAP, or S100β are likely to reflect neurotoxicity and serum levels could be used to detect neuronal damage in chronic users.
Collapse
|
12
|
Huf F, Bandiera S, Müller CB, Gea L, Carvalho FB, Rahmeier FL, Reiter KC, Tortorelli LS, Gomez R, da Cruz Fernandes M. Comparative study on the effects of cigarette smoke exposure, ethanol consumption and association: Behavioral parameters, apoptosis, glial fibrillary acid protein and S100β immunoreactivity in different regions of the rat hippocampus. Alcohol 2019; 77:101-112. [PMID: 30870710 DOI: 10.1016/j.alcohol.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023]
Abstract
Exposure to cigarette smoke and ethanol are proposed to trigger neurotoxicity, apoptosis, and to impair neuronal signaling. However, it is little known how the combination of both might trigger astrogliosis and the morphological changes capable of affecting a differential susceptibility of hippocampal regions to these licit drugs. The present study investigated the chronic effects of exposure to cigarette smoke and/or ethanol on behavioral parameters, apoptosis, and alteration in immunoreactivity of glial fibrillary acid protein (GFAP) and S100β in the CA1, CA3, and dentate gyrus (DG) of the rat hippocampus. Adult male Wistar rats (n = 32) were divided into four groups: vehicle (VE, glucose 3% in water, 10 mL/kg), cigarette smoke (TOB, total 12 cigarettes per day), ethanol (ethanol, 2 g/kg), and cigarette smoke plus ethanol (TOB plus ethanol, total 12 cigarettes per day plus ethanol 2 g/kg) for 54 days. The groups were submitted to tail-flick, open-field, and inhibitory avoidance tasks. The results showed that ethanol per se worsened the short-term memory. The association between TOB and ethanol increased the immunoreactivity of cleaved caspase-3 in the CA3 and DG regions. The TOB plus ethanol group showed a lower immunoreactivity to GFAP in all regions of the hippocampus. In addition, ethanol and TOB per se also reduced the immunoreactivity for GFAP in the DG. Ethanol increased S100β immunoreactivity only in the DG. In conclusion, this study showed that only ethanol worsened short-term memory, and the DG became more susceptible to changes in the markers investigated. This evidence suggests that DG is more sensitive to neurotoxicity induced by cigarette smoke and ethanol.
Collapse
Affiliation(s)
- Fernanda Huf
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Solange Bandiera
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina B Müller
- Department of Biochemistry, ICBS/Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Gea
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fabiano B Carvalho
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Francine L Rahmeier
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Keli C Reiter
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Lucas S Tortorelli
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosane Gomez
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Torrez VR, Zimmer ER, Kalinine E, Haas CB, Zenki KC, Muller AP, Souza DOD, Portela LV. Memantine mediates astrocytic activity in response to excitotoxicity induced by PP2A inhibition. Neurosci Lett 2019; 696:179-183. [DOI: 10.1016/j.neulet.2018.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/13/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
|
14
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
15
|
Affiliation(s)
- Yongli He
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Jiang X, Wang X, Tuo M, Ma J, Xie A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 672:65-69. [DOI: 10.1016/j.neulet.2018.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
|
17
|
Zhang J, Li J, Ma L, Lou J. Retracted
: RNA interference‐mediated silencing of S100B improves nerve function recovery and inhibits hippocampal cell apoptosis in rat models of ischemic stroke. J Cell Biochem 2018; 119:8095-8111. [DOI: 10.1002/jcb.26747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jin‐Hua Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Jiang‐Kun Li
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Li‐Li Ma
- Department of NeurologyKaifeng Central HospitalKaifengP.R. China
| | - Ji‐Yu Lou
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
18
|
Zadka Ł, Dzięgiel P, Kulus M, Olajossy M. Clinical Phenotype of Depression Affects Interleukin-6 Synthesis. J Interferon Cytokine Res 2017; 37:231-245. [PMID: 28418766 DOI: 10.1089/jir.2016.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is not a single disease, but a number of various ailments that form one entity. Psychomotor retardation, anhedonia, sleep disorders, an increased suicide risk, and anxiety are the main symptoms that often define the clinical diagnosis of depression. Interleukin-6 (IL-6), as one of the proinflammatory cytokines, seems to be overexpressed during certain mental disorders, including MDD. Overexpression of IL-6 in depression is thought to be a factor associated with bad prognosis and worse disease course. IL-6 may directly affect brain functioning and production of neurotransmitters; moreover, its concentration is correlated with certain clinical symptoms within the wide range of depressive symptomatology. Furthermore, there is a strong correlation between IL-6 synthesis and psychosomatic functioning of the patient. This article discusses potential sources and significance of IL-6 in the pathogenesis of depression.
Collapse
Affiliation(s)
- Łukasz Zadka
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland .,2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| | - Piotr Dzięgiel
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Michał Kulus
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Marcin Olajossy
- 2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
19
|
Time-lapse imaging of p65 and IκBα translocation kinetics following Ca 2+-induced neuronal injury reveals biphasic translocation kinetics in surviving neurons. Mol Cell Neurosci 2017; 80:148-158. [PMID: 28238890 DOI: 10.1016/j.mcn.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) regulates neuronal differentiation, plasticity and survival. It is well established that excitatory neurotransmitters such as glutamate control NF-κB activity. Glutamate receptor overactivation is also involved in ischemic- and seizure-induced neuronal injury and neurodegeneration. However, little is known at the single cell-level how NF-κB signaling relates to neuronal survival during excitotoxic injury. We found that silencing of p65/NF-κB delayed N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in hippocampal neurons, suggesting a functional role of p65 in excitotoxicity. Time-lapse imaging of p65 and its inhibitor IκBα using GFP and Cerulean fusion proteins revealed specific patterns of excitotoxic NF-κB activation. Nuclear translocation of p65 began on average 8±3min following 15min of NMDA treatment and was observed in up to two thirds of hippocampal neurons. Nuclear translocation of IκBα preceded that of p65 suggesting independent translocation processes. In surviving neurons, the onset of p65 nuclear export correlated with mitochondrial membrane potential recovery. Dying neurons exhibited persistent nuclear accumulation of p65-eGFP until plasma membrane permeabilization. Our data demonstrate an important role for p65 activation kinetics in neuronal cell death decisions following excitotoxic injury.
Collapse
|
20
|
Miyazaki I, Asanuma M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson's Disease. Curr Med Chem 2016; 23:686-700. [PMID: 26795196 PMCID: PMC4997990 DOI: 10.2174/0929867323666160122115057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/12/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
21
|
S100B raises the alert in subarachnoid hemorrhage. Rev Neurosci 2016; 27:745-759. [DOI: 10.1515/revneuro-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a devastating disease with high mortality and mobility, the novel therapeutic strategies of which are essentially required. The calcium binding protein S100B has emerged as a brain injury biomarker that is implicated in pathogenic process of SAH. S100B is mainly expressed in astrocytes of the central nervous system and functions through initiating intracellular signaling or via interacting with cell surface receptor, such as the receptor of advanced glycation end products. The biological roles of S100B in neurons have been closely associated with its concentrations, resulting in either neuroprotection or neurotoxicity. The levels of S100B in the blood have been suggested as a biomarker to predict the progress or the prognosis of SAH. The role of S100B in the development of cerebral vasospasm and brain damage may result from the induction of oxidative stress and neuroinflammation after SAH. To get further insight into mechanisms underlying the role of S100B in SAH based on this review might help us to find novel therapeutic targets for SAH.
Collapse
|
22
|
Changyaleket B, Xu H, Vetri F, Valyi-Nagy T, Paisansathan C, Chong ZZ, Pelligrino DA, Testai FD. Intracerebroventricular application of S100B selectively impairs pial arteriolar dilating function in rats. Brain Res 2016; 1634:171-178. [PMID: 26773687 DOI: 10.1016/j.brainres.2015.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
S100B is an astrocyte-derived protein that can act through the receptor for advanced glycation endproducts (RAGE) to mediate either "trophic" or "toxic" responses. Its levels increase in many neurological conditions with associated microvascular dysregulation, such as subarachnoid hemorrhage (SAH) and traumatic brain injury. The role of S100B in the pathogenesis of microvasculopathy has not been addressed. This study was designed to examine whether S100B alters pial arteriolar vasodilating function. Rats were randomized to receive (1) artificial cerebrospinal fluid (aCSF), (2) exogenous S100B, and (3) exogenous S100B+the decoy soluble RAGE (sRAGE). S100B was infused intracerebroventricularly (icv) using an osmotic pump and its levels in the CSF were adjusted to achieve a concentration similar to what we observed in SAH. After 48 h of continuous icv infusion, a cranial window/intravital microscopy was applied to animals for evaluation of pial arteriolar dilating responses to sciatic nerve stimulation (SNS), hypercapnia, and topical suffusion of vasodilators including acetylcholine (ACh), s-nitroso-N-acetyl penicillamine (SNAP), or adenosine (ADO). Pial arteriolar dilating responses were calculated as the percentage change of arteriolar diameter in relation to baseline. The continuous S100B infusion for 48 h was associated with reduced responses to the neuronal-dependent vasodilator SNS (p<0.05) and the endothelial-dependent vasodilator ACh (p<0.05), compared to controls. The inhibitory effects of S100B were prevented by sRAGE. On the other hand, S100B did not alter the responses elicited by vascular smooth muscle cell-dependent vasodilators, namely hypercapnia, SNAP, or ADO. These findings indicate that S100B regulates neuronal and endothelial dependent cerebral arteriolar dilation and suggest that this phenomenon is mediated through RAGE-associated pathways.
Collapse
Affiliation(s)
- Benjarat Changyaleket
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Haoliang Xu
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States; Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States.
| | - Francesco Vetri
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Tibor Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dale A Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Sternberg Z, Chiotti A, Tario J, Chichelli T, Patel N, Chadha K, Yu J, Karmon Y. Reduced expression of membrane-bound (m)RAGE is a biomarker of multiple sclerosis disease progression. Immunobiology 2015; 221:193-8. [PMID: 26382057 DOI: 10.1016/j.imbio.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study is one in series measuring RAGE axis (receptor for advanced glycation end products, its isoforms, and ligands) as a biomarker in multiple sclerosis (MS). We identified and quantified membrane-bound RAGE (mRAGE) expression levels on freshly isolated PBMCs and its subpopulation (monocytes and T cells), and determined the relationship between mRAGE expression levels and MS disease severity. MATERIALS AND METHODS mRAGE expression was determined for 28 MS patients and 16HCs, by flow cytometry, using fluorochrome unconjugated primary RAGE monoclonal antibody and a polyclonal secondary antibody conjugated to R-Phycoerythrin (PE). RESULTS After adjusting for multiple comparisons and correcting for group differences in age and gender, MS patients showed higher percentages of mRAGE-positive on PBMCs (12.4±2.1 vs. 4.08±0.8, P=0.02), monocytes (37.4±5.8 vs. 20.1±5.0, P=0.08) and T cells (4.1±1.2 vs. 2.1±0.3, P=0.05). SPMS patients' showed lower percentages of RAGE-positive monocytes (13.7±5.5 vs. 49.5±6.6, P=0.0006) and RAGE-positive T cells (4.1±1.8 vs. 6.6±1.5, P=0.04) than RRMS patients. We observed a negative relationship between the percentages of mRAGE-positive PBMCs and MS severity scale (MSSS) (r=-0.39, P=0.04), monocytes and EDSS (r=-0.48, P=0.01), monocytes and MSSS (r=-0.58, P=0.001), and T cells and MSSS (r=-0.40, P=0.04). Monocytes expression of mRAGE showed 0.811 area under the curve (95% CI: 0.64-0.98) sensitivity/specificity for MSSS. CONCLUSION The reduced mRAGE expression on PBMCs in general, and on monocytes in particular, can be used as biomarker of MS disease severity and progression.
Collapse
Affiliation(s)
- Zohara Sternberg
- Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY, USA
| | - Anne Chiotti
- Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY, USA
| | - Joseph Tario
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Trevor Chichelli
- Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY, USA
| | - Neel Patel
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kailash Chadha
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jinhee Yu
- Department of Biostatistics, University of Buffalo, Buffalo, NY, USA
| | - Yuval Karmon
- Department of Neurology, Baird MS Center, Jacobs Neurological Institute, Buffalo, NY, USA
| |
Collapse
|
24
|
Rodríguez-Fanjul J, Fernández-Feijóo CD, Camprubí MC. A New Technique for Collection of Cerebrospinal Fluid in Rat Pups. J Exp Neurosci 2015; 9:37-41. [PMID: 26056488 PMCID: PMC4445886 DOI: 10.4137/jen.s26182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neuroprotective strategies to prevent or decrease brain injury in hypoxic ischemic newborns are one of the main research lines in neonatology. Animal models have been used to assess the efficiency of new therapeutic strategies. Brain damage biomarkers in cerebrospinal fluid (CSF) are frequently used to evaluate the outcome at the bedside. Despite the importance of this approach in clinical practice, there are many difficulties in using it in small animals. The aim of this paper was to describe a new technique for collecting CSF in rat pups. Furthermore the reference values of S100β protein levels, commonly used in common clinical practice, were analyzed in animals between 7 to 12 days. METHODS 42 Wistar rat pups aged 7 to 12 days were used. CSF was obtained by direct puncture of the cisterna magna with a 24-gauge needle. S100β protein levels were determined with enzyme-linked immunosorbent assay (ELISA). RESULTS CSF was successfully obtained in 96% of the cases, with an average amount of 21.28 μl (5–40 μl). Normal values for S100β were described. HI animals presented higher S100β values than controls. CONCLUSIONS A simple, reproducible technique for CSF collection in rat pups has been described. This new method will allow study of brain injury biomarkers in newborn hypoxic ischemic animal models.
Collapse
Affiliation(s)
- Javier Rodríguez-Fanjul
- Neonatal Intensive Care Unit Service, Hospital de Sant Joan de Déu Maternal, Fetal and Neonatology Center Barcelona (BCNatal), University of Barcelona, Barcelona, Spain
| | | | - Marta Camprubí Camprubí
- Neonatal Intensive Care Unit Service, Hospital de Sant Joan de Déu Maternal, Fetal and Neonatology Center Barcelona (BCNatal), University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Lanzillotta A, Porrini V, Bellucci A, Benarese M, Branca C, Parrella E, Spano PF, Pizzi M. NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases. Front Neurol 2015; 6:98. [PMID: 26042083 PMCID: PMC4438602 DOI: 10.3389/fneur.2015.00098] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Marina Benarese
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Caterina Branca
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Pier Franco Spano
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| |
Collapse
|
26
|
Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 2014; 131:190-205. [DOI: 10.1111/jnc.12790] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Alejandro Villarreal
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Rocío Seoane
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Agustina González Torres
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Florencia Angelo
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Philip A. Barker
- Montreal Neurological Institute; Center for Neuronal Survival; McGill University; Montreal Québec Canada
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
27
|
Lee JC, Cho JH, Cho GS, Ahn JH, Park JH, Kim IH, Cho JH, Tae HJ, Cheon SH, Ahn JY, Park J, Choi SY, Won MH. Effect of Transient Cerebral Ischemia on the Expression of Receptor for Advanced Glycation End Products (RAGE) in the Gerbil Hippocampus Proper. Neurochem Res 2014; 39:1553-63. [DOI: 10.1007/s11064-014-1345-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 05/22/2014] [Indexed: 01/11/2023]
|
28
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
29
|
Qin B, Panickar KS, Anderson RA. Cinnamon polyphenols regulate S100β, sirtuins, and neuroactive proteins in rat C6 glioma cells. Nutrition 2013; 30:210-7. [PMID: 24239092 DOI: 10.1016/j.nut.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma cells that underlie their protective effects. METHODS C6 rat glioma cells were seeded in 35-mm culture dishes or six-well plates, then were incubated with cinnamon polyphenols at doses of 10 and 20 μg/mL for 24 h. The targeting protein expression, secretion, and phosphorylation were evaluated by immunoprecitation/immunoblotting and immunofluorescence imaging. RESULTS Cinnamon polyphenols significantly enhanced secretion of S100β, a Ca(2+)-binding protein, and increased intracellular S100β expression after 24 h of incubation, in rat C6 glioma cells. Cinnamon polyphenols also enhanced protein levels of sirtuin 1, 2, and 3, deacetylases important in cell survival, and the tumor suppressor protein, p53, and inhibited the inflammatory factors, tumor necrosis factor alpha, and phospho-p65, a subunit of nuclear factor-κβ. Cinnamon polyphenols also up-regulated levels of phospho-p38, extracellular signal-regulated protein and mitogen-activated protein and kinase-activated protein kinases that may be important for prosurvival functions. CONCLUSION Our results indicate that the effects of cinnamon polyphenols on upregulating prosurvival proteins, activating mitogen-activated protein kinase pathways, and decreasing proinflammatory cytokines may contribute to their neuroprotective effects.
Collapse
Affiliation(s)
- Bolin Qin
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA; Integrity Nutraceuticals International, Spring Hill, TN, USA.
| | - Kiran S Panickar
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard A Anderson
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| |
Collapse
|
30
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
31
|
Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M, Vukovic Z, Itohara S, Berg D, Teismann P. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. ACTA ACUST UNITED AC 2013; 135:3336-47. [PMID: 23169921 PMCID: PMC3501971 DOI: 10.1093/brain/aws250] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson’s disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson’s disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson’s disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson’s disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.
Collapse
Affiliation(s)
- Kinnari Sathe
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM. S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 2012; 287:42233-42. [PMID: 23076148 DOI: 10.1074/jbc.m112.396416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices H(I) and H(IV). Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca(2+) exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca(2+) promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca(2+) rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca(2+). Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.
Collapse
Affiliation(s)
- Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
33
|
Herrmann AP, Lunardi P, Pilz LK, Tramontina AC, Linck VM, Okunji CO, Gonçalves CA, Elisabetsky E. Effects of the putative antipsychotic alstonine on glutamate uptake in acute hippocampal slices. Neurochem Int 2012; 61:1144-50. [PMID: 22940693 DOI: 10.1016/j.neuint.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
A dysfunctional glutamatergic system is thought to be central to the negative symptoms and cognitive deficits recognized as determinant to the poor quality of life of people with schizophrenia. Modulating glutamate uptake has, thus, been suggested as a novel target for antipsychotics. Alstonine is an indole alkaloid sharing with atypical antipsychotics the profile in animal models relevant to schizophrenia, though divergent in its mechanism of action. The aim of this study was to evaluate the effects of alstonine on glutamate uptake. Additionally, the effects on glutathione content and extracellular S100B levels were assessed. Acute hippocampal slices were incubated with haloperidol (10μM), clozapine (10 and 100μM) or alstonine (1-100μM), alone or in combination with apomorphine (100μM), and 5-HT(2) receptor antagonists (0.01μM altanserin and 0.1μM SB 242084). A reduction in glutamate uptake was observed with alstonine and clozapine, but not haloperidol. Apomorphine abolished the effect of clozapine, whereas 5-HT(2A) and 5-HT(2C) antagonists abolished the effects of alstonine. Increased levels of glutathione were observed only with alstonine, also the only compound that failed to decrease the release of S100B. This study shows that alstonine decreases glutamate uptake, which may be beneficial to the glutamatergic deficit observed in schizophrenia. Noteworthily, the decrease in glutamate uptake is compatible with the reversal of MK-801-induced social interaction and working memory deficits. An additional potential benefit of alstonine as an antipsychotic is its ability to increase glutathione, a key cellular antioxidant reported to be decreased in the brain of patients with schizophrenia. Adding to the characterization of the novel mechanism of action of alstonine, the lack of effect of apomorphine in alstonine-induced changes in glutamate uptake reinforces that D(2) receptors are not primarily implicated. Though clearly mediated by 5-HT(2A) and 5-HT(2C) serotonin receptors, the precise mechanisms that result in the effects of alstonine on glutamate uptake warrant elucidation.
Collapse
Affiliation(s)
- Ana P Herrmann
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sarnico I, Branca C, Lanzillotta A, Porrini V, Benarese M, Spano PF, Pizzi M. NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress. Brain Res 2012; 1476:203-10. [PMID: 22575713 DOI: 10.1016/j.brainres.2012.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022]
Abstract
Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost always mediated by changes in gene expression. To effect these changes, cells have developed an impressive repertoire of signaling systems designed to modulate the activity of numerous transcription factors and epigenetic mechanisms affecting the chromatin structure. Since its initial characterization in the nervous system, NF-κB has shown to respond to multiple signals and elicit pleiotropic activities suggesting that it may play a pivotal role in integration of different types of information within the brain. Ample evidence demonstrates that NF-κB factors are engaged in and necessary for neuronal development and synaptic plasticity, but they also regulate brain response to environmental noxae. By focusing on the complexity of NF-κB transcriptional activity in neuronal cell death, it emerged that the composition of NF-κB active dimers finely tunes the neuronal vulnerability to brain ischemia. Even though we are only beginning to understand the contribution of distinct NF-κB family members to the regulation of gene transcription in the brain, an additional level of regulation of NF-κB activity has emerged as operated by the epigenetic mechanisms modulating histone acetylation. We will discuss NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress and useful drug targets for restoration of brain function. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Ilenia Sarnico
- Department of Biomedical Sciences & Biotechnologies, University of Brescia and Istituto Nazionale di Neuroscienze, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression. Biochem J 2012; 443:153-64. [PMID: 22239089 DOI: 10.1042/bj20111856] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ngb (neuroglobin) has been identified as a novel endogenous neuroprotectant. However, little is known about the regulatory mechanisms of Ngb expression, especially under conditions of hypoxia. In the present study, we located the core proximal promoter of the mouse Ngb gene to a 554 bp segment, which harbours putative conserved NF-κB (nuclear factor κB)- and Egr1 (early growth-response factor 1) -binding sites. Overexpression and knockdown of transcription factors p65, p50, Egr1 or Sp1 (specificity protein 1) increased and decreased Ngb expression respectively. Experimental assessments with transfections of mutational Ngb gene promoter constructs, as well as EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays, demonstrated that NF-κB family members (p65, p50 and cRel), Egr1 and Sp1 bound in vitro and in vivo to the proximal promoter region of the Ngb gene. Moreover, a κB3 site was found as a pivotal cis-element responsible for hypoxia-induced Ngb promoter activity. NF-κB (p65) and Sp1 were also responsible for hypoxia-induced up-regulation of Ngb expression. Although there are no conserved HREs (hypoxia-response elements) in the promoter of the mouse Ngb gene, the results of the present study suggest that HIF-1α (hypoxia-inducible factor-1α) is also involved in hypoxia-induced Ngb up-regulation. In conclusion, we have identified that NF-κB, Egr1 and Sp1 played important roles in the regulation of basal Ngb expression via specific interactions with the mouse Ngb promoter. NF-κB, Sp1 and HIF-1α contributed to the up-regulation of mouse Ngb gene expression under hypoxic conditions.
Collapse
|
36
|
Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K, Zhai RG, Lu HC. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 2012; 21:251-67. [PMID: 22027994 PMCID: PMC3276285 DOI: 10.1093/hmg/ddr492] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/21/2011] [Accepted: 10/21/2011] [Indexed: 11/14/2022] Open
Abstract
Tauopathies, characterized by neurofibrillary tangles (NFTs) of phosphorylated tau proteins, are a group of neurodegenerative diseases, including frontotemporal dementia and both sporadic and familial Alzheimer's disease. Forebrain-specific over-expression of human tau(P301L), a mutation associated with frontotemporal dementia with parkinsonism linked to chromosome 17, in rTg4510 mice results in the formation of NFTs, learning and memory impairment and massive neuronal death. Here, we show that the mRNA and protein levels of NMNAT2 (nicotinamide mononucleotide adenylyltransferase 2), a recently identified survival factor for maintaining neuronal health in peripheral nerves, are reduced in rTg4510 mice prior to the onset of neurodegeneration or cognitive deficits. Two functional cAMP-response elements (CREs) were identified in the nmnat2 promoter region. Both the total amount of phospho-CRE binding protein (CREB) and the pCREB bound to nmnat2 CRE sites in the cortex and the hippocampus of rTg4510 mice are significantly reduced, suggesting that NMNAT2 is a direct target of CREB under physiological conditions and that tau(P301L) overexpression down-regulates CREB-mediated transcription. We found that over-expressing NMNAT2 or its homolog NMNAT1, but not NMNAT3, in rTg4510 hippocampi from 6 weeks of age using recombinant adeno-associated viral vectors significantly reduced neurodegeneration caused by tau(P301L) over-expression at 5 months of age. In summary, our studies strongly support a protective role of NMNAT2 in the mammalian central nervous system. Decreased endogenous NMNAT2 function caused by reduced CREB signaling during pathological insults may be one of underlying mechanisms for neuronal death in tauopathies.
Collapse
Affiliation(s)
- M. Cecilia Ljungberg
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
- Department of Pediatrics
| | - Yousuf O. Ali
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jie Zhu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
- Department of Pediatrics
| | - Chia-Shan Wu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
- Department of Pediatrics
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA and
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
- Department of Pediatrics
- Program in Developmental Biology
- Department of Neuroscience and
| |
Collapse
|
37
|
Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 2012; 33:2478-90. [PMID: 22227007 PMCID: PMC3712169 DOI: 10.1016/j.neurobiolaging.2011.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 11/09/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules. The formation of advanced glycation end products (AGEs), the first ligand of RAGE identified, requires a complex series of reactions including nonenzymatic glycation and free radical reactions involving superoxide-radicals and hydrogen peroxide. Binding of RAGE ligands results in activation of nuclear factor-kappaB (NF-κB). We show that RAGE ablation protected nigral dopaminergic neurons against cell death induced by the neurotoxin MPTP that mimics most features of PD. In RAGE-deficient mice the translocation of the NF-κB subunit p65 to the nucleus, in dopaminergic neurons and glial cells was inhibited suggesting that RAGE involves the activation of NF-κB. The mRNA level of S100, one of the ligands of RAGE, was increased after MPTP treatment. The dopaminergic neurons treated with MPP(+) and S100 protein showed increased levels of apoptotic cell death, which was attenuated in RAGE-deficient mice. Our results suggest that activation of RAGE contributes to MPTP/MPP(+)-induced death of dopaminergic neurons that may be mediated by NF-κB activation.
Collapse
Affiliation(s)
- Peter Teismann
- Department of Neurodegeneration and Restorative Research, Center of Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reduced cAMP, Akt activation and p65-c-Rel dimerization: mechanisms involved in the protective effects of mGluR3 agonists in cultured astrocytes. PLoS One 2011; 6:e22235. [PMID: 21779400 PMCID: PMC3136520 DOI: 10.1371/journal.pone.0022235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022] Open
Abstract
In recent decades, astrocytes have emerged as key pieces in the maintenance of normal functioning of the central nervous system. Any impairment in astroglial function can ultimately lead to generalized disturbance in the brain, thus pharmacological targets associated with prevention of astrocyte death are actually promising. Subtype 3 of metabotropic glutamate receptors (mGluR3) is present in astrocytes, its activation exerting neuroprotective roles. In fact, we have previously demonstrated that mGluR3 selective agonists prevent nitric oxide (NO)-induced astrocyte death. However, mechanisms responsible for that cytoprotective property are still subject to study. Although inhibition of adenylyl cyclase by mGluR3 activation was extensively reported, the involvement of reduced cAMP levels in the effects of mGluR3 agonists and the association between cAMP decrease and the downstream pathways activated by mGluR3 remain neglected. Thus, we studied intracellular signaling mediating anti-apoptotic actions of mGluR3 in cultured rat astrocytes exposed to NO. In the present work, we showed that the cytoprotective effect of mGluR3 agonists (LY379268 and LY404039) requires both the reduction of intracellular cAMP levels and activation of Akt, as assessed by MTT and TUNEL techniques. Moreover, dibutyryl-cAMP impairs Akt phosphorylation induced by LY404039, indicating a relationship between mGluR3-reduced cAMP levels and PI3K/Akt pathway activation. We also demonstrated, by co-immunoprecipitation followed by western-blot, that the mGluR3 agonists not only induce per se survival-linked interaction between members of the NF-κB family p65 and c-Rel, but also impede reduction of levels of p65-c-Rel dimers caused by NO, suggesting a possible anti-apoptotic role for p65-c-Rel. All together, these data suggest that mGluR3 agonists may regulate cAMP/Akt/p65-c-Rel pathway, which would contribute to the protective effect of mGluR3 against NO challenge in astrocytes. Our results widen the knowledge about mechanisms of action of mGluR3, potential targets for the treatment of neurodegenerative disorders where a pathophysiological role for NO has been established.
Collapse
|
39
|
Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286:7214-26. [PMID: 21209080 PMCID: PMC3044978 DOI: 10.1074/jbc.m110.169342] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/29/2010] [Indexed: 01/11/2023] Open
Abstract
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.
Collapse
Affiliation(s)
- Roberta Bianchi
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Eirini Kastrisianaki
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Ileana Giambanco
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Rosario Donato
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
40
|
Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 2011; 117:321-32. [DOI: 10.1111/j.1471-4159.2011.07207.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovasc Psychiatry Neurol 2010; 2010:656481. [PMID: 20827421 PMCID: PMC2933911 DOI: 10.1155/2010/656481] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 12/15/2022] Open
Abstract
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration), Ca(2+) homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high) S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
42
|
Abstract
Increasing evidence suggests that the small EF-hand calcium-binding protein S100B plays an important role in Alzheimer's disease. Among other evidences are the increased levels of both S100B and its receptor, the Receptor for Advanced Glycation Endproducts (RAGEs) in the AD diseased brain. The regulation of RAGE signaling by S100B is complex and probably involves other ligands including the amyloid beta peptide (Aβ), the Advanced Glycation Endproducts (AGEs), or transtheyretin. In this paper we discuss the current literature regarding the role of S100B/RAGE activation in Alzheimer's disease.
Collapse
|
43
|
Piazza O, Scarpati G, Cotena S, Lonardo M, Tufano R. Thrombin antithrombin complex and IL-18 serum levels in stroke patients. Neurol Int 2010; 2:e1. [PMID: 21577333 PMCID: PMC3093205 DOI: 10.4081/ni.2010.e1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 10/19/2009] [Accepted: 11/30/2009] [Indexed: 01/06/2023] Open
Abstract
The complex picture of inflammation and coagulation alterations comes to life in acute stroke phases. Increasing evidence points to a strong interaction and extensive crosstalk between the inflammation and coagulation systems: the interest towards this relationship has increased since recent experimental research showed that the early administration of antithrombin III (ATIII) decreases the volume of ischemia in mice and might be neuroprotective, playing an antiinflammatory role. We aimed to establish the extent of the relationship among markers of inflammation (S100B and IL-18) and procoagulant and fibrinolytic markers (ATIII, thrombin-antithrombin III complex (TAT), Fibrin Degradation Products (FDP), D-dimer) in 13 comatose patients affected by focal cerebral ischemia. Plasma levels of TAT, D-dimer and FDP, IL18 and S100B were increased. IL-18 and S100B high serum levels in ischemic patients suggest an early activation of the inflammatory cascade in acute ischemic injury. The basic principles of the interaction between inflammatory and coagulation systems are revised, from the perspective that simultaneous modulation of both coagulation and inflammation, rather than specific therapies aimed at one of these systems could be more successful in stroke therapy.
Collapse
Affiliation(s)
- Ornella Piazza
- Università degli Studi di Napoli Federico II, Anestesiologia e Rianimazione, Napoli, Italy
| | | | | | | | | |
Collapse
|
44
|
Quincozes-Santos A, Rosa RB, Leipnitz G, de Souza DF, Seminotti B, Wajner M, Gonçalves CA. Induction of S100B secretion in C6 astroglial cells by the major metabolites accumulating in glutaric acidemia type I. Metab Brain Dis 2010; 25:191-8. [PMID: 20437086 DOI: 10.1007/s11011-010-9203-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/28/2009] [Indexed: 12/19/2022]
Abstract
Glutaryl-CoA dehydrogenase deficiency or glutaric acidemia type I (GA I) is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3OHGA) acids and clinically by severe neurological symptoms and structural brain abnormalities, manifested as progressive cerebral atrophy and acute striatum degeneration following encephalopathic crises, whose pathophysiology is still in debate. Considering that reactive astrogliosis is a common finding in brain of GA I patients, in the present study we investigated the effects of GA and 3OHGA on glial activity determined by S100B release by rat C6-glioma cells. We also evaluated the effects of these organic acids on some parameters of oxidative stress in these astroglial cells. We observed that GA and 3OHGA significantly increased S100B secretion and thiobarbituric acid-reactive substances (lipid peroxidation), whereas GA markedly decreased reduced glutathione levels in these glioma cells. This is the first report demonstrating that the major metabolites accumulating in GA I activate S100B secretion in astroglial cells, indicating activation of these cells. We also showed that GA and 3OHGA induced oxidative stress in C6 lineage cells, confirming previous findings observed in brain fresh tissue. It is therefore presumed that reactive glial cells and oxidative damage may underlie at least in part the neuropathology of GA I.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Universidade Federal de Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 2010:780645. [PMID: 20585358 PMCID: PMC2878670 DOI: 10.1155/2010/780645] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023] Open
Abstract
It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.
Collapse
|
46
|
Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 2010; 112:854-69. [DOI: 10.1111/j.1471-4159.2009.06535.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Abstract
Serum biomarkers related to the cascade of inflammatory, hemostatic, glial and neuronal perturbations have been identifed to diagnose and characterize intracerebral hemorrhage and cerebral ischemia. Interpretation of most markers is confounded by their latent rise, blood-brain barrier effects, the heterogeneity of etiologies and the wide range of normal values, limiting their application for early diagnosis, lesion size estimation and long-term outcome prediction. Certain hemostatic and inflammatory constituents have been found to predict response to thrombolysis and worsening due to infarct progression and secondary hemorrhage, offering a potential role for improved treatment selection and individualization of therapy. Biomarkers will become increasingly relevant for developing targets for neuroprotective therapies, monitoring response to treatment and as surrogate end points for treatment trials.
Collapse
Affiliation(s)
- Matthew B Maas
- 175 Cambridge Street, Suite 300, Boston, MA 02114, USA, Tel.: +1 617 643 2713; ;
| | | |
Collapse
|
48
|
Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M. NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 2009; 108:475-85. [PMID: 19094066 DOI: 10.1111/j.1471-4159.2008.05783.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diverse nuclear factor-kappaB subunits mediate opposite effects of extracellular signals on neuron survival. While RelA is activated by neurotoxic agents, c-Rel drives neuroprotective effects. In brain ischaemia RelA and p50 factors rapidly activate, but how they associate with c-Rel to form active dimers and contribute to the changes in diverse dimer activation for neuron susceptibility is unknown. We show that in both cortical neurons exposed to oxygen glucose deprivation (OGD) and mice subjected to brain ischaemia, activation of p50/RelA was associated with inhibition of c-Rel/RelA dimer and no change p50/c-Rel. Targeting c-Rel and RelA expression revealed that c-Rel dimers reduced while p50/RelA enhanced neuronal susceptibility to anoxia. Activation of p50/RelA complex is known to induce the pro-apoptotic Bim and Noxa genes. We now show that c-Rel-containing dimers, p50/c-Rel and RelA/c-Rel, but not p50/RelA, promoted Bcl-xL transcription. Accordingly, the OGD exposure induced Bim, but reduced Bcl-xL promoter activity and decreased the content of endogenous Bcl-xL protein. These findings demonstrate that within the same neuronal cell, the balance between activation of p50/RelA and c-Rel-containing complexes fine tunes the threshold of neuron vulnerability to the ischaemic insult. Selective targeting of different dimers will unravel new approaches to limit ischaemia-associated apoptosis.
Collapse
Affiliation(s)
- Ilenia Sarnico
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences & Biotechnologies, School of Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J 2009; 276:27-35. [PMID: 19087197 DOI: 10.1111/j.1742-4658.2008.06767.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) has been proposed to serve a dual function as a regulator of neuron survival in pathological conditions associated with neurodegeneration. NF-kappaB is a transcription family of factors comprising five different proteins, namely p50, RelA/p65, c-Rel, RelB and p52, which can combine differently to form active dimers in response to external stimuli. Recent research shows that diverse NF-kappaB dimers lead to cell death or cell survival in neurons exposed to ischemic injury. While the p50/p65 dimer participates in the pathogenesis of post-ischemic injury by inducing pro-apoptotic gene expression, c-Rel-containing dimers increase neuron resistance to ischemia by inducing anti-apoptotic gene transcription. We present, in this report, the latest findings and consider the therapeutic potential of targeting different NF-kappaB dimers to limit ischemia-associated neurodegeneration.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy.
| | | | | | | | | |
Collapse
|
50
|
Abstract
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility group box 1 (HMGB1) was elevated in serum of stroke patients and was released from ischemic brain tissue in a mouse model of cerebral ischemia. A neutralizing anti-HMGB1 antibody and HMGB1 box A, an antagonist of HMGB1 at the receptor RAGE, ameliorated ischemic brain damage. Interestingly, genetic RAGE deficiency and the decoy receptor soluble RAGE reduced the infarct size. In vitro, expression of RAGE in (micro)glial cells mediated the toxic effect of HMGB1. Addition of macrophages to neural cultures further enhanced the toxic effect of HMGB1. To test whether immigrant macrophages in the ischemic brain mediate the RAGE effect, we generated chimeric mice by transplanting RAGE(-/-) bone marrow to wild-type mice. RAGE deficiency in bone marrow-derived cells significantly reduced the infarct size. Thus, HMGB1-RAGE signaling links necrosis with macrophage activation and may provide a target for anti-inflammatory therapy in stroke.
Collapse
|