1
|
Ferreira AC, Marques F. The Effects of Stress on Hippocampal Neurogenesis and Behavior in the Absence of Lipocalin-2. Int J Mol Sci 2023; 24:15537. [PMID: 37958520 PMCID: PMC10649401 DOI: 10.3390/ijms242115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Lipocalin-2 (LCN2) is an acute phase protein able to bind iron when complexed with bacterial siderophores. The recent identification of a mammalian siderophore also suggested a physiological role for LCN2 in the regulation of iron levels and redox state. In the central nervous system, the deletion of LCN2 induces deficits in neural stem cells proliferation and commitment, with an impact on the hippocampal-dependent contextual fear discriminative task. Additionally, stress is a well-known regulator of cell genesis and is known to decrease adult hippocampal cell proliferation and neurogenesis. Although voluntary running, another well-known regulator of neurogenesis, is sufficient to rescue the defective hippocampal neurogenesis and behavior in LCN2-null mice by promoting stem cells' cell cycle progression and maturation, the relevance of LCN2-regulated hippocampal neurogenesis in response to stress has never been explored. Here, we show a lack of response by LCN2-null mice to the effects of chronic stress exposure at the cellular and behavioral levels. Together, these findings implicate LCN2 as a relevant mediator of neuronal plasticity and brain function in the adult mammalian brain.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100046. [PMID: 36685766 PMCID: PMC9846474 DOI: 10.1016/j.crneur.2022.100046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded transcripts. Interestingly, several recent studies have indicated the possibility of EBV's neurotrophic potential. However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the known genetic and epigenetic factors responsible, several reports have shown the association of microbial infections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Interestingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland,Corresponding author.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India,Corresponding author.
| |
Collapse
|
3
|
Patrício P, Mateus-Pinheiro A, Machado-Santos AR, Alves ND, Correia JS, Morais M, Bessa JM, Rodrigues AJ, Sousa N, Pinto L. Cell Cycle Regulation of Hippocampal Progenitor Cells in Experimental Models of Depression and after Treatment with Fluoxetine. Int J Mol Sci 2021; 22:ijms222111798. [PMID: 34769232 PMCID: PMC8584049 DOI: 10.3390/ijms222111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in adult hippocampal cell proliferation and genesis have been largely implicated in depression and antidepressant action, though surprisingly, the underlying cell cycle mechanisms are largely undisclosed. Using both an in vivo unpredictable chronic mild stress (uCMS) rat model of depression and in vitro rat hippocampal-derived neurosphere culture approaches, we aimed to unravel the cell cycle mechanisms regulating hippocampal cell proliferation and genesis in depression and after antidepressant treatment. We show that the hippocampal dentate gyrus (hDG) of uCMS animals have less proliferating cells and a decreased proportion of cells in the G2/M phase, suggesting a G1 phase arrest; this is accompanied by decreased levels of cyclin D1, E, and A expression. Chronic fluoxetine treatment reversed the G1 phase arrest and promoted an up-regulation of cyclin E. In vitro, dexamethasone (DEX) decreased cell proliferation, whereas the administration of serotonin (5-HT) reversed it. DEX also induced a G1-phase arrest and decreased cyclin D1 and D2 expression levels while increasing p27. Additionally, 5-HT treatment could partly reverse the G1-phase arrest and restored cyclin D1 expression. We suggest that the anti-proliferative actions of chronic stress in the hDG result from a glucocorticoid-mediated G1-phase arrest in the progenitor cells that is partly mediated by decreased cyclin D1 expression which may be overcome by antidepressant treatment.
Collapse
Affiliation(s)
- Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana Rita Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| |
Collapse
|
4
|
Li A, Yau SY, Machado S, Wang P, Yuan TF, So KF. Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:294-306. [PMID: 30848219 DOI: 10.2174/1871527318666190308102804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Generation of newborn neurons that form functional synaptic connections in the dentate gyrus of adult mammals, known as adult hippocampal neurogenesis, has been suggested to play critical roles in regulating mood, as well as certain forms of hippocampus-dependent learning and memory. Environmental stress suppresses structural plasticity including adult neurogenesis and dendritic remodeling in the hippocampus, whereas physical exercise exerts opposite effects. Here, we review recent discoveries on the potential mechanisms concerning how physical exercise mitigates the stressrelated depressive disorders, with a focus on the perspective of modulation on hippocampal neurogenesis, dendritic remodeling and synaptic plasticity. Unmasking such mechanisms may help devise new drugs in the future for treating neuropsychiatric disorders involving impaired neural plasticity.
Collapse
Affiliation(s)
- Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sergio Machado
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program - Salgado de Oliveira University, Niteroi, Brazil
| | - Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
6
|
Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells Int 2017; 2017:1719050. [PMID: 29081809 PMCID: PMC5610870 DOI: 10.1155/2017/1719050] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023] Open
Abstract
Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.
Collapse
Affiliation(s)
- Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Pablo Cisternas
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Ariel Caviedes
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Federico Batiz
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Roberto Henzi
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
7
|
Jenwitheesuk A, Park S, Wongchitrat P, Tocharus J, Mukda S, Shimokawa I, Govitrapong P. Comparing the Effects of Melatonin with Caloric Restriction in the Hippocampus of Aging Mice: Involvement of Sirtuin1 and the FOXOs Pathway. Neurochem Res 2017; 43:153-161. [PMID: 28770437 DOI: 10.1007/s11064-017-2369-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
It has been suggested that age-related neurodegeneration might be associated with neuropeptide Y (NPY); sirtuin1 (SIRT1) and forkhead box transcription factors O subfamily (FOXOs) pathways. Melatonin, a hormone mainly secreted by the pineal gland, is another anti-aging agent associated with the SIRT1-FOXOs pathway. This study aimed to compare the effects of melatonin (Mel) and caloric restriction (CR) on the expression of Sirt1, FoxO1, FoxO3a and FOXOs target genes in the aging mouse hippocampus. Neuropeptide Y-knockout (NpyKO) and wild-type (WT) male mice aged 19 months were previously treated either with food ad libitum or CR for 16 months. WT old animals were divided into four groups: control, CR, Mel and CR+Mel treated groups. The Mel and CR+Mel were treated with melatonin 10 mg/kg, daily, subcutaneously for 7 consecutive days. Mel treatment upregulated the mRNA expression of Sirt1, FOXOs (FoxO1 and FoxO3a) target genes that regulated the cell cycle [e.g., cyclin-dependent kinase inhibitor 1B (p27)], Wingless and INT-1 (Wnt1) and inducible signaling pathway protein 1 (Wisp1) in the aged mouse hippocampus. CR treatment also showed the similar actions. However, the mRNA expression of Sirt1, FoxO1, FoxO3a, p27 or Wisp1 did not alter in the CR+Mel group when compared with CR or Mel group. Melatonin could not produce any additive effect on the CR treatment group, suggesting that both treatments mimicked the effect, possibly via the same pathway. NPY which mediates physiological adaptations to energy deficits is an essential link between CR and longevity in mice. In order to focus on the role of Npy in mediating the effects of melatonin, the gene expression between NpyKO and WT male mice were compared. Our data showed that, in the absence of Npy, melatonin could not mediate effects on those gene expressions, suggesting that Npy was required for melatonin to mediate the effect, possibly, on life extension.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Seongjoon Park
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand. .,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Salaya, Thailand. .,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
8
|
Hörster H, Garthe A, Walker TL, Ichwan M, Steiner B, Khan MA, lie DC, Nicola Z, Ramirez-Rodriguez G, Kempermann G. p27kip1 Is Required for Functionally Relevant Adult Hippocampal Neurogenesis in Mice. Stem Cells 2016; 35:787-799. [DOI: 10.1002/stem.2536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 10/10/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Henrik Hörster
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden; Dresden Germany
| | - Alexander Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Tara L. Walker
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden; Dresden Germany
| | - Muhammad Ichwan
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden; Dresden Germany
| | - Barbara Steiner
- Department of Neurology; Charité University Medicine Berlin; Berlin Germany
| | - Muhammad Amir Khan
- Adult Neurogenesis Group, Institute of Developmental Genetics, Helmholtz Center Munich; Oberschleißheim Germany
| | - Dieter Chichung lie
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Zeina Nicola
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Gerardo Ramirez-Rodriguez
- Laboratory of Neurogenesis, Division of Clinical Investigations; National Institute of Psychiatry “Ramón de la Fuente Muñiz”; México D.F México
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| |
Collapse
|
9
|
|
10
|
Hu P, Wang Y, Liu J, Meng FT, Qi XR, Chen L, van Dam AM, Joëls M, Lucassen PJ, Zhou JN. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus 2016; 26:911-923. [PMID: 26860546 DOI: 10.1002/hipo.22574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
Abstract
Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pu Hu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Ji Liu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan-Tao Meng
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin-Rui Qi
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Chen
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression. Neural Plast 2015; 2016:8457612. [PMID: 26881136 PMCID: PMC4736204 DOI: 10.1155/2016/8457612] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed.
Collapse
|
12
|
Andreu Z, Khan MA, González-Gómez P, Negueruela S, Hortigüela R, San Emeterio J, Ferrón SR, Martínez G, Vidal A, Fariñas I, Lie DC, Mira H. The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 2015; 33:219-29. [PMID: 25185890 DOI: 10.1002/stem.1832] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.
Collapse
Affiliation(s)
- Zoraida Andreu
- Unidad de Neurobiología Molecular, Área de Biología Celular y Desarrollo, UFIEC, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lucassen PJ, Oomen CA, Naninck EFG, Fitzsimons CP, van Dam AM, Czeh B, Korosi A. Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb Perspect Biol 2015; 7:a021303. [PMID: 26330520 DOI: 10.1101/cshperspect.a021303] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN). We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hormones, and inflammation, with a particular focus on early development and on lasting effects of stress. Although the effects of acute and mild stress on AN are generally brief and can be quickly overcome, chronic exposure or more severe forms of stress can induce longer lasting reductions in neurogenesis that can, however, in part, be overcome by subsequent exposure to exercise, drugs targeting the stress system, and some antidepressants. Exposure to stress, particularly during the sensitive period of early life, may (re)program brain plasticity, in particular, in the hippocampus. This may increase the risk to develop cognitive or anxiety symptoms, common to brain diseases like dementia and depression in which plasticity changes occur, and a normalization of neurogenesis may be required for a successful treatment response and recovery.
Collapse
Affiliation(s)
- Paul J Lucassen
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Charlotte A Oomen
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Eva F G Naninck
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- VU University Medical Center, Department of Anatomy & Neurosciences, 1007 MB Amsterdam, The Netherlands
| | - Boldizsár Czeh
- MTA-PTE, Neurobiology of Stress Research Group, University of Pecs, 7624 Pecs, Hungary Structural Neurobiology Research Group, Szentagothai Janos Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Aniko Korosi
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
14
|
Baier C, Franco D, Gallegos C, Mongiat L, Dionisio L, Bouzat C, Caviedes P, Barrantes F. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor. Neuroscience 2014; 274:369-82. [DOI: 10.1016/j.neuroscience.2014.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/29/2014] [Accepted: 05/24/2014] [Indexed: 11/27/2022]
|
15
|
Lee SW, Kim YS, Jun TW, Seo JH, Kim K, Shin MS, Kim CJ. The impact of duration of one bout treadmill exercise on cell proliferation and central fatigue in rats. J Exerc Rehabil 2013; 9:463-9. [PMID: 24282806 PMCID: PMC3836548 DOI: 10.12965/jer.130069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the impact of the duration-dependence of the one bout treadmill exercise on cell proliferation, stress, and central fatigue in rats. The animals were randomly divided into five groups: the non-exercise group, 1-h exercise group, 2-h exercise group, 4-h exercise group, and 6-h exercise group. The exercise load consisted of running at speed of 13 meters/min with the 0° inclination. Cell proliferation in the hippocampal dentate gyrus was increased in response to one bout moderate treadmill exercise in all exercise groups. But there was no statistical significance between the exercise duration and cell proliferation. The optical density of glucocorticoid (GR)-positive cells in the hippocampal dentate gyrus was not changed by treadmill exercise at any exercise duration. Expressions of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hyroxylase (TPH) were increased by treadmill exercise only at 6 h duration. It seemed like that there was no additional benefits on cell proliferation over 2 h exercise due to stressful factors with over exercise dose, and there was no change of GR expression due to early assessment point of time. It can be suggested that the one-bout of moderate treadmill exercise increased cell proliferation, but treadmill exercise prolonged to 6 h induced central fatigue in rats.
Collapse
Affiliation(s)
- Sang-Won Lee
- Department of Physical Education, Korea Military Academy, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
microRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience 2013; 241:188-205. [DOI: 10.1016/j.neuroscience.2013.02.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 12/21/2022]
|
17
|
Patrício P, Mateus-Pinheiro A, Sousa N, Pinto L. Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression. Mol Neurobiol 2013; 48:84-96. [PMID: 23471746 PMCID: PMC3718990 DOI: 10.1007/s12035-013-8422-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression.
Collapse
Affiliation(s)
- Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | | | |
Collapse
|
18
|
Veena J, Rao BSS, Srikumar BN. Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2012; 2:26-37. [PMID: 22470231 PMCID: PMC3312696 DOI: 10.4103/0976-9668.82312] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- J Veena
- Laboratoire Psynugen, Université Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
19
|
Piontkewitz Y, Bernstein HG, Dobrowolny H, Bogerts B, Weiner I, Keilhoff G. Effects of risperidone treatment in adolescence on hippocampal neurogenesis, parvalbumin expression, and vascularization following prenatal immune activation in rats. Brain Behav Immun 2012; 26:353-63. [PMID: 22154704 DOI: 10.1016/j.bbi.2011.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
Maternal infection in pregnancy is an environmental risk factor for the development of schizophrenia and related disorders in the offspring, and this association is recapitulated in animal models using gestational infection or immune stimulation. We have recently shown that behavioral abnormalities and altered hippocampal morphology emerging in adult offspring of dams treated with the viral mimic polyriboinosinic-polyribocytidilic acid (poly I:C) are prevented by treatment with the atypical antipsychotic drug risperidone (RIS) in adolescence. Here we used a battery of cellular markers and Nissl stain to morphometrically analyze different hippocampal cell populations in the offspring of poly I:C and saline-treated mothers that received saline or RIS in adolescence, at different time points of postnatal development. We report that impaired neurogenesis, disturbed micro-vascularization and loss of parvalbumin-expressing hippocampal interneurons, are found in the offspring of poly I:C-treated dams. Most, but not all, of these neuropathological changes are not present in poly I:C offspring that had been treated with RIS. These effects may be part of the complex processes underlying the capacity of RIS treatment in adolescence to prevent structural and behavioral abnormalities deficits in the poly I:C offspring.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
20
|
Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 2011; 36:406-14. [PMID: 20382481 DOI: 10.1016/j.psyneuen.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Exposure to stressful situations activates two hormonal systems that help the organism to adapt. On the one hand stress hormones achieve adaptation by affecting peripheral organs, on the other hand by altering brain function such that appropriate behavioral strategies are selected for optimal performance at the short term, while relevant information is stored for reference in the future. In this chapter we describe how cellular effects induced by stress hormones--in particular by glucocorticoids--may contribute to the behavioral outcome after a single stressor. In addition to situations of acute stress, chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons. The impact of chronic stress is not a mere cumulative effect of what is seen after acute stress exposure. Dendritic trees are expanded in some regions but reduced in others. In general, cells are exposed to a higher calcium load upon depolarization, but show attenuated responses to serotonin. Synaptic strengthening is largely impaired. In this viewpoint we speculate how cellular effects after chronic stress may be maladaptive and could contribute to the development of psychopathology in genetically vulnerable individuals.
Collapse
|
21
|
McPherson CA, Kraft AD, Harry GJ. Injury-induced neurogenesis: consideration of resident microglia as supportive of neural progenitor cells. Neurotox Res 2011; 19:341-52. [PMID: 20524106 PMCID: PMC2992100 DOI: 10.1007/s12640-010-9199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 01/26/2023]
Abstract
The induction of neurogenesis in the adult subgranular zone (SGZ) by injury is often accompanied by changes in the extracellular environment that can have significant impacts on neural progenitor cells (NPCs). We examined the induction of neurogenesis in the SGZ at 72 h following an injection of the hippocampal toxicant, trimethyltin (TMT; 2 mg/kg, ip) inducing apoptosis in dentate granule neurons. BrdU+ incorporation during the active period of neuronal death indicated NPC proliferation and migration of newly generated cells into the granule cell layer (GCL). BrdU+ cells were transiently in contact with process bearing microglia within the inner SGZ layer. Contact with GFAP+ astrocyte processes occurred once cells were within the GCL. A small percentage of the BrdU+ cells within the SGZ region showed immunoreactivity for tumor necrosis factor (TNF) p75 receptor (TNFp75R). In mice deficient for TNFp75R, TMT injection produced an equivalent level of dentate granule cell death however; BrdU+ cells were localized at the SGZ as compared to the presence of cells within the GCL in the WT mice dosed with TMT. These data suggest that cells generated by NPCs in the SGZ induced with a focal lesion to the dentate granule neurons of adolescent mice maintain the capacity to utilize the neuroinflammation and microglia responses within their environment for migration into the GCL.
Collapse
Affiliation(s)
- Christopher A. McPherson
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, NC, 27709 USA
| | - Andrew D. Kraft
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, NC, 27709 USA
| | - G. Jean Harry
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, NC, 27709 USA
| |
Collapse
|
22
|
Datson NA, Speksnijder N, Mayer JL, Steenbergen PJ, Korobko O, Goeman J, de Kloet ER, Joëls M, Lucassen PJ. The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus 2010; 22:359-71. [PMID: 21184481 DOI: 10.1002/hipo.20905] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2010] [Indexed: 01/20/2023]
Abstract
The dentate gyrus (DG) of the hippocampus plays a crucial role in learning and memory. This subregion is unique in its ability to generate new neurons throughout life and integrate these new neurons into the hippocampal circuitry. Neurogenesis has further been implicated in hippocampal plasticity and depression. Exposure to chronic stress affects DG function and morphology and suppresses neurogenesis and long-term potentiation (LTP) with consequences for cognition. Previous studies demonstrated that glucocorticoid receptor (GR) blockade by a brief treatment with the GR antagonist mifepristone (RU486) rapidly reverses the stress and glucocorticoid effects on neurogenesis. The molecular pathways underlying both the stress-induced effects and the RU486 effects on the DG are, however, largely unknown. The aim of this study was therefore (1) to investigate by microarray analysis which genes and pathways in the DG are sensitive to chronic stress and (2) to investigate to what extent blockade of GR can normalize these stress-induced effects on DG gene expression. Chronic stress exposure affected the expression of 90 genes in the DG (P < 0.01), with an overrepresentation of genes involved in brain development and morphogenesis and synaptic transmission. RU486 treatment of stressed animals affected expression of 107 genes; however, mostly different genes than those responding to stress. Interestingly, we found CREBBP to be normalized by RU486 treatment to levels observed in control animals, suggesting that CREB-signaling may play a central role in mediating the chronic stress effects on neurogenesis, LTP and calcium currents. The identified genetic pathways provide insight into the stress-induced adaptive plasticity of the hippocampal DG that is so central in learning and memory and will direct future studies on the functional outcome and modulation of these stress effects.
Collapse
Affiliation(s)
- Nicole A Datson
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Junek A, Rusak B, Semba K. Short-term sleep deprivation may alter the dynamics of hippocampal cell proliferation in adult rats. Neuroscience 2010; 170:1140-52. [PMID: 20727388 DOI: 10.1016/j.neuroscience.2010.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
Long-term (>48 h) sleep deprivation (SD) reduces adult rat hippocampal cell proliferation and neurogenesis, yet reported effects of short-term (<24 h) SD are inconsistent. We systematically assessed the effects of various durations of SD on adult rat hippocampal cell proliferation. Rats were sleep-deprived for 6, 12, 24, 36 or 48 h and injected with 5-bromo-2'-deoxyuridine (BrdU) 2 h before the end of SD. Immunolabeling for BrdU in the hippocampal subgranular zone increased significantly after 12 h SD but tended to decrease after 48 h SD relative to respective Controls. Surprisingly, SD did not alter immunolabeling for Ki67 protein (Ki67) or proliferating cell nuclear antigen (PCNA), two intrinsic cell proliferation markers. SD did not affect BrdU or Ki67 labeling in the subventricular zone, nor did it affect serum corticosterone levels. Because immunoreactivity for Ki67 and PCNA can identify cells in all phases of the ∼25 h cell cycle in adult rat hippocampus, whereas BrdU labels only cells in S-phase (∼9.5 h), this discrepancy suggests that 12 h SD might have affected cell cycle dynamics. A separate group of rats were injected with BrdU 10 h before the end of 12 h SD, which would allow some time for labeled cells to divide; the results were consistent with an acceleration of the timing of hippocampal progenitor cell division during 12 h SD. These results suggest that short-term (12 h) SD transiently produces more hippocampal progenitor cells via cell cycle acceleration, and confirm the importance of using multiple cell cycle markers or BrdU injection paradigms to assess potential changes in cell proliferation.
Collapse
Affiliation(s)
- A Junek
- Department of Anatomy & Neurobiology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 1X5, Canada
| | | | | |
Collapse
|
24
|
Krugers HJ, Lucassen PJ, Karst H, Joëls M. Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front Synaptic Neurosci 2010; 2:24. [PMID: 21423510 PMCID: PMC3059694 DOI: 10.3389/fnsyn.2010.00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/07/2010] [Indexed: 01/08/2023] Open
Abstract
Exposure of an organism to environmental challenges activates two hormonal systems that help the organism to adapt. As part of this adaptational process, brain processes are changed such that appropriate behavioral strategies are selected that allow optimal performance at the short term, while relevant information is stored for the future. Over the past years it has become evident that chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons, but the impact of chronic stress is not a mere accumulation of repeated episodes of acute stress exposure. Dendritic trees are reduced in some regions but expanded in others, and cells are generally exposed to a higher calcium load upon depolarization. Synaptic strengthening is largely impaired. Neurotransmitter responses are also changed, e.g., responses to serotonin. We here discuss: (a) the main cellular effects after chronic stress with emphasis on the hippocampus, (b) how such effects could contribute to the development of psychopathology in genetically vulnerable individuals, and (c) their normalization by brief treatment with anti-glucocorticoids.
Collapse
Affiliation(s)
- Harmen J. Krugers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Paul J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Henk Karst
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center UtrechtUtrecht, Netherlands
| | - Marian Joëls
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
25
|
Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 2010; 58:940-9. [PMID: 20138063 DOI: 10.1016/j.neuropharm.2010.01.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/23/2022]
Abstract
Imaging studies have consistently documented hippocampal volume reductions in depression. Although depressive disorders are traditionally considered to have a neurochemical basis, recent studies suggest that impairments of structural plasticity contribute to the volume reductions and the related cognitive changes. This might result from repeated periods of stress that are a wellknown risk factor for depression. Adult neurogenesis is a prominent example of neuroplasticity that in rodents, is reduced by stress but stimulated by antidepressant drugs. Although reductions in neurogenesis have been proposed to contribute to the etiology of depression, only two studies have so far examined hippocampal cytogenesis in depression, but this was in a limited number of subjects with considerable interindividual variation, and these studies came to different conclusions. We therefore collected hippocampal tissue of 10 elderly control subject and 10 well-matched depressed patients that were highly comparable in terms of age, sex, pH-CSF and postmortem delay, and tested whether the numbers of MCM2-positive progenitors and PH3-positive proliferating cells were altered by depression or antidepressant treatment. A significant reduction was found in MCM2-, but not PH3-immunopositive cells in depression. Although this result is consistent with the concept that structural plasticity is decreased in depression, we could not confirm that antidepressant drugs had a stimulatory effect on these cells. This discrepancy may relate to anatomical differences, in medication, to neurogenesis-independent mechanisms of antidepressant action, or the age of the patients that was higher than in previous studies. Whether the reduction is a cause or consequence of depression awaits to be determined.
Collapse
|
26
|
Varodayan FP, Zhu XJ, Cui XN, Porter BE. Seizures increase cell proliferation in the dentate gyrus by shortening progenitor cell-cycle length. Epilepsia 2009; 50:2638-47. [PMID: 19674059 PMCID: PMC2796702 DOI: 10.1111/j.1528-1167.2009.02244.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE A prolonged seizure, status epileptics (SE), is a potent stimulus for increased neurogenesis in the dentate gyrus of the hippocampus. Molecular mechanisms that regulate normal and pathologic cell birth in the dentate gyrus are poorly understood. METHODS Lithium-pilocarpine was used to induce SE in immature postnatal day 20 rats. Newborn cells in the dentate were labeled with bromo-deoxyuridine to determine a time-course of cell proliferation, and measure cell-cycle length. In addition, we studied expression by Western blot and immunohistochemistry of two known inhibitors of G(1)-S cell-cycle progression P27/Kip1 and P15/Ink4b following SE. RESULTS Cell proliferation in the dentate gyrus increases starting 2 h after SE and is sustained for 40 days. Increased cell proliferation following SE is associated with a shortened dentate gyrus progenitor's cell cycle, 15 h in control to 12 h in the SE animals. To identify molecules responsible for the shortened progenitor cell cycle we studied inhibitors of cell-cycle progression P27/Kip1, and P15/Ink4b. We find decreased phosphorylation at P27/Kip1 Serine 10 and Threonine 187 following SE. Although total P27/Kip1 and P15/Ink4b levels were not altered after SE, P27/Kip1 immunoreactivity was minimal in newborn but increased with maturation of the dentate granule neurons. DISCUSSION The sustained increase in dentate gyrus cell proliferation following SE provides a large pool of immature dentate granule cells prior to development of spontaneous seizures. A decrease in cell-cycle length of dentate gyrus progenitors is at least partially responsible for increased numbers of newborn cells following SE.
Collapse
Affiliation(s)
- Florence P. Varodayan
- Division of Neurology at The Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Xin-Jian Zhu
- Division of Neurology at The Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Xiao-Nan Cui
- Division of Neurology at The Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Brenda E. Porter
- Division of Neurology at The Children’s Hospital of Philadelphia, Philadelphia PA 19104
- Department of Neurology at The University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
27
|
Dagyte G, Van der Zee EA, Postema F, Luiten PGM, Den Boer JA, Trentani A, Meerlo P. Chronic but not acute foot-shock stress leads to temporary suppression of cell proliferation in rat hippocampus. Neuroscience 2009; 162:904-13. [PMID: 19482059 DOI: 10.1016/j.neuroscience.2009.05.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 12/26/2022]
Abstract
Stressful experiences, especially when prolonged and severe are associated with psychopathology and impaired neuronal plasticity. Among other effects on the brain, stress has been shown to negatively regulate hippocampal neurogenesis, and this effect is considered to be exerted via glucocorticoids. Here, we sought to determine the temporal dynamics of changes in hippocampal neurogenesis after acute and chronic exposure to foot-shock stress. Rats subjected to a foot-shock procedure showed strong activation of the hypothalamic-pituitary-adrenal (HPA) axis, even after exposure to daily stress for 3 weeks. Despite a robust release of corticosterone, acute foot-shock stress did not affect the rate of hippocampal cell proliferation. In contrast, exposure to foot-shock stress daily for 3 weeks led to reduced cell proliferation 2 hours after the stress procedure. Interestingly, this stress-induced effect did not persist and was no longer detected 24 hours later. Also, while chronic foot-shock stress had no impact on survival of hippocampal cells that were born before the stress procedure, it led to a decreased number of doublecortin-positive granule neurons that were born during the chronic stress period. Thus, whereas a strong activation of the HPA axis during acute foot-shock stress is not sufficient to reduce hippocampal cell proliferation, repeated exposure to stressful stimuli for prolonged period of time ultimately results in dysregulated neurogenesis. In sum, this study supports the notion that chronic stress may lead to cumulative changes in the brain that are not seen after acute stress. Such changes may indicate compromised brain plasticity and increased vulnerability to neuropathology.
Collapse
Affiliation(s)
- G Dagyte
- Department of Molecular Neurobiology, University of Groningen, PO Box 14, 9750 AA, Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 2009; 33:232-52. [PMID: 18786562 PMCID: PMC2671071 DOI: 10.1016/j.neubiorev.2008.08.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 12/28/2022]
Abstract
It is now well established that the mammalian brain has the capacity to produce new neurons into adulthood. One such region that provides the proper milieu to sustain progenitor cells and is permissive to neuronal fate determination is located in the dentate gyrus of the hippocampus. This review will discuss in detail the complex process of adult hippocampal neurogenesis, including proliferation, differentiation, survival, and incorporation into neuronal networks. The regulation of this phenomenon by a number of factors is described, including neurotransmitter systems, growth factors, paracrine signaling molecules, neuropeptides, transcription factors, endogenous psychotropic systems, sex hormones, stress, and others. This review also addresses the functional significance of adult born hippocampal granule cells with regard to hippocampal circuitry dynamics and behavior. Furthermore, the relevance of perturbations in adult hippocampal neurogenesis to the pathophysiology of various disease states, including depression, schizophrenia, epilepsy, and diabetes are examined. Finally, this review discusses the potential of using hippocampal neurogenesis as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Darrick T. Balu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Heine VM, Rowitch DH. Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 11betaHSD2-dependent mechanism. J Clin Invest 2009; 119:267-77. [PMID: 19164857 DOI: 10.1172/jci36376] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/26/2008] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoids (GCs) are administered to human fetuses at risk of premature delivery and to infants with life-threatening respiratory and cardiac conditions. However, there are ongoing concerns about adverse effects of GC treatment on the developing human brain, although the precise molecular mechanisms underlying GC-induced brain injury are unclear. Here, we identified what we believe to be novel cross-antagonistic interactions of Sonic hedgehog (Shh) and GC signaling in proliferating mouse cerebellar granule neuron precursors (CGNPs). Chronic GC treatment (from P0 through P7) in mouse pups inhibited Shh-induced proliferation and upregulation of expression of N-myc, Gli1, and D-type cyclin protein in CGNPs. Conversely, acute GC treatment (on P7 only) caused transient apoptosis. Shh signaling antagonized these effects of GCs, in part by induction of 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2). Importantly, 11betaHSD2 antagonized the effects of the GCs corticosterone, hydrocortisone, and prednisolone, but not the synthetic GC dexamethasone. Our findings indicate that Shh signaling is protective in the setting of GC-induced mouse neonatal brain injury. Furthermore, they led us to propose that 11betaHSD2-sensitive GCs (e.g., hydrocortisone) should be used in preference to dexamethasone in neonatal human infants because of the potential for reduced neurotoxicity.
Collapse
Affiliation(s)
- Vivi M Heine
- Department of Pediatrics, Howard Hughes Medical Institute and Institute for Regeneration Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
30
|
Chigr F, Rachidi F, Segura S, Mahaut S, Tardivel C, Jean A, Najimi M, Moyse E. Neurogenesis inhibition in the dorsal vagal complex by chronic immobilization stress in the adult rat. Neuroscience 2009; 158:524-36. [DOI: 10.1016/j.neuroscience.2008.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 10/21/2008] [Accepted: 11/19/2008] [Indexed: 12/15/2022]
|
31
|
Veenema AH, de Kloet ER, de Wilde MC, Roelofs AJ, Kawata M, Buwalda B, Neumann ID, Koolhaas JM, Lucassen PJ. Differential effects of stress on adult hippocampal cell proliferation in low and high aggressive mice. J Neuroendocrinol 2007; 19:489-98. [PMID: 17561881 DOI: 10.1111/j.1365-2826.2007.01555.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder generally show opposing behavioural coping responses to environmental challenges. LAL mice, unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal axis and show an enhanced expression of markers for hippocampal plasticity. The present study aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU) over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between coping responses and hippocampal cell proliferation, in which corticosterone may be one of the determinants of line differences in cell proliferation responses to environmental challenges.
Collapse
Affiliation(s)
- A H Veenema
- Department of Behavioural Physiology, Center for Behavioural and Cognitive Neuroscience, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Dentate granule cells are enriched with receptors for the stress hormone corticosterone, i.e., the high-affinity mineralocorticoid receptor (MR), which is already extensively occupied with low levels of the hormone, and the glucocorticoid receptor (GR), which is particularly activated after stress. More than any other cell type in the brain studied so far, dentate granule cells require hormone levels to be within the physiological range. In the absence of corticosteroids, proliferation and apoptotic cell death are dramatically enhanced. Dendritic morphology and synaptic transmission are compromised. Conversely, prolonged exposure of animals to a high level of corticosterone suppresses neurogenesis and presumably makes dentate granule cells more vulnerable to delayed cell death. These corticosteroid effects on dentate cell and network function are translated into behavioral consequences, in health and disease.
Collapse
Affiliation(s)
- Marian Joëls
- Swammerdam Institute of Life Sciences, Center for NeuroScience, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Chambers RA, Conroy SK. Network modeling of adult neurogenesis: shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. J Cogn Neurosci 2007; 19:1-12. [PMID: 17214558 PMCID: PMC2887709 DOI: 10.1162/jocn.2007.19.1.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptotic and neurogenic events in the adult hippocampus are hypothesized to play a role in cognitive responses to new contexts. Corticosteroid-mediated stress responses and other neural processes invoked by substantially novel contextual changes may regulate these processes. Using elementary three-layer neural networks that learn by incremental synaptic plasticity, we explored whether the cognitive effects of differential regimens of neuronal turnover depend on the environmental context in terms of the degree of novelty in the new information to be learned. In "adult" networks that had achieved mature synaptic connectivity upon prior learning of the Roman alphabet, imposition of apoptosis/neurogenesis before learning increasingly novel information (alternate Roman < Russian < Hebrew) reveals optimality of informatic cost benefits when rates of turnover are geared in proportion to the degree of novelty. These findings predict that flexible control of rates of apoptosis-neurogenesis within plastic, mature neural systems optimizes learning attributes under varying degrees of contextual change, and that failures in this regulation may define a role for adult hippocampal neurogenesis in novelty- and stress-responsive psychiatric disorders.
Collapse
|
34
|
Delobel P, Lavenir I, Ghetti B, Holzer M, Goedert M. Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:878-87. [PMID: 16507903 PMCID: PMC1606514 DOI: 10.2353/ajpath.2006.050540] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 11/03/2005] [Indexed: 11/20/2022]
Abstract
Recent evidence has suggested that an abnormal reactivation of the cell cycle may precede and cause the hyperphosphorylation and filament formation of tau protein in Alzheimer's disease and other tauopathies. Here we have analyzed the expression and/or activation of proteins involved in cell-cycle progression in the brain and spinal cord of mice transgenic for mutant human P301S tau protein. This mouse line recapitulates the essential molecular and cellular features of the human tauopathies, including hyperphosphorylation and filament formation of tau protein. None of the activators and co-activators of the cell cycle tested were overexpressed or activated in 5-month-old transgenic mice when compared to controls. By contrast, the levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 were increased in brain and spinal cord of transgenic mice. Both inhibitors accumulated in the cytoplasm of nerve cells, the majority of which contained inclusions made of hyperphosphorylated tau protein. A similar staining pattern for p21Cip1 and p27Kip1 was also present in the frontal cortex from a case of FTDP-17 with the P301L tau mutation. Thus, reactivation of the cell cycle was not involved in tau hyperphos-phorylation and filament formation, consistent with expression of p21Cip1 and p27Kip1 in tangle-bearing nerve cells.
Collapse
Affiliation(s)
- Patrice Delobel
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
35
|
Abstract
Stress hormones have potent growth-inhibiting effects on a variety of peripheral tissues. Consistent with this general function, stress has been shown to inhibit cell proliferation and, ultimately, neurogenesis in the hippocampus. This effect appears to be common across mammalian species, life stages, and most types of stressors. Although some evidence points to a role for glucocorticoids in mediating this effect, contradictory data exist. This review considers the growing literature on this subject with specific emphasis on paradoxical findings and the role of glucocorticoids in modulating adult neurogenesis.
Collapse
Affiliation(s)
- Christian Mirescu
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
36
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
37
|
Heine VM, Zareno J, Maslam S, Joëls M, Lucassen PJ. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 2005; 21:1304-14. [PMID: 15813940 DOI: 10.1111/j.1460-9568.2005.03951.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence has shown that cell proliferation in the adult hippocampal dentate gyrus occurs in tight clusters located near the vasculature. Also, changes in neurogenesis often appear parallel to changes in angiogenesis. Moreover, both these processes share similar modulating factors, like vascular endothelial growth factor (VEGF) and its receptor Flk-1. In an earlier study we found that chronic stress decreased new cell proliferation in the adult dentate gyrus. We here questioned whether these effects of chronic stress are mediated through the vasculature and whether they involve an angiogenic-signaling pathway. We therefore measured the surface area covered by the vasculature, the proportion of vascular-associated newborn cells, and analysed VEGF and Flk-1 protein expression in the hippocampus of a control, chronically stressed and recovery group of rats. Our results show that 32% of the proliferating cells in the rat hippocampus is vascular associated. Chronic stress affected this population of newborn cells to a significantly larger extent than the non-associated cells. Interestingly, after 3 weeks of recovery, the decreased proliferation not associated with the vasculature was more effectively restored than vascular-associated proportion of proliferating cells. VEGF protein was expressed in high densities in GFAP-positive astrocytes located in the hilus, with VEGF-positive end feet extending into and often contacting the granule cells. After chronic stress, both VEGF and Flk-1 protein levels were significantly decreased in the granular cell layer, and again recovered after 3 weeks. This demonstrates that changes in angiogenic factors are implicated in the decreased adult proliferation found after chronic stress.
Collapse
Affiliation(s)
- Vivi M Heine
- Institute Neurobiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Fuchs E, Czéh B, Kole MHP, Michaelis T, Lucassen PJ. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14 Suppl 5:S481-90. [PMID: 15550346 DOI: 10.1016/j.euroneuro.2004.09.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early hypotheses on the pathophysiology of major depression were based on aberrant intrasynaptic concentrations of mainly the neurotransmitters serotonin and norepinephrine. However, recent neuroimaging studies have demonstrated selective structural changes across various limbic and nonlimbic circuits in the brains of depressed patients. In addition, postmortem morphometric studies revealed decreased glial and neuron densities in selected brain structures supporting the idea that major depression may be related to impairments of structural plasticity. Stressful life events are among the major predisposing risk factors for developing depression. Using the chronic psychosocial stress paradigm in male tree shrews, an animal model with a high validity for the pathophysiology of depressive disorders, we found that 1 month of stress reduced the in vivo concentrations of the brain metabolites N-acetyl-aspartate, choline-containing compounds, and (phospho)-creatine, as well as the proliferation rate in the dentate gyrus and the hippocampal volume. Even though long-lasting social conflict does not lead to a loss of principal cells, the hippocampal changes were accompanied by modifications in the incidence of apoptosis. Notably, these suppressive effects of social conflict on hippocampal structure could be counteracted by treatment with the antidepressant tianeptine. These findings support current theories proposing that major depressive disorders may be associated with impairment of structural plasticity and neural cellular resilience, and that antidepressants may act by correcting this dysfunction.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
39
|
Heine VM, Maslam S, Joëls M, Lucassen PJ. Increased P27KIP1 protein expression in the dentate gyrus of chronically stressed rats indicates G1 arrest involvement. Neuroscience 2004; 129:593-601. [PMID: 15541881 DOI: 10.1016/j.neuroscience.2004.07.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2004] [Indexed: 01/19/2023]
Abstract
Various chronic stress paradigms decrease new cell proliferation in the hippocampal dentate gyrus, yet the exact underlying mechanism is still unclear. In the first gap (G1) phase of the cell cycle, both stimulatory and inhibitory signals derived from the extracellular environment converge. Corticosteroids, which increase during stress and are well-known anti-mitotics, cause cells in vitro to arrest in the G1 phase. Following 3 weeks of unpredictable stress, we therefore expected a change in protein expression of various important G1 cell cycle regulators in the adult rat subgranular zone. Using quantitative immunocytochemistry, we show that particularly cyclin-dependent kinase inhibitor p27Kip1 expression is significantly increased. In addition, 3 weeks of recovery after stress normalized the numbers of p27Kip1-expressing cells, consistent with the recovered adult cell proliferation in these animals. P27Kip1-positive cells do not overlap with GFAP-staining and only to a limited extent with Ki-67-expressing cells. Numbers of cyclin E- and cyclin D1-expressing cells did not change after chronic stress. These results indicate that chronic stress causes cycling cells in the adult hippocampus to arrest in G1, thereby providing more mechanistic insight in the stress-induced decrease in cell proliferation.
Collapse
Affiliation(s)
- V M Heine
- Section Neurobiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM, PO Box 94084, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|