1
|
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, Li CY, Wu Z, Guo JH, Zhou XF, Li LY. Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 2021; 144:112273. [PMID: 34700232 DOI: 10.1016/j.biopha.2021.112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Rehabilitation Medicine, Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Medical college of Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital 12 de Octubre, Instituto de Investigación imas12, Universidad Complutense de Madrid, Madrid, Spain
| | - Hongyun Li
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW 2050, Australia
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
3
|
Atorvastatin Improves Mitochondrial Function and Prevents Oxidative Stress in Hippocampus Following Amyloid-β 1-40 Intracerebroventricular Administration in Mice. Mol Neurobiol 2020; 57:4187-4201. [PMID: 32683653 DOI: 10.1007/s12035-020-02026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) peptides play a significant role in the pathogenesis of Alzheimer's disease (AD). Neurotoxic effects promoted by Aβ peptides involve glutamate transmission impairment, decrease of neurotrophic factors, mitochondrial dysfunction, oxidative stress, synaptotoxicity, and neuronal degeneration. Here, we assessed the early events evoked by Aβ1-40 on the hippocampus. Additionally, we sought to unravel the molecular mechanisms of atorvastatin preventive effect on Aβ-induced hippocampal damage. Mice were treated orally (p.o.) with atorvastatin 10 mg/kg/day during 7 consecutive days before the intracerebroventricular (i.c.v.) infusion of Aβ1-40 (400 pmol/site). Twenty-four hours after Aβ1-40 infusion, a reduced content of mature BDNF/proBDNF ratio was observed in Aβ-treated mice. However, there is no alteration in synaptophysin, PSD-95, and doublecortin immunocontent in the hippocampus. Aβ1-40 promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) generation in hippocampal slices, and atorvastatin prevented this oxidative burst. Mitochondrial OXPHOS was measured by high-resolution respirometry. At this time point, Aβ1-40 did not alter the O2 consumption rates (OCR) related to phosphorylating state associated with complexes I and II, and the maximal OCR. However, atorvastatin increased OCR of phosphorylating state associated with complex I and complexes I and II, maximal OCR of complexes I and II, and OCR associated with mitochondrial spare capacity. Atorvastatin treatment improved mitochondrial function in the rodent hippocampus, even after Aβ infusion, pointing to a promising effect of improving brain mitochondria bioenergetics. Therefore, atorvastatin could act as an adjuvant in battling the symptoms of AD to preventing or delaying the disease progression.
Collapse
|
4
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, Liang Y, Guo J, Li L. BDNF-TrkB and proBDNF-p75NTR/Sortilin Signaling Pathways are Involved in Mitochondria-Mediated Neuronal Apoptosis in Dorsal Root Ganglia after Sciatic Nerve Transection. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:66-82. [PMID: 31957620 DOI: 10.2174/1871527319666200117110056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Brain-Derived Neurotrophic Factor (BDNF) plays critical roles during development
of the central and peripheral nervous systems, as well as in neuronal survival after injury.
Although proBDNF induces neuronal apoptosis after injury in vivo, whether it can also act as a death
factor in vitro and in vivo under physiological conditions and after nerve injury, as well as its mechanism
of inducing apoptosis, is still unclear.
Objective:
In this study, we investigated the mechanisms by which proBDNF causes apoptosis in sensory
neurons and Satellite Glial Cells (SGCs) in Dorsal Root Ganglia (DRG) After Sciatic Nerve
Transection (SNT).
Methods:
SGCs cultures were prepared and a scratch model was established to analyze the role of
proBDNF in sensory neurons and SGCs in DRG following SNT. Following treatment with proBDNF
antiserum, TUNEL and immunohistochemistry staining were used to detect the expression of Glial
Fibrillary Acidic Protein (GFAP) and Calcitonin Gene-Related Peptide (CGRP) in DRG tissue; immunocytochemistry
and Cell Counting Kit-8 (CCK8) assay were used to detect GFAP expression and
cell viability of SGCs, respectively. RT-qPCR, western blot, and ELISA were used to measure mRNA
and protein levels, respectively, of key factors in BDNF-TrkB, proBDNF-p75NTR/sortilin, and apoptosis
signaling pathways.
Results:
proBDNF induced mitochondrial apoptosis of SGCs and neurons by modulating BDNF-TrkB
and proBDNF-p75NTR/sortilin signaling pathways. In addition, neuroprotection was achieved by inhibiting
the biological activity of endogenous proBDNF protein by injection of anti-proBDNF serum. Furthermore,
the anti-proBDNF serum inhibited the activation of SGCs and promoted their proliferation.
Conclusion:
proBDNF induced apoptosis in SGCs and sensory neurons in DRG following SNT. The
proBDNF signaling pathway is a potential novel therapeutic target for reducing sensory neuron and
SGCs loss following peripheral nerve injury.
Collapse
Affiliation(s)
- Xianbin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tongtong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Zhen Wu
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunfei Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chenghao Zang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
6
|
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2019; 12:522. [PMID: 30687012 PMCID: PMC6336700 DOI: 10.3389/fncel.2018.00522] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery is generally very poor. The neurotrophins have emerged as an important modulator of axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation and signaling, as well as its role in activity-dependent treatments including electrical stimulation, exercise, and optogenetic stimulation are discussed here. The importance of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present in 30% of the human population and may hinder the efficacy of these treatments in enhancing regeneration after injury is considered. Preliminary data are presented on the effectiveness of one such activity-dependent treatment, electrical stimulation, in enhancing axon regeneration in mice expressing the met allele of the Val66Met polymorphism.
Collapse
Affiliation(s)
- Claire Emma McGregor
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
8
|
Su YW, Zhou XF, Foster BK, Grills BL, Xu J, Xian CJ. Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol 2017; 233:2133-2145. [PMID: 28370021 DOI: 10.1002/jcp.25936] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cory J Xian
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. Proc Natl Acad Sci U S A 2016; 113:E6686-E6695. [PMID: 27791037 DOI: 10.1073/pnas.1614017113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pain is a critical component hindering recovery and regaining of function after surgery, particularly in the elderly. Understanding the role of pain signaling after surgery may lead to novel interventions for common complications such as delirium and postoperative cognitive dysfunction. Using a model of tibial fracture with intramedullary pinning in male mice, associated with cognitive deficits, we characterized the effects on the primary somatosensory system. Here we show that tibial fracture with pinning triggers cold allodynia and up-regulates nerve injury and inflammatory markers in dorsal root ganglia (DRGs) and spinal cord up to 2 wk after intervention. At 72 h after surgery, there is an increase in activating transcription factor 3 (ATF3), the neuropeptides galanin and neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), as well as neuroinflammatory markers including ionized calcium-binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the fractalkine receptor CX3CR1 in DRGs. Using an established model of complete transection of the sciatic nerve for comparison, we observed similar but more pronounced changes in these markers. However, protein levels of BDNF remained elevated for a longer period after fracture. In the hippocampus, BDNF protein levels were increased, yet there were no changes in Bdnf mRNA in the parent granule cell bodies. Further, c-Fos was down-regulated in the hippocampus, together with a reduction in neurogenesis in the subgranular zone. Taken together, our results suggest that attenuated BDNF release and signaling in the dentate gyrus may account for cognitive and mental deficits sometimes observed after surgery.
Collapse
|
10
|
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res 2016; 31:1258-74. [PMID: 26763079 DOI: 10.1002/jbmr.2786] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Vincent Kuek
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Prem P Dwivedi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, Australia
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
11
|
Caudal D, Alvarsson A, Björklund A, Svenningsson P. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons. Exp Neurol 2015; 273:243-52. [DOI: 10.1016/j.expneurol.2015.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
|
12
|
Lim JY, Reighard CP, Crowther DC. The pro-domains of neurotrophins, including BDNF, are linked to Alzheimer's disease through a toxic synergy with Aβ. Hum Mol Genet 2015; 24:3929-38. [PMID: 25954034 PMCID: PMC4476443 DOI: 10.1093/hmg/ddv130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial role in learning and memory by promoting neuronal survival and modulating synaptic connectivity. BDNF levels are lower in the brains of individuals with Alzheimer's disease (AD), suggesting a pathogenic involvement. The Drosophila orthologue of BDNF is the highly conserved Neurotrophin 1 (DNT1). BDNF and DNT1 have the same overall protein structure and can be cleaved, resulting in the conversion of a full-length polypeptide into separate pro- and mature-domains. While the BDNF mature-domain is neuroprotective, the role of the pro-domain is less clear. In flies and mammalian cells, we have identified a synergistic toxic interaction between the amyloid-β peptide (Aβ1–42) and the pro-domains of both DNT1 and BDNF. Specifically, we show that DNT1 pro-domain acquires a neurotoxic activity in the presence of Aβ1–42. In contrast, DNT1 mature-domain is protective against Aβ1–42 toxicity. Likewise, in SH-SY5Y cell culture, BDNF pro-domain is toxic only in the presence of Aβ1–42. Western blots indicate that this synergistic interaction likely results from the Aβ1–42-induced upregulation of the BDNF pro-domain receptor p75NTR. The clinical relevance of these findings is underlined by a greater than thirty fold increase in the ratio of BDNF pro- to mature-domains in the brains of individuals with AD. This unbalanced BDNF pro:mature-domain ratio in patients represents a possible biomarker of AD and may offer a target for therapeutic intervention.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Charles P Reighard
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK, MedImmune Limited, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
13
|
Falcone R, Marilena Florio T, Giacomo ED, Benedetti E, Cristiano L, Antonosante A, Fidoamore A, Massimi M, Alecci M, Ippoliti R, Giordano A, Cimini A. PPARβ/δ and γ in a Rat Model of Parkinson's Disease: Possible Involvement in PD Symptoms. J Cell Biochem 2015; 116:844-55. [DOI: 10.1002/jcb.25041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Roberta Falcone
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | | | - Erica Di Giacomo
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Alessia Fidoamore
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
- Italian National Institute for Nuclear Physics (INFN); L'Aquila Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neurosciences; University of Siena; Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology; Temple University; Philadelphia Pennsylvania
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences; University of L'Aquila; Italy
- Italian National Institute for Nuclear Physics (INFN); L'Aquila Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology; Temple University; Philadelphia Pennsylvania
| |
Collapse
|
14
|
Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014; 283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
Collapse
Affiliation(s)
- T Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain.
| | - B Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain
| | - U Zimmermann
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Pettersson LME, Geremia NM, Ying Z, Verge VMK. Injury-associated PACAP expression in rat sensory and motor neurons is induced by endogenous BDNF. PLoS One 2014; 9:e100730. [PMID: 24968020 PMCID: PMC4072603 DOI: 10.1371/journal.pone.0100730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed in the injured neurons. The role of endogenous BDNF in induction and/or maintenance of PACAP mRNA expression in injured adult rat motor and sensory neurons was examined by intrathecally infusing or intraperitoneally injecting BDNF-specific antibodies or control IgGs immediately at the time of L4-L6 spinal nerve injury, or in a delayed fashion one week later for 3 days followed by analysis of impact on PACAP expression. PACAP mRNA in injured lumbar sensory and motor neurons was detected using in situ hybridization, allowing quantification of relative changes between experimental groups, with ATF-3 immunofluorescence serving to identify the injured subpopulation of motor neurons. Both the incidence and level of PACAP mRNA expression were dramatically reduced in injured sensory and motor neurons in response to immediate intrathecal anti-BDNF treatment. In contrast, neither intraperitoneal injections nor delayed intrathecal infusions of anti-BDNF had any discernible impact on PACAP expression. This impact on PACAP expression in response to BDNF immunoneutralization in DRG was confirmed using qRT-PCR or by using BDNF selective siRNAs to reduce neuronal BDNF expression. Collectively, our findings support that endogenous injury-associated BDNF expression is critically involved in induction, but not maintenance, of injury-associated PACAP expression in sensory and motor neurons.
Collapse
Affiliation(s)
- Lina M. E. Pettersson
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Nicole M. Geremia
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhengxin Ying
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M. K. Verge
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Nadeau JR, Wilson-Gerwing TD, Verge VMK. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 2014; 62:763-77. [PMID: 24616056 DOI: 10.1002/glia.22640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022]
Abstract
Satellite glial cells (SGCs) surrounding primary sensory neurons are similar to astrocytes of the central nervous system in that they buffer the extracellular environment via potassium and calcium channels and express the intermediate filament glial fibrillary acidic protein (GFAP). Peripheral nerve injury induces a reactive state in SGCs that includes SGC proliferation, increased SGC/SGC coupling via gap junctions, decreased inward rectifying potassium channel 4.1 (Kir 4.1) expression and increased expression of GFAP and the common neurotrophin receptor, p75NTR. In contrast, neuronal p75NTR expression, normally detected in ∼80% of adult rat sensory neurons, decreases in response to peripheral axotomy. Given the differential regulation of p75NTR expression in neurons versus SGCs with injury, we hypothesized that reduced signaling via neuronal p75NTR contributes to the induction of a reactive state in SGCs. We found that reducing neuronal p75NTR protein expression in uninjured sensory neurons by intrathecal subarachnoid infusion of p75NTR-selective anti-sense oligodeoxynucleotides for one week was sufficient to induce a "reactive-like" state in the perineuronal SGCs akin to that normally observed following peripheral nerve injury. This reactive state included significantly increased SGC p75NTR, GFAP and gap junction protein connexin-43 protein expression, increased numbers of SGCs surrounding individual sensory neurons and decreased SGC Kir 4.1 channel expression. Collectively, this supports the tenet that reductions in target-derived trophic support leading to, or as a consequence of, reduced neuronal p75NTR expression plays a critical role in switching the SGC to a reactive state.
Collapse
Affiliation(s)
- Joelle R Nadeau
- Department of Anatomy and Cell Biology, University of Saskatchewan/Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada
| | | | | |
Collapse
|
18
|
Ravasi M, Scuteri A, Pasini S, Bossi M, Menendez VR, Maggioni D, Tredici G. Undifferentiated MSCs are able to myelinate DRG neuron processes through p75. Exp Cell Res 2013; 319:2989-2999. [DOI: 10.1016/j.yexcr.2013.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022]
|
19
|
Kelamangalath L, Smith GM. Neurotrophin treatment to promote regeneration after traumatic CNS injury. ACTA ACUST UNITED AC 2013; 8:486-495. [PMID: 25419214 DOI: 10.1007/s11515-013-1269-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| |
Collapse
|
20
|
Li R, Liang T, Xu L, Zheng N, Zhang K, Duan X. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Res 2013; 1523:1-9. [PMID: 23747813 DOI: 10.1016/j.brainres.2013.05.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 05/28/2013] [Indexed: 01/19/2023]
Abstract
An increasing number of studies suggest that oxidative stress is associated with the Parkinsonian process. This study evaluated the potential neuroprotective role of puerarin (PR) on lesioned substantia nigra (SN) induced by 6-hydroxydopamine (6-OHDA). Data from a rotational test showed that PR treatment significantly decreased apomorphine-induced rotations. Both the dopamine (DA) content in the SN and the endogenous expression of brain-derived neurotrophic factor (BDNF) were also elevated by the treatment. Pathological examination showed that dopaminergic neuronal degeneration in the SN was attenuated by PR treatment. Meanwhile, the contents of γ-glutamylcysteine synthetase (γ-GCS), glutathione (GSH) and catalase (CAT) in SN tissue were gradually elevated. Additionally, cytochrome c oxidase (COX) mRNA expression in the SN was markedly up-regulated. At the same time, nuclear factor E2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keapl) levels were progressively increased by the PR treatment. Our findings indicated that puerarin effectively protects against 6-OHDA-mediated oxidative stress injury in SN neurons, in which the underlying mechanisms are involved in modulating BDNF expression and activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Rong Li
- Guilin Medical University, Guilin, Guangxi 541004, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Song C, Fang S, Lv G, Mei X. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord. Neural Regen Res 2013; 8:1383-9. [PMID: 25206433 PMCID: PMC4107770 DOI: 10.3969/j.issn.1673-5374.2013.15.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.
Collapse
Affiliation(s)
- Changwei Song
- Vertebral Column Ward, Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Shiqiang Fang
- Vertebral Column Ward, Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Gang Lv
- Vertebral Column Ward, Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Xifan Mei
- Vertebral Column Ward, Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
22
|
Gerhauser I, Hahn K, Baumgärtner W, Wewetzer K. Culturing adult canine sensory neurons to optimise neural repair. Vet Rec 2011; 170:102. [PMID: 22068333 DOI: 10.1136/vr.100255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- I Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559, Hannover, Germany
| | | | | | | |
Collapse
|
23
|
Differential effects of riluzole on subpopulations of adult rat dorsal root ganglion neurons in vitro. Neuroscience 2010; 166:942-51. [DOI: 10.1016/j.neuroscience.2009.12.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/29/2022]
|
24
|
Li F, Li L, Song XY, Zhong JH, Luo XG, Xian CJ, Zhou XF. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats - possible roles of brain-derived
neurotrophic factor, TrkB and p75 neurotrophin receptor. Eur J Neurosci 2009; 30:1280-96. [DOI: 10.1111/j.1460-9568.2009.06920.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Geremia NM, Pettersson LME, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VMK. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 2009; 223:128-42. [PMID: 19646438 DOI: 10.1016/j.expneurol.2009.07.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/11/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022]
Abstract
Identification of the molecule(s) that globally induce a robust regenerative state in sensory neurons following peripheral nerve injury remains elusive. A potential candidate is brain-derived neurotrophic factor (BDNF), the sole neurotrophin upregulated in sensory neurons after peripheral nerve injury. Here we tested the hypothesis that BDNF plays a critical role in the regenerative response of mature rat sensory neurons following peripheral nerve lesion. Neutralization of endogenous BDNF was performed by infusing BDNF antibodies intrathecally via a mini-osmotic pump for 3 days at the level of the fifth lumbar dorsal root ganglion, immediately following unilateral spinal nerve injury. This resulted in decreased expression of the injury/regeneration-associated genes growth-associated protein-43 and Talpha1 tubulin in the injured sensory neurons as compared to injury plus control IgG infused or injury alone animals. Similar results were observed following inhibition of BDNF expression by intrathecal delivery of small interfering RNAs (siRNA) targeting BDNF starting 3 days prior to injury. The reduced injury/regeneration-associated gene expression correlated with a significantly reduced intrinsic capacity of these neurons to extend neurites when assayed in vitro. In contrast, delayed infusion of BDNF antibody for 3 days beginning 1 week post-lesion had no discernible influence on the elevated expression of these regeneration-associated markers. These results support an important role for endogenous BDNF in induction of the cell body response in injured sensory neurons and their intrinsic ability to extend neurites, but BDNF does not appear to be necessary for maintaining the response once it is induced.
Collapse
Affiliation(s)
- Nicole M Geremia
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | | | | | |
Collapse
|
26
|
Song XY, Zhang FH, Zhou FH, Zhong J, Zhou XF. Deletion of p75NTR impairs regeneration of peripheral nerves in mice. Life Sci 2009; 84:61-8. [PMID: 19026664 DOI: 10.1016/j.lfs.2008.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 10/07/2008] [Accepted: 10/29/2008] [Indexed: 01/11/2023]
Abstract
AIMS After peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves. MAIN METHODS In p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry. KEY FINDINGS The results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice. SIGNIFICANCE Our data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.
Collapse
Affiliation(s)
- Xing-Yun Song
- Department of Physiology and Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide 5001, Australia
| | | | | | | | | |
Collapse
|
27
|
Zhao XH, Jin WL, Wu J, Mi S, Ju G. Inactivation of glycogen synthase kinase-3beta and up-regulation of LINGO-1 are involved in LINGO-1 antagonist regulated survival of cerebellar granular neurons. Cell Mol Neurobiol 2008; 28:727-35. [PMID: 18183482 PMCID: PMC11514979 DOI: 10.1007/s10571-007-9258-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/14/2007] [Indexed: 12/30/2022]
Abstract
LINGO-1 has been critically implicated in the central regulation of CNS axon regeneration and oligodendrocyte maturation. We have recently demonstrated that pretreatment with LINGO-1 antagonist (LINGO-1-Fc) inhibited low potassium-induced cerebellar granular neurons (CGNs) apoptosis. In the present study, we examined the neuroprotective mechanism of LINGO-1-Fc by Western blot and in situ GST pull-down assay. CGN cultures were preincubated in medium with LINGO-1-Fc or control protein at the concentration of 10 mug/ml for 2 h and then switched to low potassium medium in the presence of corresponding proteins. Cultures were harvested at indicated time intervals for successive analysis. Several apoptosis-associated signaling factors, GSK-3beta, ERK1/2, and Rho GTPases, were observed to be activated in response to potassium deprivation and the activation/dephosphorylation of GSK-3beta was suppressed by LINGO-1-Fc pretreatment compared with control group. Besides, the endogenous LINGO-1 expression level of CGN cultures was augmented by low potassium stimuli and restrained by LINGO-1 antagonist treatment. Although the protein level of p75(NTR) and Nogo-A were down-regulated in different patterns during apoptosis, neither of them was affected by LINGO-1-Fc application. Taken together, these results suggest a new mechanism of LINGO-1 antagonist regulated neuronal survival involving protein synthesis of LINGO-1 and inactivation of GSK-3 pathway.
Collapse
Affiliation(s)
- Xiang-Hui Zhao
- Institute of Neurosciences, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240 P.R. China
- Institute of Neurosciences, The Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
| | - Wei-Lin Jin
- Institute of Neurosciences, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240 P.R. China
| | - Jiang Wu
- School of Stomatology, The Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
| | - Sha Mi
- Department of Discovery Biology, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142 USA
| | - Gong Ju
- Institute of Neurosciences, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240 P.R. China
- Institute of Neurosciences, The Fourth Military Medical University, 17 Chang Le Xi Road, Xi’an, 710032 P.R. China
| |
Collapse
|
28
|
McCartney AM, Abejuela VL, Isaacson LG. Characterization of trkB immunoreactive cells in the intermediolateral cell column of the rat spinal cord. Neurosci Lett 2008; 440:103-8. [PMID: 18550280 PMCID: PMC2525737 DOI: 10.1016/j.neulet.2008.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to characterize the trkB receptor immunoreactive (-ir) cells in the intermediolateral cell column (IML) of the upper thoracic spinal cord. Small trkB-ir cells (area=56.1+/-4.4 microm(2)) observed in the IML showed characteristics of oligodendrocytes and were frequently observed in close apposition to choline acetyltransferase (ChAT)-ir cell bodies. Large trkB-ir cells (area=209.3+/-25.2 microm(2)) showed immunoreactivity for the neuronal marker NeuN, indicating their neuronal phenotype, as well as for ChAT, a marker for preganglionic neurons. TrkB and ChAT were co-localized in IML neurons primarily in cases that had received in vivo administration of nerve growth factor (NGF). These findings reveal two different cell types, oligodendrocytes and neurons, in the IML of the spinal cord that show trkB immunoreactivity, suggesting their regulation by brain derived neurotrophic factor (BDNF) and/or neurotrophin-4 (NT-4). In addition, there is evidence that NGF may play a role in the regulation of trkB-ir preganglionic neurons in the IML.
Collapse
Affiliation(s)
- Annemarie M. McCartney
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, 280 Pearson Hall, Oxford, OH 45056
| | - Vanessa L. Abejuela
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, 280 Pearson Hall, Oxford, OH 45056
| | - Lori G. Isaacson
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, 280 Pearson Hall, Oxford, OH 45056
| |
Collapse
|
29
|
Electroacupuncture Induced Spinal Plasticity is Linked to Multiple Gene Expressions in Dorsal Root Deafferented Rats. J Mol Neurosci 2008; 37:97-110. [PMID: 18581269 DOI: 10.1007/s12031-008-9095-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/28/2008] [Indexed: 12/21/2022]
|
30
|
Fan YJ, Wu LLY, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 2008; 27:2380-90. [DOI: 10.1111/j.1460-9568.2008.06215.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Song XY, Li F, Zhang FH, Zhong JH, Zhou XF. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 2008; 3:e1707. [PMID: 18320028 PMCID: PMC2246162 DOI: 10.1371/journal.pone.0001707] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/04/2008] [Indexed: 12/12/2022] Open
Abstract
Background The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. Methodology/Principal Findings The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. Conclusions/Significance Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.
Collapse
Affiliation(s)
- Xing-Yun Song
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Fang Li
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Feng-He Zhang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Jin-Hua Zhong
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Xin-Fu Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- *E-mail:
| |
Collapse
|
32
|
Lagares A, Li HY, Zhou XF, Avendaño C. Primary sensory neuron addition in the adult rat trigeminal ganglion: evidence for neural crest glio-neuronal precursor maturation. J Neurosci 2007; 27:7939-53. [PMID: 17652585 PMCID: PMC6672737 DOI: 10.1523/jneurosci.1203-07.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/25/2007] [Accepted: 06/08/2007] [Indexed: 12/21/2022] Open
Abstract
It is debated whether primary sensory neurons of the dorsal root ganglia increase the number in adult animals and, if so, whether the increase is attributable to postnatal neurogenesis or maturation of dormant, postmitotic precursors. Similar studies are lacking in the trigeminal ganglion (TG). Here we demonstrate by stereological methods that the number of neurons in the TG of adult male rats nearly doubles between the third and eighth months of age. The increase is mainly attributable to the addition of small, B-type neurons, with a smaller contribution of large, A-neurons. We looked for possible proliferative or maturation mechanisms that could explain this dramatic postnatal expansion in neuron number, using bromodeoxyuridine (BrdU) labeling, immunocytochemistry for neural precursor cell antigens, retrograde tracing identification of peripherally projecting neurons, and in vitro isolation of precursor cells from adult TG explant cultures. Cell proliferation identified months after an extended BrdU administration was sparse and essentially corresponded to glial cells. No BrdU-labeled cell took up the peripherally injected tracer, and only a negligible number coexpressed BrdU and the pan-neuronal tracer neuron-specific enolase. In contrast, a population of cells not recognizable as mature neurons in the TG and neighboring nerve expressed neuronal precursor antigens, and neural crest glioneuronal precursor cells were successfully isolated from adult TG explants. Our data suggest that a protracted maturation process persists in the TG that can be responsible for the neuronal addition found in the adult rat.
Collapse
Affiliation(s)
- Alfonso Lagares
- Department of Anatomy, Histology, and Neuroscience, Autonoma University of Madrid, Medical School, 28029 Madrid, Spain
- Department of Neurosurgery, Hospital 12 de Octubre, 28041 Madrid, Spain, and
| | - Hong-Yun Li
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide 5001, South Australia, Australia
| | - Xin-Fu Zhou
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide 5001, South Australia, Australia
| | - Carlos Avendaño
- Department of Anatomy, Histology, and Neuroscience, Autonoma University of Madrid, Medical School, 28029 Madrid, Spain
| |
Collapse
|
33
|
Taylor AR, Gifondorwa DJ, Newbern JM, Robinson MB, Strupe JL, Prevette D, Oppenheim RW, Milligan CE. Astrocyte and muscle-derived secreted factors differentially regulate motoneuron survival. J Neurosci 2007; 27:634-44. [PMID: 17234595 PMCID: PMC6672790 DOI: 10.1523/jneurosci.4947-06.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/14/2006] [Accepted: 12/11/2006] [Indexed: 01/03/2023] Open
Abstract
During development, motoneurons (MNs) undergo a highly stereotyped, temporally and spatially defined period of programmed cell death (PCD), the result of which is the loss of 40-50% of the original neuronal population. Those MNs that survive are thought to reflect the successful acquisition of limiting amounts of trophic factors from the target. In contrast, maturation of MNs limits the need for target-derived trophic factors, because axotomy of these neurons in adulthood results in minimal neuronal loss. It is unclear whether MNs lose their need for trophic factors altogether or whether, instead, they come to rely on other cell types for nourishment. Astrocytes are known to supply trophic factors to a variety of neuronal populations and thus may nourish MNs in the absence of target-derived factors. We investigated the survival-promoting activities of muscle- and astrocyte-derived secreted factors and found that astrocyte-conditioned media (ACM) was able to save substantially more motoneurons in vitro than muscle-conditioned media (MCM). Our results indicate that both ACM and MCM are significant sources of MN trophic support in vitro and in ovo, but only ACM can rescue MNs after unilateral limb bud removal. Furthermore, we provide evidence suggesting that MCM facilitates the death of a subpopulation of MNs in a p75(NTR) - and caspase-dependent manner; however, maturation in ACM results in MN trophic independence and reduced vulnerability to this negative, pro-apoptotic influence from the target.
Collapse
Affiliation(s)
- Anna R Taylor
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|