1
|
Wu Q, Yue J, Zhang H, Kuca K, Wu W. Anorexic responses to trichothecene deoxynivalenol and its congeners correspond to secretion of tumor necrosis factor-α and interleukin-1β. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103371. [PMID: 32171072 DOI: 10.1016/j.etap.2020.103371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Type B trichothecene mycotoxins comprise deoxynivalenol ("Vomitoxin", DON) and four structually related congeners: 15-acetyl- and 3-acetyl-deoxynivalenol (15-ADON and 3-ADON), nivalenol (NIV), 4-acetyl-nivalenol (fusarenon X, FX). These foodborne mycotoxins has been linked to food poisoning leading to anorexic response in human and several animal species. However, the pathophysiological basis for anorexic effect is relatively unclear. The goal of this research was to compare anorexic effect to type B trichothecenes and relate these effects to two common cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) following oral and IP exposure. Both cytokines were increased within 1-2 h in plasma and returned to basal concentrations at 6 h following exposure to DON and ADONs. FX evoked both cytokines with initial time and duration at 1-2 h and > 6 h, respectively. Elevation of TNF-α and IL-1β induced by orally exposure to NIV did not occur until 2 h and recovered to basal concentrations at 6 h. Both cytokines were elevated at 1 h and lasted more than 6 h following IP exposure to NIV. Type B trichothecenes stimulated plasma secretion of both cytokines that were consistent with reduction of food intake. In conclusion, our findings demonstrate that TNF-α and IL-1β act critical roles in type B trichothecenes-induced anorexic response.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Jianming Yue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
2
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Mol Neurobiol 2019; 56:8237-8254. [DOI: 10.1007/s12035-019-01657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
|
3
|
Xu T, Dong Z, Wang X, Qi S, Li X, Cheng R, Liu X, Zhang Y, Gao M. IL‐1β induces increased tight junction permeability in bovine mammary epithelial cells via the IL‐1β‐ERK1/2‐MLCK axis upon blood‐milk barrier damage. J Cell Biochem 2018; 119:9028-9041. [DOI: 10.1002/jcb.27160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tong Xu
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
| | - Zhijian Dong
- CT/MR Department Yangling Demonstration Zone Hospital Yangling China
| | - Xixi Wang
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
| | - Shaopei Qi
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
| | - Xueru Li
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
| | - Rui Cheng
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
| | - Xu Liu
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
- Key Laboratory of Animal Biotechnology Ministry of Agriculture, Northwest A&F University Yangling China
| | - Yong Zhang
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
- Key Laboratory of Animal Biotechnology Ministry of Agriculture, Northwest A&F University Yangling China
| | - Ming‐Qing Gao
- Department of Veterinary Medicine College of Veterinary Medicine, Northwest A&F University Yangling China
- Key Laboratory of Animal Biotechnology Ministry of Agriculture, Northwest A&F University Yangling China
| |
Collapse
|
4
|
Donnerer J, Liebmann I. ERK1/2 Phosphorylation in the Rat Supraoptic Nucleus, Dorsal Raphe Nucleus, and Locus Coeruleus Neurons Following Noxious Stimulation to the Hind Paw. Pharmacology 2015; 97:57-62. [DOI: 10.1159/000442211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
|
5
|
Dine J, Ducourneau VRR, Fénelon VS, Fossat P, Amadio A, Eder M, Israel JM, Oliet SHR, Voisin DL. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms. J Physiol 2014; 592:1637-54. [PMID: 24492838 DOI: 10.1113/jphysiol.2013.261008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of vasopressin release.
Collapse
Affiliation(s)
- Julien Dine
- Inserm, U862, Neurocentre Magendie, Université de Bordeaux, 146 Rue Léo-Saignat, F-33077 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Identifying links in the chain: the dynamic coupling of catecholamines, peptide synthesis, and peptide release in hypothalamic neuroendocrine neurons. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:421-44. [PMID: 24054156 DOI: 10.1016/b978-0-12-411512-5.00020-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Compared to neurons that communicate using synapses, some neuroendocrine neurons release relatively large quantities of peptide into the vasculature to control neuroendocrine function. Maintaining adequate amounts of peptide for release through controlled biosynthesis is therefore critical for their function. But how neuroendocrine-or in fact, any neuropeptide-neurons link appropriate levels of peptide biosynthesis with the action potentials that drive peptide release is unknown. Here, we review possible mechanisms in paraventricular hypothalamic CRH neuroendocrine neurons to coordinate these processes in response to catecholaminergic inputs. We show that CRH synthesis and release mechanisms are not invariably linked as CRH neurons are activated. Instead, coupling mechanisms exist in the premotor network that provides their synaptic inputs and in their intracellular signal transduction mechanisms, where transmitter-regulated phosphorylation of p44/42 mitogen-activated protein kinases (ERK1/2) may play a prominent role. These versatile and dynamic coupling mechanisms provide a way to link peptide biosynthesis and release.
Collapse
|
8
|
Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 2012; 33:315-27. [PMID: 23000204 PMCID: PMC3484236 DOI: 10.1016/j.yfrne.2012.09.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/28/2012] [Accepted: 09/12/2012] [Indexed: 01/18/2023]
Abstract
Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise.
Collapse
|
9
|
MAP kinases couple hindbrain-derived catecholamine signals to hypothalamic adrenocortical control mechanisms during glycemia-related challenges. J Neurosci 2012; 31:18479-91. [PMID: 22171049 DOI: 10.1523/jneurosci.4785-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Physiological responses to hypoglycemia, hyperinsulinemia, and hyperglycemia include a critical adrenocortical component that is initiated by hypothalamic control of the anterior pituitary and adrenal cortex. These adrenocortical responses ensure appropriate long-term glucocorticoid-mediated modifications to metabolism. Despite the importance of these mechanisms to disease processes, how hypothalamic afferent pathways engage the intracellular mechanisms that initiate adrenocortical responses to glycemia-related challenges are unknown. This study explores these mechanisms using network- and cellular-level interventions in in vivo and ex vivo rat preparations. Results show that a hindbrain-originating catecholamine afferent system selectively engages a MAP kinase pathway in rat paraventricular hypothalamic CRH (corticotropin-releasing hormone) neuroendocrine neurons shortly after vascular insulin and 2-deoxyglucose challenges. In turn, this MAP kinase pathway can control both neuroendocrine neuronal firing rate and the state of CREB phosphorylation in a reduced ex vivo paraventricular hypothalamic preparation, making this signaling pathway an ideal candidate for coordinating CRH synthesis and release. These results establish the first clear structural and functional relationships linking neurons in known nutrient-sensing regions with intracellular mechanisms in hypothalamic CRH neuroendocrine neurons that initiate the adrenocortical response to various glycemia-related challenges.
Collapse
|
10
|
Murgas P, Godoy B, von Bernhardi R. Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res 2012; 22:69-78. [PMID: 22237943 DOI: 10.1007/s12640-011-9306-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by the accumulation of β amyloid (Aβ) aggregates. Aβ induces the inflammatory activation of glia, inducing secretion of Interleukin 1β (IL1β), nitric oxide (NO) and superoxide radicals. The specific receptor responsible for the induction of inflammatory activation by Aβ, is still an open question. We propose that scavenger receptors (SR) participate in the activation of glia by Aβ. We assessed production of NO, synthesis of IL1β and activation of ERK, JNK and NF-κB signaling pathways by Western blot, in primary rat glial cultures exposed to SR ligands (fucoidan and Poly I), LPS + IFNγ (LI), and Aβ. Poly I but not fucoidan nor fibrillar Aβ increased threefold NO production by astrocytes in a time-dependent manner. Fucoidan and Poly I increased 5.5- and 3.5-fold NO production by microglia, and co-stimulation with Aβ increased an additional 60% NO induced by SR ligands. Potentiation by Aβ was observed later for astrocytes than for microglia. In astrocytes, co-stimulation with Aβ potentiated ERK and JNK activation in response to Fucoidan and Poly I, whereas it reduced induction of JNK activation by LI and left unaffected NF-κB activation induced by LI. Levels of pro-IL1β in astrocytes increased with Aβ, SR ligands and LI, and were potentiated by co-stimulation with Aβ. Our results suggest that SRs play a role on inflammatory activation, inducing production of NO and IL1β, and show potentiation by Aβ. Potentiation of the inflammatory response of Aβ could be meaningful for the activation of glia observed in AD.
Collapse
Affiliation(s)
- P Murgas
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | |
Collapse
|
11
|
Al-Sadi R, Ye D, Said HM, Ma TY. Cellular and molecular mechanism of interleukin-1β modulation of Caco-2 intestinal epithelial tight junction barrier. J Cell Mol Med 2011; 15:970-82. [PMID: 20406328 PMCID: PMC3922681 DOI: 10.1111/j.1582-4934.2010.01065.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1β (IL-1β) is a prototypical multifunctional cytokine that plays an important role in intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. Previous studies have shown that IL-1β causes an increase in intestinal epithelial tight junction (TJ) permeability both in in vivo animal and in vitro cell culture model systems. The IL-1β-induced increase in intestinal epithelial TJ permeability has been postulated to be an important pathogenic mechanism contributing to intestinal inflammation. However, the signalling pathways and the molecular processes that mediate the IL-1β modulation of intestinal epithelial TJ barrier remain unclear. Here, we show that the IL-1β-induced increase in Caco-2 monolayer TJ permeability was mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) signalling pathway and that inhibition of ERK1/2 activity inhibits the IL-1β-induced increase in Caco-2 TJ permeability. The activation of ERK1/2 pathway caused a downstream activation of nuclear transcription factor Elk-1. The activated Elk-1 translocated to the nucleus and binds to the cis-binding motif on myosin light chain kinase (MLCK) promoter region, triggering MLCK gene activation, MLCK mRNA transcription and MLCK protein synthesis and MLCK catalysed opening of the intestinal epithelial TJ barrier. These studies provide novel insight into the cellular and molecular processes that mediate the IL-1β-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The amygdala has received considerable attention because of its established role in specific behaviors and disorders such as anxiety, depression, and autism. Studies have revealed that the amygdala is a complex and dynamic brain region that is highly connected with other areas of the brain. Previous works have focused on neurons, demonstrating that the amygdala in rodents is highly plastic and sexually dimorphic. However, our more recent work explores sex differences in nonneuronal cells, joining a rich literature concerning glia in the amygdala. Prior investigation of glia in the amygdala can generally be divided into disease-related and hormone-related categories, with both areas of research producing interesting findings concerning glia in this important brain region. Despite a wide range of research topics, the collected findings make it clear that glia in the amygdala are sensitive and plastic cells that respond and develop in a highly region specific manner.
Collapse
|
13
|
Brain cyclooxygenase-2 mediates interleukin-1-induced cellular activation in preoptic and arcuate hypothalamus, but not sickness symptoms. Neurobiol Dis 2010; 39:393-401. [PMID: 20470889 DOI: 10.1016/j.nbd.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 11/22/2022] Open
Abstract
Interleukin-1beta acts on the CNS to induce fever, neuroendocrine activation, and behavioral changes, but cannot passively cross the blood-brain barrier. According to a widely accepted hypothesis interleukin-1beta induces the synthesis of cyclooxygenase-2 at the blood-brain interface, which produces prostaglandins that diffuse into brain parenchyma to activate neurons. We studied the role of brain cyclooxygenase-2 in interleukin-1beta-induced fever, neuroendocrine and behavioral responses and cellular activation by intracerebroventricular infusion of the cyclooxygenase-2 inhibitor NS-398. Central cyclooxygenase-2 inhibition attenuated extracellular signal-regulated kinase-1/2 phosphorylation and c-Fos induction in the median preoptic area and arcuate hypothalamus, but not in other hypothalamic or brainstem structures, after intraperitoneal interleukin-1beta administration. However, the same treatment did not affect interleukin-1beta-induced fever, rises in corticosterone or anorexia. These findings moderate the prevailing view and indicate that brain cyclooxygenase-2-dependent prostaglandin production is important to activation of the median preoptic and arcuate hypothalamus, but not necessarily involved in fever, rises in plasma corticosterone and anorexia after peripheral interleukin-1beta administration.
Collapse
|
14
|
Mingam R, Moranis A, Bluthé RM, De Smedt-Peyrusse V, Kelley KW, Guesnet P, Lavialle M, Dantzer R, Layé S. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 2009; 28:1877-86. [PMID: 18973601 DOI: 10.1111/j.1460-9568.2008.06470.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cell membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 (also known as omega3) PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of the IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice than n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6-knockout (IL-6-KO) mice and failed to induce STAT3 activation in the brain of IL-6-KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection.
Collapse
Affiliation(s)
- Rozenn Mingam
- Psychoneuroimmunologie, Nutrition et Genetique, PsyNuGen, INRA 1286, CNRS 5226, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Verburg‐Van Kemenade BL, Stolte EH, Metz JR, Chadzinska M. Chapter 7 Neuroendocrine–Immune Interactions in Teleost Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28007-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2008; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
17
|
Lipopolysaccharide Up-regulates IL-6Rα Expression in Cultured Leptomeningeal Cells via Activation of ERK1/2 Pathway. Neurochem Res 2008; 33:1901-10. [DOI: 10.1007/s11064-008-9667-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/11/2008] [Indexed: 01/23/2023]
|
18
|
Khan AM, Ponzio TA, Sanchez-Watts G, Stanley BG, Hatton GI, Watts AG. Catecholaminergic control of mitogen-activated protein kinase signaling in paraventricular neuroendocrine neurons in vivo and in vitro: a proposed role during glycemic challenges. J Neurosci 2007; 27:7344-60. [PMID: 17611287 PMCID: PMC6794600 DOI: 10.1523/jneurosci.0873-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022] Open
Abstract
Paraventricular hypothalamic (PVH) corticotropin-releasing hormone (CRH) neuroendocrine neurons mount neurosecretory and transcriptional responses to glycemic challenges [intravenous 2-deoxyglucose (2-DG) or insulin]. Although these responses require signals from intact afferents originating from hindbrain CA (catecholaminergic) neurons, the identity of these signals and the mechanisms by which they are transduced by PVH neurons during glycemic challenge remain unclear. Here, we tested whether the prototypical catecholamine, norepinephrine (NE), can reproduce PVH neuroendocrine responses to glycemic challenge. Because these responses include phosphorylation of p44/42 mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinases 1/2 (ERK1/2)], we also determined whether NE activates ERK1/2 in PVH neurons and, if so, by what mechanism. We show that systemic insulin and 2-DG, and PVH-targeted NE microinjections, rapidly elevated PVH phospho-ERK1/2 levels. NE increased Crh and c-fos expression, together with circulating ACTH/corticosterone. However, because injections also increased c-Fos mRNA in other brain regions, we used hypothalamic slices maintained in vitro to clarify whether NE activates PVH neurons without contribution of inputs from distal regions. In slices, bath-applied NE triggered robust phospho-ERK1/2 immunoreactivity in PVH (including CRH) neurons, which attenuated markedly in the presence of the alpha1 adrenoceptor antagonist, prazosin, or the MAP kinase kinase (MEK) inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene). Therefore, at a systems level, local PVH delivery of NE is sufficient to account for hindbrain activation of CRH neuroendocrine neurons during glycemic challenge. At a cellular level, these data provide the first demonstration that MAP kinase signaling cascades (MEK-->ERK) are intracellular transducers of noradrenergic signals in CRH neurons, and implicate this transduction mechanism as an important component of central neuroendocrine responses during glycemic challenge.
Collapse
Affiliation(s)
- Arshad M Khan
- Neuroscience Research Institute and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Correa SG, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune–neuroendocrine network: What did we learn from infection and autoimmunity? Cytokine Growth Factor Rev 2007; 18:125-34. [PMID: 17347025 DOI: 10.1016/j.cytogfr.2007.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.
Collapse
Affiliation(s)
- Silvia G Correa
- Immunology, Department of Biochemical Chemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Haya de la Torre y Medina Allende, 5000 Cordoba, Argentina.
| | | | | | | | | | | |
Collapse
|
20
|
Yasuda K, Churchill L, Yasuda T, Blindheim K, Falter M, Krueger JM. Unilateral cortical application of interleukin-1beta (IL1beta) induces asymmetry in fos, IL1beta and nerve growth factor immunoreactivity: implications for sleep regulation. Brain Res 2006; 1131:44-59. [PMID: 17184753 DOI: 10.1016/j.brainres.2006.11.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 10/27/2006] [Accepted: 11/05/2006] [Indexed: 11/23/2022]
Abstract
Unilateral injection of interleukin-1 beta (IL1beta) into the somatosensory cortex enhances EEG slow wave activity ipsilaterally during non-rapid eye movement sleep [Yasuda, T., Yoshida, H., Garcia-Garcia, F., Kay, D., Krueger, J.M., 2005. Interleukin-1beta has a role in cerebral cortical state-dependent electroencephalographic slow-wave activity. Sleep 28, 177-184]. We show that a similar unilateral microinjection of IL1beta (10 ng) into layer VI or onto the surface of the primary somatosensory cortex induced increases in the neuronal activity marker, Fos, relative to the contralateral side that received saline or heat-inactivated IL1beta. When IL1beta was microinjected into layer VI, increases in Fos-immunoreactive nuclei were evident in layers II, III and VI of the somatosensory cortex and connected cortical regions, such as the endopiriform, secondary somatosensory, piriform and prefrontal cortex. Asymmetrical increases in Fos were also observed in subcortical regions, such as the reticular thalamus, which receives a main cortical projection, and hypothalamic regions implicated in sleep regulation, such as the ventrolateral preoptic area and dorsal median preoptic nucleus. Fos activation was not observed in many other brain regions. In the reticular thalamus and somatosensory cortex, the number of IL1beta-immunoreactive glial cells increased. Further, the number of NGF-immunoreactive cells in the primary somatosensory cortex and magnocellular preoptic nucleus increased on the IL1beta-injected side. These results are consistent with the hypothesis that sleep is initiated within the cortex after the local activation of specific cytokines and that whole organism sleep is coordinated via cortical connections with the subcortical sites.
Collapse
Affiliation(s)
- Kyo Yasuda
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Center for Integrated Biotechnology, College of Veterinary Medicine, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | | | |
Collapse
|
21
|
Summy-Long JY, Hu S, Pruss A, Chen X, Phillips TM. Response of interleukin-1beta in the magnocellular system to salt-loading. J Neuroendocrinol 2006; 18:926-37. [PMID: 17076768 DOI: 10.1111/j.1365-2826.2006.01490.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drinking 2% NaCl decreases interleukin (IL)-1beta in the neural lobe and enhances IL-1 Type 1 receptor expression in magnocellular neurones and pituicytes. To quantify cytokine depletion from the neural lobe during progressive salt loading and determine whether the changes are reversible and correspond with stores of vasopressin (VP) or oxytocin (OT), rats were given water on day 0 and then 2% NaCl to drink for 2, 5, 8 or 5 days followed by 5 days of water (rehydration). Control rats drinking only water were pair-fed amounts eaten by 5-day salt-loaded animals. Animals were decapitated on day 8, the neural lobe frozen and plasma hormones analysed by radioimmunoassay (OT, VP) or enzyme-linked immunosorbent assay (IL-1beta). IL-1beta, VP and OT in homogenates of the neural lobe were quantified by immunocapillary electrophoresis with laser-induced fluorescence detection. Differences were determined by ANOVA, Tukey's t-test, Dunnett's procedure, Fisher's least significant difference and linear regression analysis. In response to salt-loading, rats lost body weight similar to pair-fed controls, drank progressively more 2% NaCl and excreted greater urine volumes. Plasma VP increased at days 2 and 8 of salt-loading, whereas osmolality, OT and cytokine were enhanced after 8 days with IL-1beta remaining elevated after rehydration. In the neural lobe, all three peptides decreased progressively with increasing duration of salt-loading (IL-1beta, r2 = 0.98; OT, r2 = 0.94; VP, r2 = 0.93), beginning on day 2 (IL-1beta; VP) or 5 (OT), with only VP replenished by rehydration. IL-1beta declined more closely (P < 0.0001; ANOVA interaction analysis) with OT (r2 = 0.96) than VP (r2 = 0.86), indicative of corelease from the neural lobe during chronic dehydration. Local effects of IL-1beta on magnocellular terminals, pituicytes and microglia in the neural lobe with activation of forebrain osmoregulatory structures by circulating cytokine may sustain neurosecretion of OT and VP during prolonged salt-loading.
Collapse
Affiliation(s)
- J Y Summy-Long
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
22
|
Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou SB, Wang GJ, Ravenscroft P, Georges F, Crossman AR, Bezard E. Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 2006; 26:8653-61. [PMID: 16928853 PMCID: PMC6674386 DOI: 10.1523/jneurosci.2582-06.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The classic view of anatomofunctional organization of the basal ganglia is that striatopallidal neurons of the "indirect" pathway express D2 dopamine receptors and corelease enkephalin with GABA, whereas striatopallidal neurons of the "direct" pathway bear D1 dopamine receptors and corelease dynorphin and substance P with GABA. Although many studies have investigated the pathophysiology of the basal ganglia after dopamine denervation and subsequent chronic levodopa (L-dopa) treatment, none has ever considered the possibility of plastic changes leading to profound reorganization and/or biochemical phenotype modifications of medium spiny neurons. Therefore, we studied the phenotype of striatal neurons in four groups of nonhuman primates, including the following: normal, parkinsonian, parkinsonian chronically treated with L-dopa without exhibiting dyskinesia, and parkinsonian chronically treated with L-dopa exhibiting overt dyskinesia. To identify striatal cells projecting to external (indirect) or internal (direct) segments of the globus pallidus, the retrograde tracer cholera toxin subunit B (CTb) was injected stereotaxically into the terminal areas. Using immunohistochemistry techniques, brain sections were double labeled for CTb and dopamine receptors, opioid peptides, or the substance P receptor (NK1). We also used HPLC-RIA to assess opioid levels throughout structures of the basal ganglia. Our results suggest that medium spiny neurons retain their phenotype because no variations were observed in any experimental condition. Therefore, it appears unlikely that dyskinesia is related to a phenotype modification of the striatal neurons. However, this study supports the concept of axonal collateralization of striatofugal cells that project to both globus pallidus pars externa and globus pallidus pars interna. Striatofugal pathways are not as segregated in the primate as previously considered.
Collapse
Affiliation(s)
- Agnes Nadjar
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| | - Jonathan M. Brotchie
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada M5T 2S8, and
| | - Celine Guigoni
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| | - Qin Li
- Laboratory Animal Research Center, China Agricultural University, Beijing 100101, China
| | - Shao-Bo Zhou
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Gui-Jie Wang
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Paula Ravenscroft
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - François Georges
- Institut National de la Santé et de la Recherche Médicale AVENIR 01, Université Victor Segalen-Bordeaux 2, 33076 Bordeaux, France
| | - Alan R. Crossman
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Erwan Bezard
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| |
Collapse
|