1
|
Corona R, Jayakumar P, Carbajo Mata MA, Del Valle-Díaz MF, Luna-García LA, Morales T. Sexually dimorphic effects of prolactin treatment on the onset of puberty and olfactory function in mice. Gen Comp Endocrinol 2021; 301:113652. [PMID: 33122037 DOI: 10.1016/j.ygcen.2020.113652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
The onset of puberty is associated with the psychophysiological maturation of the adolescent to an adult capable of reproduction when olfactory signals play an important role. This period begins with the secretion of the gonadotropin-releasing hormone (GnRH) from GnRH neurons within the hypothalamus. This is regulated by kisspeptin neurons that express high levels of transmembrane prolactin receptors (PRLR) that bind to and are activated by prolactin (PRL). The elevated levels of serum PRL found during lactation, or caused by chronic PRL infusion, decreases the secretion of gonadotropins and kisspeptin and compromised the estrous cyclicity and the ovulation. In the present work, we aimed to evaluate the effects of either increased or decreased PRL circulating levels within the peripubertal murine brain by administration of PRL or treatment with cabergoline (Cab) respectively. We showed that either treatment delayed the onset of puberty in females, but not in males. This was associated with the augmentation of the PRL receptor (Prlr) mRNA expression in the arcuate nucleus and decreased Kiss1 expression in the anteroventral periventricular zone. Then, during adulthood, we assessed the activation of the mitral and granular cells of the main (MOB) and accessory olfactory bulb (AOB) by cFos immunoreactivity (ir) after the exposure to soiled bedding of the opposite sex. In the MOB, the PRL treatment promoted an increased cFos-ir of the mitral cells of males and females. In the granular cells of male of either treatment an augmented activation was observed. In the AOB, an impaired cFos-ir was observed in PRL and Cab treated females after exposure to male soiled bedding. However, in males, only Cab impaired its activation. No effects were observed in the AOB-mitral cells. In conclusion, our results demonstrate that PRL contributes to pubertal development and maturation of the MOB-AOB during the murine juvenile period in a sex-dependent way.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico.
| | - Preethi Jayakumar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Sonker P, Singaravel M. Gender difference in circadian clock responses for social interaction with conspecific of the opposite-sex. Chronobiol Int 2021; 38:212-223. [PMID: 33435752 DOI: 10.1080/07420528.2020.1844724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Social cues are potent non-photic modulators of the circadian clock and play a vital role in resetting the endogenous clock. Several lines of evidence strongly suggest a functional link between olfactory cues and the circadian clock. However, there is a paucity of information on the effects of social interaction with the conspecifics of the opposite sex on the circadian clock. Hence, we studied the effect of social cues of sexually mature naïve opposite sex of the conspecific on the phase resetting of the circadian clock at various circadian times (CT) and molecular changes at the suprachiasmatic nuclei (SCN) and odor responsive structure in the brain of mice. Sexually naïve adult male and female free-running mice (designated as 'runners') were exposed to the conspecifics of the opposite-sex ('strangers') for 30 min at CT3, CT9, CT15, and CT21. Both male and female 'runners' exhibited a phase advance at CT3, delay at CT21, and no response at CT9. However, at CT15 only the male 'runners' exhibited phase advance but not the female 'runners'. Control mice did not elicit any significant phase shifts at all CTs. Social interactions with conspecifics of the opposite-sex up-regulated c-fos/C-FOS, omp in the olfactory bulb, per-1/PER-1 in the SCN, C-FOS, and PER-1 in the piriform cortex of both male and female runners at CT3. However, at CT15 up-regulation of variables only occurred in male but not in female runners. Together, the present investigation has shown the gender difference in circadian clock responses for social cues with conspecific of the opposite-sex in mice.
Collapse
Affiliation(s)
- Pratishtha Sonker
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| |
Collapse
|
3
|
Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Front Neuroendocrinol 2018; 51:46-67. [PMID: 29288076 DOI: 10.1016/j.yfrne.2017.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023]
Abstract
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established. Both the androgen and the estrogen receptor α are important in male as well as in female rodents. Also in primates, gonadal hormones are necessary for the responsiveness to sexual attractants. In males, the androgen receptor is sufficient for sustaining responsiveness. In female non-human primates, estrogens are needed, whereas androgens seem to contribute to responsiveness in women.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
4
|
Harmeier A, Meyer CA, Staempfli A, Casagrande F, Petrinovic MM, Zhang YP, Künnecke B, Iglesias A, Höner OP, Hoener MC. How Female Mice Attract Males: A Urinary Volatile Amine Activates a Trace Amine-Associated Receptor That Induces Male Sexual Interest. Front Pharmacol 2018; 9:924. [PMID: 30158871 PMCID: PMC6104183 DOI: 10.3389/fphar.2018.00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/26/2018] [Indexed: 11/27/2022] Open
Abstract
Individuals of many species rely on odors to communicate, find breeding partners, locate resources and sense dangers. In vertebrates, odorants are detected by chemosensory receptors of the olfactory system. One class of these receptors, the trace amine-associated receptors (TAARs), was recently suggested to mediate male sexual interest and mate choice. Here we tested this hypothesis in mice by generating a cluster deletion mouse (Taar2-9−/−) lacking all TAARs expressed in the olfactory epithelium, and evaluating transduction pathways from odorants to TAARs, neural activity and behaviors reflecting sexual interest. We found that a urinary volatile amine, isobutylamine (IBA), was a potent ligand for TAAR3 (but not TAAR1, 4, 5, and 6). When males were exposed to IBA, brain regions associated with sexual behaviors were less active in Taar2-9−/− than in wild type males. Accordingly, Taar2-9−/− males spent less time sniffing both the urine of females and pure IBA than wild type males. This is the first demonstration of a comprehensive transduction pathway linking odorants to TAARs and male sexual interest. Interestingly, the concentration of IBA in female urine varied across the estrus cycle with a peak during estrus. This variation in IBA concentration may represent a simple olfactory cue for males to recognize receptive females. Our results are consistent with the hypothesis that IBA and TAARs play an important role in the recognition of breeding partners and mate choice.
Collapse
Affiliation(s)
- Anja Harmeier
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Claas A Meyer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas Staempfli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabio Casagrande
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marija M Petrinovic
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yan-Ping Zhang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Basil Künnecke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Oliver P Höner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marius C Hoener
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Neurosymptomatic Domains, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
5
|
Muroi Y, Nishimura M, Ishii T. The Accessory Olfactory System Facilitates the Recovery of the Attraction to Familiar Volatile Female Odors in Male Mice. Chem Senses 2017; 42:737-745. [PMID: 28968801 DOI: 10.1093/chemse/bjx045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified. In this study, we examined how olfactory systems are involved in the recovery of male attraction to female odors following habituation in mice. Presentation with volatile female odors for 5 min induced habituation in males. To evaluate male attraction to familiar volatile female odors, we measured the duration for investigating volatile female odors from the same female mouse, which was presented twice for 5 min with 1-, 3-, or 5-min interval. Intranasal irrigation with ZnSO4 solution almost completely suppressed investigating behavior, indicating that the main olfactory system is indispensable for inducing the attraction to volatile female odors. In contrast, removal of the vomeronasal organ, bilateral lesions of the accessory olfactory bulb (AOB), or pharmacological blockage of neurotransmission in the AOB did not affect the investigation time at the first odor presentation. However, each one of the treatments decreased the investigation time in the second presentation, compared to that in the first presentation, at longer intervals than control treatment, indicating that the disturbance of neurotransmission in the accessory olfactory system delayed the recovery of the attraction attenuated by the first presentation. These results suggest that the accessory olfactory system facilitates the recovery of the attraction to familiar volatile female odors in male mice.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masakazu Nishimura
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
6
|
Nowack C, Peram PS, Wenzel S, Rakotoarison A, Glaw F, Poth D, Schulz S, Vences M. Volatile compound secretion coincides with modifications of the olfactory organ in mantellid frogs. J Zool (1987) 2017. [DOI: 10.1111/jzo.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- C. Nowack
- Department of Cell Biology; University of Kassel; Kassel Germany
| | - P. S. Peram
- Institute of Organic Chemistry; Technical University of Braunschweig; Braunschweig Germany
| | - S. Wenzel
- Department of Cell Biology; University of Kassel; Kassel Germany
| | - A. Rakotoarison
- Zoological Institute; Technical University of Braunschweig; Braunschweig Germany
| | - F. Glaw
- Zoologische Staatssammlung München (ZSM-SNSB); München Germany
| | - D. Poth
- Institute of Organic Chemistry; Technical University of Braunschweig; Braunschweig Germany
| | - S. Schulz
- Institute of Organic Chemistry; Technical University of Braunschweig; Braunschweig Germany
| | - M. Vences
- Zoological Institute; Technical University of Braunschweig; Braunschweig Germany
| |
Collapse
|
7
|
Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis. Sci Rep 2016; 6:36063. [PMID: 27782186 PMCID: PMC5080553 DOI: 10.1038/srep36063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/11/2016] [Indexed: 11/23/2022] Open
Abstract
Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits.
Collapse
|
8
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Starnberger I, Preininger D, Hödl W. From uni- to multimodality: towards an integrative view on anuran communication. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:777-87. [PMID: 24973893 PMCID: PMC4138437 DOI: 10.1007/s00359-014-0923-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
Abstract
Undeniably, acoustic signals are the predominant mode of communication in frogs and toads. Acoustically active species are found throughout the vast diversity of anuran families. However, additional or alternative signal modalities have gained increasing attention. In several anurans, seismic, visual and chemical communications have convergently evolved due to ecological constraints such as noisy environments. The production of a visual cue, like the inevitably moving vocal sac of acoustically advertising males, is emphasized by conspicuously coloured throats. Limb movements accompanied by dynamic displays of bright colours are additional examples of striking visual signals independent of vocalizations. In some multimodal anuran communication systems, the acoustic component acts as an alert signal, which alters the receiver attention to the following visual display. Recent findings of colourful glands on vocal sacs, producing volatile species-specific scent bouquets suggest the possibility of integration of acoustic, visual and chemical cues in species recognition and mate choice. The combination of signal components facilitates a broadened display repertoire in challenging environmental conditions. Thus, the complexity of the communication systems of frogs and toads may have been underestimated.
Collapse
Affiliation(s)
- Iris Starnberger
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria,
| | | | | |
Collapse
|
10
|
Daev EV, Bezruchko YA, Dukelskaya AV. Antimutagenic effect of chemosignals from isolated female house mouse on male germ cells (Mus musculus L.). RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414060027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Carluccio A, Contri A, Amendola S, De Angelis E, De Amicis I, Mazzatenta A. Male isolation: A behavioral representation of the pheromonal ‘female effect’ in donkey (Equus asinus). Physiol Behav 2013; 118:1-7. [DOI: 10.1016/j.physbeh.2013.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 11/29/2022]
|
12
|
Functional Anatomy of the Lateral Nasal Gland in Anuran Amphibians and Its Relation to the Vomeronasal Organ. J HERPETOL 2011. [DOI: 10.1670/10-188.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Dhungel S, Masaoka M, Rai D, Kondo Y, Sakuma Y. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience 2011; 199:225-34. [PMID: 21983295 DOI: 10.1016/j.neuroscience.2011.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.
Collapse
Affiliation(s)
- S Dhungel
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
14
|
Roth FC, Laberge F. High convergence of olfactory and vomeronasal influence in the telencephalon of the terrestrial salamander Plethodon shermani. Neuroscience 2010; 177:148-58. [PMID: 21182902 DOI: 10.1016/j.neuroscience.2010.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022]
Abstract
Previous work suggested that the telencephalic pathways of the main olfactory and vomeronasal systems of vertebrates are mostly isolated from each other, with the possible exception of convergence of the two systems into a small part of the olfactory amygdala. We tested the hypothesis of convergence between the main olfactory and vomeronasal systems by investigating the physiology of telencephalic olfactory responses in an in vitro brain preparation of the salamander Plethodon shermani. This animal was chosen because its olfactory and vomeronasal nerves can be separated and stimulated independently. The nerves were stimulated by short current pulses delivered through suction electrodes. Evoked field potentials and intracellular responses were systematically recorded in the telencephalon. The results showed an abundant overlap of olfactory and vomeronasal nerve-evoked field potentials in the ipsilateral lateral telencephalon and the amygdala. Single neurons receiving bimodal main olfactory and vomeronasal input were found in the dorsolateral telencephalon and amygdala. A classification of response latencies suggested that a subset of these neurons received direct input from both the main and accessory olfactory bulbs. Unimodal excitatory main olfactory responses were mostly found in neurons of the caudal telencephalic pole, but were also present in the striato-pallial transition area/lateral pallium region and striatum. Unimodal excitatory vomeronasal responses were found in neurons of the striato-pallial transition area, vomeronasal amygdala, and caudal amygdala. We conclude that the main olfactory and vomeronasal systems are extensively integrated within the salamander telencephalon and probably act in concert to modulate behavior.
Collapse
Affiliation(s)
- F C Roth
- Brain Research Institute, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
15
|
Slotnick B, Restrepo D, Schellinck H, Archbold G, Price S, Lin W. Accessory olfactory bulb function is modulated by input from the main olfactory epithelium. Eur J Neurosci 2010; 31:1108-16. [PMID: 20377623 PMCID: PMC3745274 DOI: 10.1111/j.1460-9568.2010.07141.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the vomeronasal organ. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electrovomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate-treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system.
Collapse
Affiliation(s)
- Burton Slotnick
- Department of Psychology, University of South Florida, PCD 4118G, 4202 Fowler Avenue, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Niblock MM, Gao H, Li A, Jeffress EC, Murphy M, Nattie EE. Fos-Tau-LacZ mice reveal sex differences in brainstem c-fos activation in response to mild carbon dioxide exposure. Brain Res 2010; 1311:51-63. [PMID: 19932690 PMCID: PMC2812580 DOI: 10.1016/j.brainres.2009.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 01/13/2023]
Abstract
There are sex differences in the neurochemistry of brainstem nuclei that participate in the control of breathing as well as sex differences in respiratory responses to hypoxia. Central chemoreception refers to the detection within the brain of minute changes in carbon dioxide (CO(2)) levels and the subsequent modulation of breathing. Putative central chemoreceptor sites are widespread and include cells located near the ventral surface of the brainstem in the retrotrapezoid nucleus (RTN), in the medullary midline raphe nuclei, and, more dorsally in the medulla, in the nucleus of the solitary tract and in the locus caeruleus at the pontomedullary junction as well as in the fastigial nucleus of the cerebellum. In this study, we ask if the cells that respond to CO(2) differ between the sexes. We used a transgenic mouse with a c-fos promoter driven tau-lacZ reporter construct (FTL) to map the locations of cells in the mouse brainstem and cerebellum that responded to exposure of mice of both sexes to 5% CO(2) or room air (control). X-gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) histochemical staining to detect the beta-galactosidase enzyme produced staining in the brains of mice of both sexes in all of the previously identified putative chemoreceptor sites, with the exception of the fastigial nucleus. Notably, the male RTN region contained significantly more x-gal-labeled cells than the female RTN region. In addition to new observations regarding potential sex differences in the retrotrapezoid region, we found the FTL mouse to be a useful tool for identifying cells that respond to the exposure of the whole animal to relatively low concentrations of CO(2).
Collapse
Affiliation(s)
- Mary Melissa Niblock
- Biology Department and Neuroscience Program, Dickinson College, Carlisle, PA, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Liu YJ, Zhang JX, Zhang JH, Bao WD, Liu DZ. Vomeronasal organ ablation elicits chemosensory dysfunction and abnormal behavior in mice. J ETHOL 2009. [DOI: 10.1007/s10164-009-0180-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Abstract
In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.
Collapse
|
19
|
Nowack C, Wöhrmann-Repenning A. New Anatomical Analyses Suggest a Pumping Mechanism for the Vomeronasal Organ in Anurans. COPEIA 2009. [DOI: 10.1643/ch-07-267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Behr GA, da Motta LL, de Oliveira MR, Oliveira MWS, Gelain DP, Moreira JCF. Modulation in Reproductive Tissue Redox Profile in Sexually Receptive Female Rats after Short-Term Exposure to Male Chemical Cues. Chem Senses 2009; 34:317-23. [DOI: 10.1093/chemse/bjp004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Martel KL, Baum MJ. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals. Eur J Neurosci 2009; 29:368-76. [PMID: 19077123 PMCID: PMC2754263 DOI: 10.1111/j.1460-9568.2008.06564.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1 week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory-MeA-AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction.
Collapse
|
22
|
Decreased anxiety-like behavior and locomotor/exploratory activity, and modulation in hypothalamus, hippocampus, and frontal cortex redox profile in sexually receptive female rats after short-term exposure to male chemical cues. Behav Brain Res 2008; 199:263-70. [PMID: 19110005 DOI: 10.1016/j.bbr.2008.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/27/2008] [Accepted: 11/29/2008] [Indexed: 12/11/2022]
Abstract
Chemical cues are widely used for intraspecific social communication in a vast majority of living organisms ranging from bacteria to mammals. As an example, mammals release olfactory cues with urine that promote neuroendocrine modulations with changes in behavior and physiology in the receiver. In this work, four-month-old Wistar (regular 4-day cyclic) virgin female rats were utilized in the proestrus-to-estrus phase of the reproductive cycle for experimental exposure. In an isolated room, female rats were exposed for 90 min to male-soiled bedding (MSB). Elevated plus-maze assay, open field test, and light/dark box task were performed to analyze behavioral alterations on females after exposure. For biochemical assays, female rats were killed and the hypothalamus, hippocampus, and frontal cortex were isolated for further analysis. Antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), non-enzymatic antioxidant defense measurements (TRAP and TAR), and the oxidative damage parameters (TBARS, Carbonyl and SH content) were analyzed. In behavioral analyses we observe that female rats show decreased anxiety and locomotory/exploratory activities after MSB exposure. In biochemical assays we observed an increase in both enzymatic and non-enzymatic antioxidant defenses in different central nervous system (CNS) structures analyzed 30 and 90 min after MSB exposure. Furthermore, hippocampus and frontal cortex showed diminished free radical oxidative damage at 180 and 240 min after exposure. These results provide the first evidence that oxidative profile of female CNS structures are altered by chemical cues present in the MSB, thus suggesting that pheromonal communication is able to modulate radical oxygen species production and/or clearance in the female brain.
Collapse
|
23
|
Olfactory discrimination and incentive value of non copulating and sexually sluggish male rats. Physiol Behav 2007; 93:742-7. [PMID: 18155100 DOI: 10.1016/j.physbeh.2007.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
Some apparently healthy male rats fail to copulate despite being tested on repeated occasions with receptive females and are called non copulating (NC) rats. NC rats sniff and lick the female genitals, and show normal erectile and ejaculatory functions and hormonal levels. Sexually sluggish (S) male rats take a long time to ejaculate or sometimes they don't achieve ejaculation when tested repeatedly with receptive females. The aim of the present study was to determine if NC and S males can discriminate sexually relevant olfactory cues such as urine from estrous or anestrous female and urine from sexually experienced males. We also tested odors like amyl acetate and mint using an olfactory discrimination test. In a second experiment we evaluated if a sexually receptive female has a preference for a copulating (C) male, for a NC male, or for a S male in a sexual incentive motivation test. This would let us determine if a NC and an S male are equally attractive than a C male to a sexually receptive female. The olfactory test revealed that C, NC and S males have the same ability to discriminate sexually relevant odors. As well, all males clearly discriminate non sexual odors like amyl acetate and mint suggesting that NC and S male rats do not have alterations in their olfactory system. With respect to the sexual incentive motivation test, females spend the same time in the incentive zone of the NC and C males. As well, females spent the same time in the incentive zone of S and C males. These results demonstrate that NC, S and C males are equally attractive to receptive females.
Collapse
|
24
|
Smith TD, Rossie JB, Bhatnagar KP. Evolution of the nose and nasal skeleton in primates. Evol Anthropol 2007. [DOI: 10.1002/evan.20143] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Hosokawa N, Chiba A. Effects of sexual experience on conspecific odor preference and male odor-induced activation of the vomeronasal projection pathway and the nucleus accumbens in female rats. Brain Res 2007; 1175:66-75. [PMID: 17870062 DOI: 10.1016/j.brainres.2007.07.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 01/01/2023]
Abstract
In the present study in estrogen-progesterone primed ovariectomized female rats, we examined the expression of a preference for male odors and male odor-induced Fos immunoreactivity throughout the vomeronasal projection pathway and the nucleus accumbens (NAcc), using both sexually experienced and sexually naive subjects. Female rats significantly preferred airborne odors and soiled bedding from sexually active males over those from estrous females, irrespective of the presence or absence of prior sexual experience. On the other hand, the brain regions in which exposure to male-soiled bedding significantly increased Fos expression were different between sexually experienced and sexually naive subjects. Significant increment of Fos expression in the posterior-dorsal medial amygdala (MePD) and the bed nucleus of stria terminalis (BNST) in forebrain, as well as the accessory olfactory bulb, was observed in both groups of subjects. Fos expression in the anterior-dorsal medial amygdala (MeAD), the medial preoptic area (mPOA) and the NAcc core, however, was significantly increased only in the sexually experienced subjects. These results suggested that male odor-induced activations of the MePD and/or the BNST, but not of the MeAD, the mPOA and the NAcc core, are required for the expression of a male-directed odor preference in female rats.
Collapse
Affiliation(s)
- Nami Hosokawa
- Life Science Insutitute, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | | |
Collapse
|
26
|
Zufall F, Leinders-Zufall T. Mammalian pheromone sensing. Curr Opin Neurobiol 2007; 17:483-9. [PMID: 17709238 DOI: 10.1016/j.conb.2007.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
The traditional distinction that the mammalian main olfactory system recognizes general odor molecules and the accessory (vomeronasal) system detects pheromones is no longer valid. The emerging picture is that both systems have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Recent investigations have discovered large families of pheromonal signals together with a rich variety of specific receptor systems and nasal detection pathways. Selective genetic targeting of these subsystems should help to unravel their biological role in pheromone-mediated behavioral responses.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, Kirrberger Strasse, 66421 Homburg/Saar, Germany.
| | | |
Collapse
|
27
|
Martel KL, Baum MJ. Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles. Eur J Neurosci 2007; 26:463-75. [PMID: 17623023 PMCID: PMC2258410 DOI: 10.1111/j.1460-9568.2007.05651.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous research suggests that volatile body odourants detected by the main olfactory epithelium (MOE) are processed mainly by the main olfactory bulb (MOB) whereas nonvolatile body odourants detected by the vomeronasal organ (VNO) are processed via the accessory olfactory bulb (AOB). We asked whether urinary volatiles from males and females differentially activate the AOB in addition to the MOB in gonadectomized mice of either sex. Exposure to urinary volatiles from opposite-sex but not same-sex conspecifics augmented the number of Fos-immunoreactive mitral and granule cells in the AOB. Volatile urinary odours from male as well as female mice also stimulated Fos expression in distinct clusters of MOB glomeruli in both sexes. Intranasal administration of ZnSO(4), intended to disrupt MOE function, eliminated the ability of volatile urinary odours to stimulate Fos in both the MOB and AOB. In ovariectomized, ZnSO(4)-treated females a significant, though attenuated, AOB Fos response occurred after direct nasal exposure to male urine plus soiled bedding, suggesting that VNO signaling remained partially functional in these mice. Future studies will determine whether MOE or VNO signaling, or both types of input, drive the sexually dimorphic response of the AOB to volatile opposite-sex odours and whether this AOB response contributes to reproductive success.
Collapse
Affiliation(s)
- Kristine L Martel
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
28
|
Yoshikage M, Toshiaki I, Seiichi K, Nobuo K, Nishimura M. Sex steroids modulate the signals from volatile female odors in the accessory olfactory bulb of male mice. Neurosci Lett 2006; 413:11-5. [PMID: 17125926 DOI: 10.1016/j.neulet.2006.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 10/23/2022]
Abstract
We previously reported that male mice detect volatile female odors via the accessory olfactory system, and that these odors activate granule cells in the accessory olfactory bulb (AOB) with a characteristic pattern. We also reported that sex steroids modulate the attraction of male mice to volatile female odors. The present study investigated hormonal modulation of signals from volatile female odors in the AOB with c-Fos immunostaining. After intact male mice were exposed to volatile female odors, there were more c-Fos positive cells in the caudal granule cell layer (GCL) than in the rostral GCL of the AOB. This effect was observed 3 days but not 7 days after castration, suggesting that hormonal deficiency causes the reorganization of the AOB after 3 days. There was no difference in the number of c-Fos positive cells between the rostral and caudal GCL of castrated male mice treated with 17 beta-estradiol (E). In contrast, there were more c-Fos positive cells in the caudal GCL than in the rostral GCL of castrated male mice treated with dihydrotestosterone (DHT). In both DHT- and E-treated castrated male mice, there was no difference in the number of c-Fos positive cells between the rostral GCL and caudal GCL. This finding suggests that E disrupts the effect of DHT, and that androgen is required for maintaining the intact neuronal network of the AOB. The present study suggests that sex steroids modulate the signals from volatile female odors in the AOB of male mice.
Collapse
Affiliation(s)
- Muroi Yoshikage
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|