1
|
Shirayama Y, Iwata M, Miyano K, Hirose Y, Oda Y, Fujita Y, Hashimoto K. Infusions of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produce antidepressant-like effects on learned helplessness rats through BDNF-TrkB signaling and AMPA receptor activation, and strengthen learning ability. Brain Res 2023; 1821:148567. [PMID: 37689333 DOI: 10.1016/j.brainres.2023.148567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Beta-hydroxybutyrate (BHB), an endogenous NLRP3 inflammasome inhibitor, has been shown to be associated with the pathophysiology of depression in rodents. However its active mechanism has not been revealed. Herein, we probed both the pathways and brain regions involved in BHB's antidepressant-like effects in a learned helplessness (LH) rat model of depression. A single bilateral infusion of BHB into the cerebral ventricles induced the antidepressant-like effects on the LH rats. The antidepressant-like effects of BHB were blocked by the TrkB inhibitor ANA-12 and the AMPA receptor antagonist NBQX, indicating that the antidepressant-like effects of BHB involve BDNF-TrkB signaling and AMPA receptor activation. Further, infusions of BHB into the prelimbic and infralimbic portions of medial prefrontal cortex, the dentate gyrus of hippocampus, and the basolateral region of amygdala produced the antidepressant-like effects on LH rats. However, infusions of BHB into the central region of amygdala, the CA3 region of hippocampus, and the shell and core regions of nucleus accumbens had no effect. Finally, a single bilateral infusion of BHB into the cerebral ventricles of naive rats strengthened learning ability on repeated active avoidance test where saline-infused animals failed to increase avoidance responses.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Hirose
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
2
|
DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA. More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 2022; 15:974890. [PMID: 36187353 PMCID: PMC9525131 DOI: 10.3389/fnmol.2022.974890] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is the predominant cytoskeletal regulator within neuronal dendrites, abundant and specific enough to serve as a robust somatodendritic marker. It influences microtubule dynamics and microtubule/actin interactions to control neurite outgrowth and synaptic functions, similarly to the closely related MAP Tau. Though pathology of Tau has been well appreciated in the context of neurodegenerative disorders, the consequences of pathologically dysregulated MAP2 have been little explored, despite alterations in its immunoreactivity, expression, splicing and/or stability being observed in a variety of neurodegenerative and neuropsychiatric disorders including Huntington’s disease, prion disease, schizophrenia, autism, major depression and bipolar disorder. Here we review the understood structure and functions of MAP2, including in neurite outgrowth, synaptic plasticity, and regulation of protein folding/transport. We also describe known and potential mechanisms by which MAP2 can be regulated via post-translational modification. Then, we assess existing evidence of its dysregulation in various brain disorders, including from immunohistochemical and (phospho) proteomic data. We propose pathways by which MAP2 pathology could contribute to endophenotypes which characterize these disorders, giving rise to the concept of a “MAP2opathy”—a series of disorders characterized by alterations in MAP2 function.
Collapse
Affiliation(s)
- Rebecca A. DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon C. McKinney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Robert A. Sweet
| |
Collapse
|
3
|
Conoscenti MA, Smith NJ, Fanselow MS. Dissociable consequences of moderate and high volume stress are mediated by the differential energetic demands of stress. PLoS One 2022; 17:e0273803. [PMID: 36048782 PMCID: PMC9436037 DOI: 10.1371/journal.pone.0273803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Exposure to traumatic stress leads to persistent, deleterious behavioral and biological changes in both human and non-human species. The effects of stress are not always consistent, however, as exposure to different stressors often leads to heterogeneous effects. The intensity of the stressor may be a key factor in determining the consequences of stress. While it is difficult to quantify intensity for many stress types, electric shock exposure provides us with a stressor that has quantifiable parameters (presentation length x intensity x number = shock volume). Therefore, to test the procedural differences in shock volume that may account for some reported heterogeneity, we used two common shock procedures. Learned helplessness is a commonly reported behavioral outcome, highlighted by a deficit in subsequent shuttle-box escape, which requires a relatively high-volume stress (HVS) of about 100 uncontrollable shocks. Conversely, stress-enhanced fear learning (SEFL) is another common behavioral outcome that requires a relatively moderate-volume stress (MVS) of only 15 shocks. We exposed rats to HVS, MVS, or no stress (NS) and examined the effects on subsequent fear learning and normal weight gain. We found doubly dissociable effects of the two levels of stress. MVS enhanced contextual fear learning but did not impact weight, while HVS produced the opposite pattern. In other words, more stress does not simply lead to greater impairment. We then tested the hypothesis that the different stress-induced sequalae arouse from an energetic challenge imposed on the hippocampus by HVS but not MVS. HVS rats that consumed a glucose solution did exhibit SEFL. Furthermore, rats exposed to MVS and glucoprivated during single-trial context conditioning did not exhibit SEFL. Consistent with the hypothesis that the inability of HVS to enhance fear learning is because of an impact on the hippocampus, HVS did enhance hippocampus-independent auditory fear learning. Finally, we provide evidence that stressors of different volumes produce dissociable changes in glutamate receptor proteins in the basolateral amygdala (BLA) and dorsal hippocampus (DH). The data indicate that while the intensity of stress is a critical determinant of stress-induced phenotypes that effect is nonlinear.
Collapse
Affiliation(s)
- Michael A. Conoscenti
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
- Staglin Center for Brain & Behavioral Health, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nancy J. Smith
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
- Staglin Center for Brain & Behavioral Health, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
- Staglin Center for Brain & Behavioral Health, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Vatandoust SM, Meftahi GH. The Effect of Sericin on the Cognitive Impairment, Depression, and Anxiety Caused by Learned Helplessness in Male Mice. J Mol Neurosci 2022; 72:963-974. [PMID: 35165850 DOI: 10.1007/s12031-022-01982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Learned helplessness (LH) induces cognitive and emotional abnormalities via alteration of synaptic and apoptotic markers in the hippocampus. Given the sericin's neuroprotective effects on different experimental models, this study aimed to address whether sericin is able to reduce LH-induced behavioral and molecular changes in the mouse model. Sixty male mice (3 months old) were randomly divided into control, normal saline (NS), and/or different doses of sericin (Ser [100, 200, and 300 mg/kg]) for 21 days. Accordingly, the animals in NS and sericin-treated groups were subjected to 1 day learned helplessness protocol. Behavioral deficits were evaluated and alterations in both synaptic and apoptotic factors were evaluated in the hippocampus. Induction of LH was associated with behavioral changes (depression and cognitive impairment). On the other hand, the administration of sericin effectively normalized these deficits. At molecular levels, sericin increased the levels of synaptophysin, synapsin-1, and PSD-95, and decreased apoptosis in the hippocampus. Although the exact mechanisms underlying the neuroprotective effects of sericin are not fully understood, our results showed that this effect mediated via modulation of the synaptic and apoptotic proteins in the hippocampus of LH-subjected mice.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Czarzasta K, Bogacki-Rychlik W, Segiet-Swiecicka A, Kruszewska J, Malik J, Skital V, Kasarello K, Wrzesien R, Bialy M, Sajdel-Sulkowska EM. Gender differences in short- vs. long-term impact of maternal depression following pre-gestational chronic mild stress. Exp Neurol 2022; 353:114059. [DOI: 10.1016/j.expneurol.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
6
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
7
|
Astroglial glutamate transporter 1 and glutamine synthetase of the nucleus accumbens are involved in the antidepressant-like effects of allopregnanolone in learned helplessness rats. Behav Brain Res 2020; 401:113092. [PMID: 33359844 DOI: 10.1016/j.bbr.2020.113092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Clinical studies have demonstrated that allopregnanolone (3α5α-tetrahydroprogesterone, ALLO) has antidepressant-like effects on patients with depression. Previous studies have shown alteration of the astroglial glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) in depression, and ALLO is known to modulate glutamate release. The present study aimed to investigate whether astroglial GLT-1 and GS are indeed involved in the antidepressant-like effects of ALLO in learned helplessness (LH) rats, a validated animal model of depression. The results of this study showed that bilateral microinjection of ALLO into the lateral ventricles could normalize the levels of GLT-1 and GS in the nucleus accumbens (NAc) and of GS in the hippocampal CA1 region of LH rats. These results suggest a certain connection between the antidepressant-like effects of ALLO and the astroglial GLT-1/GS system of the NAc in LH rats.
Collapse
|
8
|
Yoshino K, Oda Y, Kimura M, Kimura H, Nangaku M, Shirayama Y, Iyo M. The alterations of glutamate transporter 1 and glutamine synthetase in the rat brain of a learned helplessness model of depression. Psychopharmacology (Berl) 2020; 237:2547-2553. [PMID: 32445055 DOI: 10.1007/s00213-020-05555-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although glutamate transmission via astrocytes has been proposed to contribute to the pathophysiology of depression, the precise mechanisms are unknown. Herein, we investigated the levels of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) of astrocytes in learned helplessness (LH) rats (an animal model of depression) and non-LH rats (an animal model of resilience). METHODS We administered inescapable mild electric shock to rats and then discriminated the LH and non-LH rats by a post-shock test. Almost 55% of the rats acquired LH. We then measured the expressions of GLT-1 and GS in several brain regions of LH and non-LH rats by Western blot analysis. RESULTS The levels of GLT-1 and GS in the CA-1, CA-3, dentate gyrus (DG), medial prefrontal cortex (mPF), and nucleus accumbens (NAc) of the LH group were significantly higher than those of the control group. The GS levels in the amygdala of the LH rats were significantly decreased compared to the controls. There were significant differences in GLT-1 and GS levels between the non-LH and LH rats in the CA-1 and CA-3. CONCLUSIONS These results suggest that the LH rats experienced up-regulations of GLT-1 and GS in the CA-1, CA-3, DG, mPF, and NAc and a down-regulation of GS in the amygdala. It is possible that the effects of the GLT-1 and GS levels on astrocytes in the CA-1 and CA-3 are critical for the differentiation of resilience from vulnerability.
Collapse
Affiliation(s)
- Kouhei Yoshino
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan.
| | - Makoto Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Masahito Nangaku
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba, 290-0111, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| |
Collapse
|
9
|
Ferreira FR, de Moura NSB, Hassib L, Pombo TR. Resveratrol ameliorates the effect of maternal immune activation associated with schizophrenia in adulthood offspring. Neurosci Lett 2020; 734:135100. [PMID: 32473196 DOI: 10.1016/j.neulet.2020.135100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Maternal exposure to infectious agents such as arboviruses, bacteria, or other protozoans has been associated with an elevated risk of schizophrenia (SZ). Evidence suggests that immunological processes occurring during infection may disturb the neural progenitor, impacting the central nervous system (CNS) functions. Moreover, growing evidence suggests that resveratrol (RSV) has neuroprotective activity through anti-oxidant and anti-inflammatory mechanisms. Therefore, we investigated if the treatment with RSV during pregnancy would prevent the abnormalities associated with a SZ-like phenotype induced by maternal immune activation (MIA). Pregnant dams stimulated with a subcutaneous (s.c.) injection of polyriboinosinic-polyribocytidylic acid (poly I:C; 50 mg/kg), a viral nucleic acid mimetic or vehicle, on gestational day (GD) 12.5, were treated with RSV (40 mg/kg, s.c.) or saline, from GD 9.5 to GD 14.5. On day 45 after birth, the offspring was evaluated using a three-compartment social interaction test, elevated plus maze, and hyperlocomotion test induced by amphetamine. After the behavioral tests, the relative expression of mRNA to synapsin 1 (Syn1), oligodendrocyte transcription factor 1 (Olig1), and SRY (sex-determining region Y)-box 2 (Sox2) was determined in the hippocampus and cortex. Treatment with RSV restored the social behavior and attenuated the hyperlocomotion of the offspring bred by dams submitted to MIA. RSV prevented the effects of MIA on Syn1 and Olig1 expression in the hippocampus and Syn1 in the cortex. The present study showed that maternal treatment with RSV attenuates some of the negative behavioral impacts caused by MIA, with modulation of synaptic and oligodendrogenesis processes.
Collapse
Affiliation(s)
| | - Nathalia Souza Barros de Moura
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Hassib
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiane Rebelo Pombo
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Shirayama Y, Fujita Y, Oda Y, Iwata M, Muneoka K, Hashimoto K. Allopregnanolone induces antidepressant-like effects through BDNF-TrkB signaling independent from AMPA receptor activation in a rat learned helplessness model of depression. Behav Brain Res 2020; 390:112670. [PMID: 32437888 DOI: 10.1016/j.bbr.2020.112670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023]
Abstract
Allopregnanolone (ALLO, 3α5α-tetrahydroprogesterone) was found to be effective for depressed patients. Animal models of depression indicate that ALLO is associated with the pathophysiology of depression. Traditional antidepressant drugs produce antidepressant effects via the monoamine system, with consequent up-regulation of brain-derived neurotrophic factor (BDNF). This study was designed to examine whether the antidepressant effects of ALLO involve BDNF-TrkB signaling or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation on the learned helplessness paradigm. The antidepressant-like effect of ALLO infusion into the cerebral ventricle was blocked by coinfusion of TrkB inhibitor ANA-12, but not by co-administration of AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfoamoylbenzo(f)quinoxaline (NBQX). Thus, the antidepressant-like effect of ALLO involves BDNF signaling independent from AMPA receptor activation.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsumasa Muneoka
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
11
|
Nelumbo nucifera Gaertn Stems (Hegeng) Improved Depression Behavior in CUMS Mice by Regulating NCAM and GAP-43 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056954. [PMID: 32308703 PMCID: PMC7149381 DOI: 10.1155/2020/3056954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Background Nelumbo nucifera Gaertn stem (Hegeng [HG]) is a traditional Chinese medicine that is used to treat mental symptoms in East Asia. However, scientific evidence is generally lacking to support this traditional claim. Aim of the Study. This study's aim is to investigate the antidepression effect of HG and to further explore the possible molecular mechanisms that are involved in its actions. Materials and Methods. HG aqueous extract was administered intragastrically for 21 days after the chronic unpredictable mild stress (CUMS) procedure, and its effect on memory, learning, and emotion was assessed using animal behavioral tests. HG aqueous extract was characterized using HPLC. Immunofluorescence was used to measure the neural cell-adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43) expression. Results Depression-like behaviors increased in the CUMS group compared with the control (CON) group, while they were reduced in the high-dose HG (H-HG) and fluoxetine (FLU) groups (p < 0.05). Additionally, NCAM and GAP-43 expression was reduced in the CUMS group compared with the CON group, but it increased in the H-HG and FLU groups (p < 0.05). Conclusions These findings show the potential antidepressant effects of HG through mechanisms involving regulation of NCAM and GAP-43. This provides a new theoretical basis for its potential application as an antidepressant-like agent.
Collapse
|
12
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Liu W, Xue X, Xia J, Liu J, Qi Z. Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. J Affect Disord 2018; 227:126-135. [PMID: 29055260 DOI: 10.1016/j.jad.2017.10.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stress-induced failed resilience of brain plasticity can contribute to the onset and recurrence of depression. Chronic stress has been reported to open windows of epigenetic plasticity in hippocampus. However, how hippocampal plasticity underlies depression-like behaviors and how it adapts in response to stress has not been addressed. The present study aimed to investigate the signaling mechanisms of CUMS affecting hippocampal plasticity-related proteins expression and the regulation of swimming exercise in mice. METHODS Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) for 7 weeks. From the 4th week, CUMS mice were trained in a moderate swimming program for a total of 4 weeks. A videocomputerized tracking system was used to record behaviors of animals for a 5-min session. Real-time PCR and Western Blotting were used to examine gene expression in mouse hippocampus. RESULTS Our results demonstrated that CUMS induced depression-like behaviors, which were reversed by swimming exercise. Moreover, the behavioral changes induced by CUMS and exercise were correlated with hippocampal plasticity-related proteins expression of growth-associated protein-43 (GAP-43) and synaptophysin (SYN). The molecular mechanisms regulating this plasticity may include SIRT1/mircoRNA, CREB/BDNF, and AKT/GSK-3β signaling pathways. LIMITATIONS We did not establish a correlation between depression-like behaviors induced by chronic stress and epigenetic changes of hippocampal plasticity, either a causal molecular signaling underling this plasticity. CONCLUSIONS Our findings have identified swimming exercise effects on CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins, which provide a framework for developing new strategies to treat stress-induced depression.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Xiangli Xue
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jiatong Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
14
|
Tian Q, Chen L, Luo B, Wang AP, Zou W, You Y, Zhang P, Tang XQ. Hydrogen Sulfide Antagonizes Chronic Restraint Stress-Induced Depressive-Like Behaviors via Upregulation of Adiponectin. Front Psychiatry 2018; 9:399. [PMID: 30233424 PMCID: PMC6127318 DOI: 10.3389/fpsyt.2018.00399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Backgroud: Chronic restraint stress (CRS) induces depressive-like behaviors in rodents, which involves dysregulation of hippocampal synapse formation and excessive autophagy. Adiponectin has antidepressant activity. Hydrogen sulfide (H2S) is a novel gasotransmitter. The present work was to investigate whether H2S antagonizes CRS-induced depressive-like behaviors in rats and to explore whether its potential mechanism involves ameliorated synaptic and autophagic dysregulation by upregulation of adiponectin. Methods: Depressive-like behavior was analyzed by the tail suspension test (TST), novelty suppressed feeding test (NSFT), and open field test (OFT). The structure of autophagy was observed under transmission electron microscopy. The expressions of adiponectin, beclin1, and sequestosome 1 (p62/SQSTMI) protein in hippocampus were measured by Western blot. The levels of synapsin1 (SYN1) in the hippocampus were calculated by Western blot and immunofluorescence technique. Results: The behavior experiments, including TST, NSFT, and OFT, showed that NaHS (a donor of H2S) reduced CRS-induced depressive-like behaviors. NaHS decreased the loss of hippocampal synapse as evidenced by increased the level of SYN1 in the hippocampus of CRS-exposed rats. NaHS rescued CRS-induced excessive hippocampal autophagy as evidenced by declines in the number of autophagosomes and the expression of beclin1 as well as increase in the expression of P62 in the hippocampus of CRS-exposed rats. NaHS upregulated hippocampal adiponectin expression in the CRS-exposed rats. Furthermore, neutralizing adiponectin by Anti-acrp30 reversed the protective response of NaHS to CRS-produced depressive-like behaviors as well as hippocampal synaptic disruption and excessive autophagy. Conclusion: H2S mitigates CRS-induced depressive behavior via upregulation of adiponectin, which in turn results in amelioration in hippocampal synapse formation dysfunction and excessive autophagy.
Collapse
Affiliation(s)
- Qing Tian
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Lei Chen
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Bang Luo
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wei Zou
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yong You
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Ping Zhang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
15
|
Liu Z, Liu H, Zeng ZH. Chronic Unpredictable Mild Stress Causing Cardiac and Thoracic Spinal Cord Electrophysiological Abnormalities May Be Associated with Increased Cardiac Expression of Serotonin and Growth-Associated Protein-43 in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8697913. [PMID: 29707580 PMCID: PMC5863291 DOI: 10.1155/2018/8697913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND The aim of this study was to investigate the potential mechanisms by which chronic unpredictable mild stress (CMS) might induce cardiovascular disease. METHODS Twenty male Sprague-Dawley rats (weighing 180-250 g) were divided into the CMS group (CMS for 3 weeks) and control group (n = 10/group). Sucrose solution consumption, sucrose solution preference rate, and the open field test (horizontal and vertical movements) were used to confirm the establishment of the CMS model. Heart rate was determined in Langendorff-perfused hearts, and field action potential duration (FAPD) was measured in cardiac atrial tissue, cardiac ventricular tissue, and thoracic spinal cord segments 1-5. The expressions of serotonin (5-HT) and growth-associated protein-43 (GAP-43) in cardiac ventricular tissue were analyzed using immunohistochemistry and immunofluorescence. RESULTS Compared with the control group, sucrose solution consumption, sucrose solution preference rate, horizontal movement, and vertical movement were significantly lower in the CMS group (P < 0.01). The CMS group exhibited significant decreases in atrial and ventricular FAPDs (P < 0.05), as well as significant increases in heart rates (P < 0.05) and T1-5 spinal cord FAPD (P < 0.01), as compared with the control group. The expressions of 5-HT and GAP-43 in cardiac ventricular tissue were significantly higher in the CMS group than in controls (P < 0.01). CONCLUSIONS CMS causes cardiac and T1-5 spinal cord electrophysiological abnormalities as well as increased cardiac expression of 5-HT and GAP-43, indicating that CMS could potentially increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Cardiology, The Six Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hua Liu
- Department of Cardiology, The Six Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhi Huan Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
The expression of G protein-coupled receptor kinase 5 and its interaction with dendritic marker microtubule-associated protein-2 after status epilepticus. Epilepsy Res 2017; 138:62-70. [DOI: 10.1016/j.eplepsyres.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
|
17
|
Fang L, Wang Y, Zheng Q, Yang T, Zhao P, Zhao H, Zhang Q, Zhao Y, Qi F, Li K, Chen Z, Li J, Zhang N, Fan Y, Wang L. Effects of Bu Shen Yi sui capsule on NogoA/NgR and its signaling pathways RhoA/ROCK in mice with experimental autoimmune encephalomyelitis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:346. [PMID: 28668079 PMCID: PMC5494129 DOI: 10.1186/s12906-017-1847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 11/11/2022]
Abstract
Background Axon growth inhibitory factors NogoA/Nogo receptor (NgR) and its signaling pathways RhoA/Rho kinase (ROCK) play a critical role in the repair of nerve damage in multiple sclerosis (MS). Bu Shen Yi Sui Capsule (BSYSC) is an effective Chinese formula utilized to treat MS in clinical setting and noted for its potent neuroprotective effects. In this study, we focus on the effects of BSYSC on promoting nerve repair and the underlying mechanisms in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods The EAE mouse model was induced by injecting subcutaneously with myelin oligodendrocyte glycoprotein (MOG) 35–55 supplemented with pertussis toxin. BSYSC was orally administrated at dose of 3.0 g/kg once a day for 40 days. The levels of protein gene product (PGP) 9.5, p-Tau, growth associated protein (GAP) -43, KI67 and Nestin in the brain or spinal cord on 20 and 40 day post-induction (dpi) were detected via immunofluorescence and Western blot analysis. Furthermore, NogoA/NgR and RhoA/ROCK signaling molecules were studied by qRT-PCR and Western blot analysis. Results Twenty or 40 days of treatment with BSYSC increased markedly PGP9.5 and GAP-43 levels, reduced p-Tau in the brain or spinal cord of mice with EAE. In addition, BSYSC elevated significantly the expression of KI67 and Nestin in the spinal cord 40 dpi. Further study showed that the activation of NogoA/NgR and RhoA/ROCK were suppressed by the presence of BSYSC. Conclusions BSYSC could attenuate axonal injury and promote repair of axonal damage in EAE mice in part through the down-regulation of NogoA/NgR and RhoA/ROCK signaling pathways.
Collapse
|
18
|
Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine. Pharmacol Biochem Behav 2016; 150-151:138-146. [PMID: 27769904 DOI: 10.1016/j.pbb.2016.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022]
Abstract
An accumulating body of evidence has demonstrated that inflammation is associated with the pathology of depression. We recently found that psychological stress induces inflammation in the hippocampus of the rat brain through the inflammasome, a component of the innate immune system. Microglia, the resident macrophages in the brain, play a central role in the innate immune system and express inflammasomes; thus, we hypothesized that hippocampal microglia would be key mediators in the development of depression via stress-induced inflammation. To test this hypothesis and to determine how antidepressants modulate microglial function, we used immunohistochemistry to examine the morphological changes that occur in the hippocampal microglia of rats exposed to the learned helplessness (LH) paradigm. We noted significantly increased numbers of activated microglia in the granule cell layer, hilus, CA1, and CA3 regions of the hippocampi of LH rats. Conversely, administering imipramine to LH rats for 7days produced a significant decrease in the number of activated microglia in the hilus, but not in the other examined regions. Nonetheless, there were no significant differences in the combined number of activated and non-activated microglia either in LH or LH+imipramine rats relative to control rats. In addition, treating the naïve rats with imipramine or fluvoxamine produced no discernible microglial changes. These data suggest that stress activates hippocampal microglia, while certain antidepressants decrease the number of activated microglia in the hilus, but not in other hippocampal regions. Therefore, the hilus represents a candidate target region for the antidepressant imipramine.
Collapse
|
19
|
Kivity S, Shoenfeld Y, Arango MT, Cahill DJ, O'Kane SL, Zusev M, Slutsky I, Harel-Meir M, Chapman J, Matthias T, Blank M. Anti-ribosomal-phosphoprotein autoantibodies penetrate to neuronal cells via neuronal growth associated protein, affecting neuronal cells in vitro. Rheumatology (Oxford) 2016; 60:kew027. [PMID: 27155204 DOI: 10.1093/rheumatology/kew027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVE Anti-ribosomal-phosphoprotein antibodies (anti-Ribos.P Abs) are detected in 10-45% of NPSLE patients. Intracerebroventricular administration of anti-ribosomal-P Abs induces depression-like behaviour in mice. We aimed to discern the mechanism by which anti-Ribos.P Abs induce behavioural changes in mice. METHODS Anti-Ribos.P Abs were exposed to human and rat neuronal cell cultures, as well as to human umbilical vein endothelial cell cultures for a control. The cellular localization of anti-Ribo.P Abs was found by an immunofluorescent technique using a confocal microscope. Identification of the target molecules was undertaken using a cDNA library. Immunohistochemistry and an inhibition assay were carried out to confirm the identity of the target molecules. Neuronal cell proliferation was measured by bromodeoxyuridine, and Akt and Erk expression by immunoblot. RESULTS Human anti-Ribos.P Abs penetrated into human neuronal cells and rat hippocampal cell cultures in vitro, but not to endothelial cells as examined. Screening a high-content human cDNA-library with anti-Ribos.P Abs identified neuronal growth-associated protein (GAP43) as a target for anti-Ribos.P Abs. Ex vivo anti-Ribos.P Abs bind to mouse brain sections of hippocampus, dentate and amygdala. Anti-Ribos.P Abs brain-binding was prevented by GAP43 protein. Interestingly, GAP43 inhibited in a dose-dependent manner the anti-Ribos.P Abs binding to recombinant-ribosomal-P0, indicating mimicry between the ribosomal-P0 protein and GAP43. Furthermore, anti-Ribos.P Abs reduced neuronal cell proliferation activity in vitro (P < 0.001), whereas GAP43 decreased this inhibitory activity by a factor of 7.6. The last was related to Akt and Erk dephosphorylation. CONCLUSION Anti-Ribos.P Abs penetrate neuronal cells in vitro by targeting GAP43. Anti -Ribos.P Abs inhibit neuronal-cell proliferation via inhibition of Akt and Erk. Our data contribute to deciphering the mechanism for anti-Ribos.P Abs' pathogenic activity in NPSLE.
Collapse
Affiliation(s)
- Shaye Kivity
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Maria-Teresa Arango
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Dolores J Cahill
- School of Medicine and Medical Sciences, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Ireland
| | - Sara Louise O'Kane
- School of Medicine and Medical Sciences, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Ireland
| | - Margalit Zusev
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Michal Harel-Meir
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Joab Chapman
- Department of Neurology, Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
20
|
Park KW, Lin CY, Li K, Lee YS. Effects of Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression on Dendritic Outgrowth and Demyelination after Spinal Cord Injury. PLoS One 2015; 10:e0138301. [PMID: 26384335 PMCID: PMC4575181 DOI: 10.1371/journal.pone.0138301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/29/2015] [Indexed: 12/27/2022] Open
Abstract
Suppressors of cytokine signaling-3 (SOCS3) is associated with limitations of nerve growth capacity after injury to the central nervous system. Although genetic manipulations of SOCS3 can enhance axonal regeneration after optic injury, the role of SOCS3 in dendritic outgrowth after spinal cord injury (SCI) is still unclear. The present study investigated the endogenous expression of SOCS3 and its role in regulating neurite outgrowth in vitro. Interleukin-6 (IL-6) induces SOCS3 expression at the mRNA and protein levels in neuroscreen-1 (NS-1) cells. In parallel to SOCS3 expression, IL-6 induced tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) in NS-1 cells. Lentiviral delivery of short hairpin RNA (shSOCS3) (Lenti-shSOCS3) to decrease SOCS3 expression into NS-1 cells enhanced IL-6-induced tyrosine phosphorylation of STAT3 (P-STAT3 Tyr705) and promoted neurite outgrowth. In addition, we determined if reduction of SOCS3 expression by microinjection of Lenti-shSOCS3 into spinal cord enhances dendrite outgrowth in spinal cord neurons after SCI. Knocking down of SOCS3 in spinal cord neurons with Lenti-shSOCS3 increased complete SCI-induced P-STAT3 Tyr705. Immunohistochemical analysis showed that complete SCI induced a significant reduction of microtubule association protein 2-positive (MAP-2+) dendrites in the gray and white matter at 1 and 4 weeks after injury. The SCI-induced reduction of MAP-2+ dendrites was inhibited by infection with Lenti-shSOCS3 in areas both rostral and caudal to the lesion at 1 and 4 weeks after complete SCI. Furthermore, shSOCS3 treatment enhanced up-regulation of growth associated protein-43 (GAP-43) expression, which co-localized with MAP-2+ dendrites in white matter and with MAP-2+ cell bodies in gray matter, indicating Lenti-shSOCS3 may induce dendritic regeneration after SCI. Moreover, we demonstrated that Lenti-shSOCS3 decreased SCI-induced demyelination in white matter of spinal cord both rostral and caudal to the injury site 1 week post-injury, but not rostral to the injury at 4 weeks post-injury. Importantly, similar effects as Lenti-shSOCS3 on increasing MAP-2+ intensity and dendrite length, and preventing demyelination were observed when a second shSOCS3 (Lenti-shSOCS3 #2) was applied to rule out the possibilities of off target effects of shRNA. Collectively, these results suggest that knocking down of SOCS3 enhances dendritic regeneration and prevents demyelination after SCI.
Collapse
Affiliation(s)
- Keun Woo Park
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kevin Li
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
21
|
Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaër E. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharmacol 2014; 171:3604-19. [PMID: 24724693 PMCID: PMC4128060 DOI: 10.1111/bph.12720] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022] Open
Abstract
Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression.
Collapse
|
22
|
Seo MK, Lee CH, Cho HY, Lee JG, Lee BJ, Kim JE, Seol W, Kim YH, Park SW. Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures. Neuropharmacology 2014; 79:222-33. [DOI: 10.1016/j.neuropharm.2013.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/07/2013] [Accepted: 11/21/2013] [Indexed: 01/28/2023]
|
23
|
Lin P, Wang C, Xu B, Gao S, Guo J, Zhao X, Huang H, Zhang J, Chen X, Wang Q, Zhou W. The VGF-derived peptide TLQP62 produces antidepressant-like effects in mice via the BDNF/TrkB/CREB signaling pathway. Pharmacol Biochem Behav 2014; 120:140-8. [PMID: 24631486 DOI: 10.1016/j.pbb.2014.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/19/2022]
Abstract
Recent studies demonstrate that the neuropeptide VGF (nonacronymic)-derived peptide is regulated in the hippocampus by antidepressant therapies. Brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), cAMP response element-binding protein (CREB) signaling, and monoamine transmitter pathways mediate the behavioral effects of antidepressants, but it is not known if these pathways also contribute to the antidepressant-like effects of VGF-derived peptide TLQP62. Here the antidepressant-like effects of TLQP62 were evaluated by measuring immobility time in the forced swimming and tail suspension tests (FST and TST) following acute microinjection of the TLQP62 (0.25, 0.5 and 1 nmol/side) into the hippocampal CA1 regions. This treatment dose-dependently reduced immobility in the FST and TST compared to phosphate-buffered saline (PBS) infusion without affecting locomotor activity in the open field test (OFT). In addition, daily intrahippocampal microinfusion of TLQP62 (1 nmol/side/day; 21 days) also upregulated the expression of BDNF and the phosphorylation of CREB (pCREB) and TrkB (pTrkB) without altering CREB or TrkB. Blocking tissue plasminogen activator (tPA) by microinfusion of tPASTOP or TrkB activation by microinfusion of K252a 60 min prior to TLQP62 infusion almost completely abolished TLQP62-induced antidepressant-like effects, BDNF upregulation, and CREB/TrkB phosphorylation. In contrast, none of these effects were diminished by pretreatment with the non-specific 5-HT receptor antagonist metergoline, the selective 5-HT1A receptor antagonist NAN-190, the 5-HT synthase inhibitor parachlorophenylalanine, the selective α1-adrenoceptor antagonist prazosin, the β receptor antagonist propranolol, or the D2 receptor antagonist raclopride. Moreover, our study was also to investigate the antidepressant-like effects of TLQP62 (50, 250 and 500 nmol/kg; i.p.) on depression-related behaviors in comparison with fluoxetine (10mg/kg; i.p.). While TLQP62 and fluoxetine showed similar antidepressant-like behavioral effects in the FST of mice. Our present results strongly suggest that activation of BDNF/TrkB/CREB signaling may be involved in the antidepressant-like effects of TLQP62.
Collapse
Affiliation(s)
- Peipei Lin
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Chuang Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China.
| | - Bing Xu
- No. 97 Hospital, Xuzhou, Jiangsu 221000, PR China
| | - Siyun Gao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Jiejie Guo
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xin Zhao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Huihui Huang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Junfang Zhang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xiaowei Chen
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Qinwen Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Wenhua Zhou
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
24
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
25
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
26
|
Ladurelle N, Gabriel C, Viggiano A, Mocaër E, Baulieu EE, Bianchi M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology (Berl) 2012; 221:493-509. [PMID: 22160164 DOI: 10.1007/s00213-011-2597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. OBJECTIVE The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. METHODS Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). RESULTS Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. CONCLUSIONS Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.
Collapse
Affiliation(s)
- Nataly Ladurelle
- Institut National de la Santé et de la Recherche Médicale-UMR788, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
27
|
Kobayashi H, Iwata M, Mitani H, Yamada T, Nakagome K, Kaneko K. Valproic acid improves the tolerance for the stress in learned helplessness rats. Neurosci Res 2012; 72:355-63. [PMID: 22240171 DOI: 10.1016/j.neures.2011.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 01/16/2023]
Abstract
In this study, we investigated whether previously stressed rats with learned helplessness (LH) paradigm could recover from depressive-like behavior four weeks after the exposure, and also whether chronic treatment with valproic acid (VPA) could prevent behavioral despair due to the second stress on days 54 in these animals. Four weeks after induction of LH, we confirmed behavioral remission in the previously stressed rats. Two-way analysis of variance (ANOVA) performed with two factors, pretreatment (LH or Control) and drug (VPA or Saline), revealed a significant main effect of the drug on immobility time in forced swimming test. Post hoc test showed a shorter immobility time in the LH+VPA group than in the LH+Saline group. Immunohistochemical study of synapsin I showed a significant effect of drug by pretreatment interaction on immunoreactivity of synapsin I in the hippocampus: its expression levels in the regions were higher in the LH+VPA group than in the LH+Saline group. These results suggest that VPA could prevent the reappearance of stress-induced depressive-like behaviors in the rats recovering from prior stress, and that the drug-induced presynaptic changes in the expression of synapsin I in the hippocampus of LH animals might be related to improved tolerance toward the stress.
Collapse
Affiliation(s)
- H Kobayashi
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Escitalopram affects cytoskeleton and synaptic plasticity pathways in a rat gene-environment interaction model of depression as revealed by proteomics. Part II: environmental challenge. Int J Neuropsychopharmacol 2011; 14:834-55. [PMID: 21054913 DOI: 10.1017/s1461145710001306] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large-scale investigations aimed at elucidating the molecular mechanism of action of antidepressant treatment are achievable through the application of proteomic technologies. We performed a proteomic study on the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL animals were separated from their mothers for 3 h from postnatal days 2 to 14 (maternal separation; MS), since early-life trauma is considered an important antecedent of depression. All groups received either escitalopram (Esc) admixed to food pellets (25 mg/kg.d) or vehicle for 1 month. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins differentially modulated were identified by mass spectrometry. Bioinformatics analyses were performed to discover gene ontology terms associated with the modulated proteins. This paper was focused on the modifications induced by the environmental challenge of MS, both on the predisposed genetic background and on the resistant phenotype. The combination between Esc treatment and MS was investigated by comparing the MS, Esc-treated rats with rats subjected to each single procedure. In MS rats, antidepressant treatment influenced mainly proteins involved in carbohydrate metabolism in FSL rats and in vesicle-mediated transport in FRL rats. When studying the interaction between Esc and MS vs. non-separated rats, proteins playing a role in cytoskeleton organization, neuronal development, vesicle-mediated transport and synaptic plasticity were identified. The results provide further support to the available reports that antidepressant treatment affects intracellular pathways and also suggest new potential targets for future therapeutic intervention.
Collapse
|
29
|
Dagyte G, Luiten PG, De Jager T, Gabriel C, Mocaër E, Den Boer JA, Van der Zee EA. Chronic stress and antidepressant agomelatine induce region-specific changes in synapsin I expression in the rat brain. J Neurosci Res 2011; 89:1646-57. [PMID: 21688292 DOI: 10.1002/jnr.22697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022]
Abstract
The antidepressant agomelatine acts as a melatonergic receptor (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist. Agomelatine has demonstrated efficacy in treating depression, but its neurobiological effects merit further investigation. Preclinical studies reported that agomelatine enhances adult hippocampal neurogenesis and increases expression of several neuroplasticity-associated molecules. Recently, we showed that agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in the stress-compromised brain. To characterize further the effects of this antidepressant in the stressed brain, here we investigated whether it induces changes in the expression of synapsin I (SynI), a regulator of synaptic transmission and plasticity. Adult male rats were subjected to daily footshock stress and agomelatine treatment for 3 weeks. Their brains were subsequently stained for total and phosphorylated SynI. Chronic footshock and agomelatine induced region-specific changes in SynI expression. Whereas chronic stress increased total SynI expression in all layers of the medial prefrontal cortex, agomelatine treatment abolished some of these effects. Furthermore, chronic agomelatine administration decreased total SynI expression in the hippocampal subregions of both stressed and nonstressed rats. Importantly, chronic stress decreased the fraction of phosphorylated SynI in all layers of the medial prefrontal cortex as well as selectively in the outer and middle molecular layers of the hippocampal dentate gyrus. These stress effects were at least partially abolished by agomelatine. Altogether, our data show that chronic stress and agomelatine treatment induce region-specific changes in SynI expression and its phosphorylation. Moreover, agomelatine partially counteracts the stress effects on SynI, suggesting a modulation of synaptic function by this antidepressant.
Collapse
Affiliation(s)
- Girstaute Dagyte
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Steinman MQ, Crean KK, Trainor BC. Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice. Eur J Neurosci 2011; 33:361-70. [PMID: 21198981 PMCID: PMC3059189 DOI: 10.1111/j.1460-9568.2010.07528.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food restriction has been reported to have positive effects on cognition. This study examines how another environmental factor, daylength, can alter the impact of food restriction on the brain and behavior. Female California mice (Peromyscus californicus), housed on either long days (16 h of light and 8 h of darkness) or short days (8 h of light and 16 h of darkness), were restricted to 80% of their normal baseline food intake or provided with food ad libitum. Testing in a Barnes maze revealed that the effects of food restriction depended on photoperiod, and that these effects differed for acquisition vs. reversal learning. During acquisition testing, food restriction increased latency to finding the target hole in short-day mice but not in long-day mice. In reversal testing, food restriction decreased latency to finding the target hole in long-day mice but not in short-day mice. Latency to finding the hole was positively and independently correlated with both errors and time spent freezing, suggesting that changes in both spatial learning and anxiety-like behavior contributed to performance. Short days increased hippocampal expression of the synaptic protein, synapsin I, which was reversed by food restriction. Short days also reduced plasma corticosterone levels, but diet had no effect. There was no effect of diet or photoperiod on hippocampal expression of the glial marker, glial fibrillary acidic protein. The present findings suggest that, in female California mice, the differential effects of food restriction on acquisition and reversal learning are photoperiod-dependent. These results justify further testing of the relationship between food restriction and hippocampal synapsin I in the context of spatial learning.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
31
|
Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31:519-30. [PMID: 20609373 PMCID: PMC2964437 DOI: 10.1016/j.yfrne.2010.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/11/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ∼ 70-100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory.
Collapse
|
32
|
Shirayama Y, Muneoka K, Fukumoto M, Tadokoro S, Fukami G, Hashimoto K, Iyo M. Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats. Hippocampus 2010; 21:1105-13. [PMID: 20623764 DOI: 10.1002/hipo.20824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2010] [Indexed: 11/08/2022]
Abstract
Patients with depression showed a decrease in plasma and cerebrospinal fluid allopregnanolone (ALLO). But antidepressants increased the contents of ALLO in the rat brain. We examined the antidepressant-like effects of infusion of ALLO into the cerebral ventricle, hippocampus, amygdala, nucleus accumbens, or prefrontal cortex of learned helplessness (LH) rats (an animal model of depression). Of these regions, infusions of ALLO into the cerebral ventricle, the CA3 region of hippocampus, or the central region of amygdala exerted antidepressant-like effects. Infusion of ALLO into the hippocampal CA3 region or the central amygdala did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. It is well documented that ALLO exerts its effects through GABA receptors. Therefore, we examined the antagonistic effects of flumazenil (a GABA receptor antagonist) on the antidepressant-like effects of ALLO. Coinfusion of flumazenil with ALLO into the hippocampal CA3 region, but not into the central amygdala, blocked the antidepressant-like effects of ALLO. However, coinfusion of (+)MK801 (an NMDA receptor antagonist), but not cycloheximide (a protein synthesis inhibitor), blocked the antidepressant-like effects of ALLO in the central amygdala. These results suggest that ALLO exerts antidepressant-like effects in the CA3 region of hippocampus through the GABA system and in the central region of amygdala, dependently on the activation of the glutamatergic mechanisms.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 2010; 21:877-84. [PMID: 20572198 DOI: 10.1002/hipo.20803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2010] [Indexed: 12/16/2022]
Abstract
The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus.
Collapse
Affiliation(s)
- Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | |
Collapse
|
34
|
Hajszan T, Szigeti-Buck K, Sallam NL, Bober J, Parducz A, MacLusky NJ, Leranth C, Duman RS. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats. Biol Psychiatry 2010; 67:168-74. [PMID: 19811775 PMCID: PMC2794927 DOI: 10.1016/j.biopsych.2009.08.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/12/2009] [Accepted: 08/15/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in female subjects is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant desipramine. Considering that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life might influence behavioral and synaptic responses to stress and depression. METHODS With electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n = 70), under different conditions of estradiol exposure. RESULTS Stress induced an acute and persistent loss of hippocampal spine synapses, whereas subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either before stress or before escape testing of nonstressed animals increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. CONCLUSIONS These findings suggest that hippocampal spine synapse remodeling might be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression.
Collapse
Affiliation(s)
- Tibor Hajszan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | - Klara Szigeti-Buck
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Pharmacology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Nermin L Sallam
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Jeremy Bober
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Arpad Parducz
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada N1G 2W1
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Neurobiology; Yale University School of Medicine; New Haven, CT 06520, USA
| | - Ronald S Duman
- Department of Pharmacology, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Psychiatry; Yale University School of Medicine; New Haven, CT 06520, USA
| |
Collapse
|
35
|
Muneoka K, Iwata M, Shirayama Y. Altered levels of synapsin I, dopamine transporter, dynorphin A, and neuropeptide Y in the nucleus accumbens and striatum at post‐puberty in rats treated neonatally with pregnenolone or DHEA. Int J Dev Neurosci 2009; 27:575-81. [DOI: 10.1016/j.ijdevneu.2009.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 06/01/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Katsumasa Muneoka
- Department of Anatomy IShowa University School of MedicineTokyoJapan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of MedicineTottori UniversityTottoriJapan
| | - Yukihiko Shirayama
- Department of PsychiatryTeikyo University Chiba Medical CenterChibaJapan
| |
Collapse
|
36
|
O'Leary OF, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 2009; 34:367-81. [PMID: 18977602 DOI: 10.1016/j.psyneuen.2008.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 01/27/2023]
Abstract
Antidepressant drugs have been suggested to regulate synaptic transmission and structure. We hypothesised that antidepressant-induced changes in synapses and their associated proteins might become more apparent if they were measured under conditions of reduced synapse density. Therefore, in the present study, we examined whether chronic treatment with the antidepressant, fluoxetine alters expression of synaptic proteins in the hippocampus of rodents that underwent ovariectomy, a procedure which reportedly decreases synapse density in the CA1 region of the rat hippocampus. Using Western blotting, we measured changes in hippocampal expression of proteins associated with synapse structure, strength and activity namely, postsynaptic density protein 95 (PSD-95), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) subunit GluR1 and phosphosynapsin (Ser9), respectively. We found that fluoxetine treatment increased expression of phosphosynapsin, PSD-95 and synaptic GluR1 (but not total GluR1) in the hippocampus of ovariectomized but not sham rats. Since BDNF and signalling at its receptor, TrkB, can mediate behavioural responses to antidepressants and induce neuronal plasticity, we investigated the contribution of TrkB signalling to fluoxetine-induced changes in synaptic protein expression by using a transgenic mouse model overexpressing a truncated form of the TrkB receptor (TrkB.T1). Fluoxetine produced a small but significant increase in hippocampal PSD-95 in ovariectomized wildtype mice but not in ovariectomized TrkB.T1 mice or sham mice. In contrast to rats, fluoxetine did not alter expression of synaptic GluR1 and did not reverse ovariectomy-induced decreases in hippocampal phosphosynapsin in either genotype. Taken together, these results suggest that chronic fluoxetine treatment can increase synaptic protein expression in the hippocampus and at least some of these effects require TrkB signalling. Moreover, these effects were only observed in ovariectomized animals, thus suggesting that fluoxetine-induced increases in synaptic protein levels might only occur or become detectable when hippocampal synaptic connectivity is perturbed.
Collapse
|
37
|
Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, Leranth C, Duman RS. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 2009; 65:392-400. [PMID: 19006787 PMCID: PMC2663388 DOI: 10.1016/j.biopsych.2008.09.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/04/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. METHODS We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. RESULTS Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. CONCLUSIONS These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.
Collapse
Affiliation(s)
- Tibor Hajszan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The monoamine hypothesis of depression is increasingly called into question by newer theories that revolve around changes in neuronal plasticity, primarily in the hippocampus, at both the structural and the functional levels. Chronic stress negatively regulates hippocampal function while antidepressants ameliorate the effects of stress on neuronal morphology and activity. Both stress and antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) whose transcription is dependent on cAMP response element binding protein (CREB). BDNF itself has antidepressant-like actions and can induce transcription of a number of molecules. One class of genes regulated by both BDNF and serotonin (5-HT) are neuropeptides including VGF (non-acryonimic) which has a novel role in depression. Neuropeptides are important modulators of neuronal function but their role in affective disorders is just emerging. Recent studies demonstrate that VGF, which is also a CREB-dependent gene, is upregulated by antidepressant drugs and voluntary exercise and is reduced in animal models of depression. VGF enhances hippocampal synaptic plasticity as well as neurogenesis in the dentate gyrus but the mechanisms of antidepressant-like actions of VGF in behavioral paradigms are not known. We summarize experimental data describing the roles of BDNF, VGF and other neuropeptides in depression and how they may be acting through the generation of new neurons and altered synaptic activity. Understanding the molecular and cellular changes that underlie the actions of neuropeptides and how these adaptations result in antidepressant-like effects will aid in developing drugs that target novel pathways for major depressive disorders.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane West, Robert Wood Johnson-School of Public Health 357A, Piscataway, NJ 08854-5635, United States
| | | |
Collapse
|
39
|
Velho TAF, Mello CV. Synapsins are late activity-induced genes regulated by birdsong. J Neurosci 2008; 28:11871-82. [PMID: 19005052 PMCID: PMC2610538 DOI: 10.1523/jneurosci.2307-08.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/04/2008] [Accepted: 09/26/2008] [Indexed: 11/21/2022] Open
Abstract
The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. Despite considerable knowledge about the early components of this response, little is known about late components (i.e., genes regulated 2-6 h after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes.
Collapse
Affiliation(s)
- Tarciso A. F. Velho
- Department of Behavioral Neuroscience, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Beaverton, Oregon 97006
| |
Collapse
|
40
|
Reinés A, Cereseto M, Ferrero A, Sifonios L, Podestá MF, Wikinski S. Maintenance treatment with fluoxetine is necessary to sustain normal levels of synaptic markers in an experimental model of depression: correlation with behavioral response. Neuropsychopharmacology 2008; 33:1896-908. [PMID: 17955054 DOI: 10.1038/sj.npp.1301596] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dysfunction of hippocampal plasticity has been proposed to play a critical role in the pathophysiology of depression. However, antidepressant drug effects on synaptic plasticity and cytoskeletal remodeling remain controversial. The aim of the present study was to evaluate in animals exposed to the learned helplessness (LH) paradigm, an accepted experimental model of depression, the effect of chronic treatment with fluoxetine (FLX) on synaptic and cytoskeletal proteins known to undergo plastic changes. Synaptophysin (SYN), postsynaptic density 95 (PSD-95), axon growth-associated protein 43 (GAP-43), and cytoskeletal proteins (intermediate neurofilaments and MAP-2) were studied in the hippocampus by immunohistochemistry. Whereas LH animals treated 21 days with saline (LH-S group) displayed diminished SYN and PSD-95 immunostainings in the CA3 but not in the DG, chronic treatment with FLX not only reversed the despaired behavior induced by exposure to LH paradigm, but also fully recovered SYN and PSD-95 labeling to control values. Similar results were obtained for the axonal remodeling marker GAP-43. FLX treatment did not modify either the decreased light neurofilament subunit (NFL) observed in the hippocampus of LH animals or any other cytoskeletal protein studied. When FLX treatment was withdrawn for 90 days in those LH-FLX animals in which reversion of despair had been observed at day 25, recurrence of despaired behavior was found accompanied by decreased SYN, PSD-95, and NFL labelings. Results indicate that the synapse remodeling induced by FLX in the CA3 region could underlie its behavioral efficacy despite the absence of cytoskeletal remodeling and that the stability of synaptic changes would depend on the continuous administration of the drug.
Collapse
Affiliation(s)
- Analía Reinés
- Instituto de Investigaciones Farmacológicas (ININFA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
41
|
Park SH, Choi SH, Lee J, Kang S, Shin YC, Kim HJ, Kim HJ, Shin SK, Lee MS, Shin KH. Effects of repeated citalopram treatments on chronic mild stress-induced growth associated protein-43 mRNA expression in rat hippocampus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:117-23. [PMID: 20157404 DOI: 10.4196/kjpp.2008.12.3.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although growth associated protein-43 (GAP-43) is known to play a significant role in the regulation of axonal growth and the formation of new neuronal connections in the hippocampus, there is only a few studies on the effects of acute stress on GAP-43 mRNA expression in the hippocampus. Moreover, the effects of repeated citalopram treatment on chronic mild stress (CMS)-induced changes in GAP-43 mRNA expression in the hippocampus have not been explored before. To explore this question, male rats were exposed to acute immobilization stress or CMS. Also, citalopram was given prior to stress everyday during CMS procedures. Acute immobilization stress significantly increased GAP-43 mRNA expression in all subfields of the hippocampus, while CMS significantly decreased GAP-43 mRNA expression in the dentate granule cell layer (GCL). Repeated citalopram treatment decreased GAP-43 mRNA expression in the GCL compared with unstressed controls, but this decrease was not further potentiated by CMS exposure. Similar decreases in GAP-43 mRNA expression were observed in CA1, CA3 and CA4 areas of the hippocampus only after repeated citalopram treatment in CMS-exposed rats. This result indicates that GAP-43 mRNA expression in the hippocampus may differently respond to acute and chronic stress, and that repeated citalopram treatment does not change CMS-induced decreases in GAP-43 mRNA expression in the GCL.
Collapse
Affiliation(s)
- Sang-Ha Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. Eur J Pharmacol 2008; 578:114-22. [DOI: 10.1016/j.ejphar.2007.08.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/13/2007] [Accepted: 08/28/2007] [Indexed: 01/19/2023]
|
43
|
Wu LM, Han H, Wang QN, Hou HL, Tong H, Yan XB, Zhou JN. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology 2007; 32:2500-10. [PMID: 17392736 DOI: 10.1038/sj.npp.1301386] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical investigations present much evidence that the glucocorticoid receptor (GR) antagonist mifepristone leads to a rapid amelioration of depression. The molecular mechanisms of mifepristone involved in the treatment of depression are not fully understood. Depression is associated with hippocampal plasticity, for which increased excitatory amino acid (EAA) release in CA3 induced by chronic stress is responsible, and glucocorticoids have a permissive role and act synergistically with EAAs in producing neuronal damage. Moreover, glucocorticoids increase synapsin I, which has a key role in the release of neurotransmitter, including EAAs. Hereby, we hypothesize that major depression involves synapsin I alteration and that mifepristone blocks this alteration. In the present study, we observed both the expression of hippocampal synapsin I and depression-associated behavior in a rat model of depression induced by chronic unpredictable mild stress (CUMS). The result showed that a region-dependent synapsin I alteration occurs in the rat hippocampus after 21 days of CUMS, that is, it increases in dentate gyrus (DG)/CA3 and decreases in the CA1 region. Correlation analysis indicated that the decrease of synapsin I in CA1 is highly correlated with the increase in the DG/CA3 subfield. Simultaneously, the region-dependent alteration of synapsin I is correlated with depression-associated behaviors. Both the alteration of synapsin I and the depression-associated behavior were rapidly restored after treatment with mifepristone for 1 week. The result suggests that the molecular mechanism underlying the treatment of depression with mifepristone is associated with the rapid repair of the synaptic alteration.
Collapse
Affiliation(s)
- Li-Min Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Neurobiology and Biophysics, School of Life Science, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ, Black IB, Alder J. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27:12156-67. [PMID: 17989282 PMCID: PMC3363962 DOI: 10.1523/jneurosci.1898-07.2007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 01/16/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the hippocampus by antidepressant treatments, and BDNF produces antidepressant-like effects in behavioral models of depression. In our previous work, we identified genes induced by BDNF and defined their specific roles in hippocampal neuronal development and plasticity. To identify genes downstream of BDNF that may play roles in psychiatric disorders, we examined a subset of BDNF-induced genes also regulated by 5-HT (serotonin), which includes the neuropeptide VGF (nonacronymic). To explore the function of VGF in depression, we first investigated the expression of the neuropeptide in animal models of depression. VGF was downregulated in the hippocampus after both the learned helplessness and forced swim test (FST) paradigms. Conversely, VGF infusion in the hippocampus of mice subjected to FST reduced the time spent immobile for up to 6 d, thus demonstrating a novel role for VGF as an antidepressant-like agent. Recent evidence indicates that chronic treatment of rodents with antidepressants increases neurogenesis in the adult dentate gyrus and that neurogenesis is required for the behavioral effects of antidepressants. Our studies using [(3)H]thymidine and bromodeoxyuridine as markers of DNA synthesis indicate that chronic VGF treatment enhances proliferation of hippocampal progenitor cells both in vitro and in vivo with survival up to 21 d. By double immunocytochemical analysis of hippocampal neurons, we demonstrate that VGF increases the number of dividing cells that express neuronal markers in vitro. Thus, VGF may act downstream of BDNF and exert its effects as an antidepressant-like agent by enhancing neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| | - Jennifer Jernstedt Krol
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| | - Jacob Nettleton
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| | - Parizad M. Bilimoria
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| | - Debra A. Bangasser
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Tracey J. Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Ira B. Black
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| | - Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, and
| |
Collapse
|
45
|
Ishida H, Shirayama Y, Iwata M, Katayama S, Yamamoto A, Kawahara R, Nakagome K. Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor. Hippocampus 2007; 17:271-80. [PMID: 17265460 DOI: 10.1002/hipo.20264] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A couple of papers indicate that patients with depression show a decrease in serum neuropeptide Y (NPY). To study the role of NPY in depression, we examined the effects of infusion of NPY into the hippocampus of learned helplessness (LH) rats (an animal model of depression). Infusion of NPY into the cerebral ventricle of LH rats showed antidepressant-like effects. Infusion of NPY into the CA3 region, but not the dentate gyrus (DG), produced antidepressant-like effects in the LH paradigm. Infusion of NPY did not affect locomotor activity or aversive learning ability. Coadministration of BIBO3304 (a Y1 receptor antagonist) with NPY to the CA3 region blocked the antidepressant-like effects of NPY, whereas coadministration of NPY with BIIE0246 (a Y2 receptor antagonist) to the CA3 region failed to block antidepressant-like effects. Furthermore, infusions of [Leu(31) Pro(34)]PYY (a Y1 and Y5 receptor agonist) alone and BIIE0246 alone into the CA3 region produced the antidepressant-like effects in LH rats. These results suggest that infusion of NPY into the CA3 region of hippocampus of LH rats produces antidepressant-like activity through Y1 receptors and attenuating effects through Y2 receptors.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Avoidance Learning/drug effects
- Behavior, Animal
- Benzazepines/pharmacology
- Depression/drug therapy
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Exploratory Behavior/drug effects
- Helplessness, Learned
- Hippocampus/drug effects
- Hippocampus/physiology
- Injections, Intraventricular/methods
- Male
- Neuropeptide Y/pharmacology
- Neuropeptide Y/therapeutic use
- Peptide YY/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/physiology
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/physiology
Collapse
Affiliation(s)
- Hisahito Ishida
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|